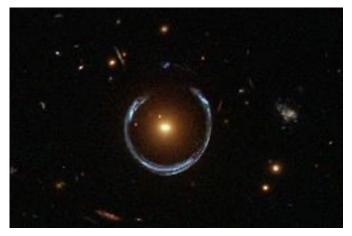
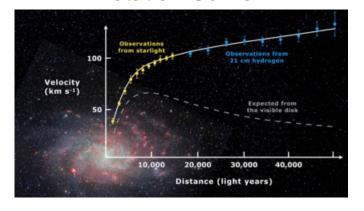


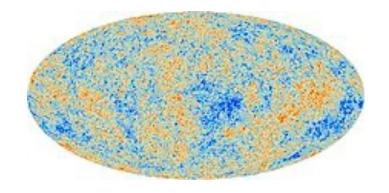
Jing Chen

on behalf of the DarkSHINE team

MEPA2022, Hefei China 2022.12.17

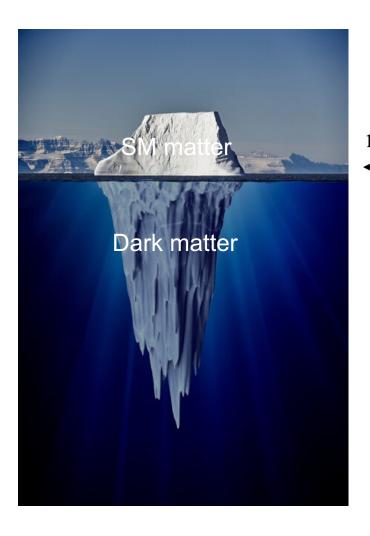


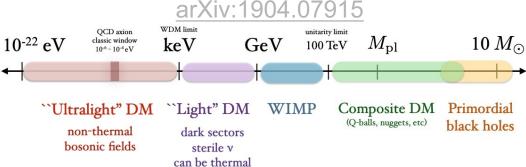

Evidence of dark matter



Rotation Curve

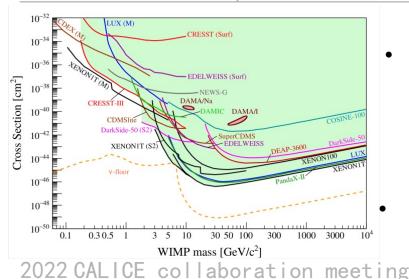
The Bullet Cluster

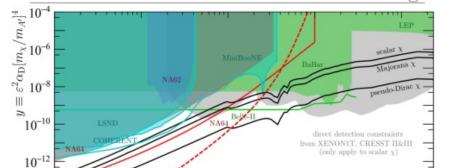

Cosmic Microwave Background



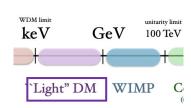
Dark matter candidates

Mass scale of dark matter




- Dark Matter can exist in wide mass range, from Ultralight DM to Primordial Black Holes.
- Dark matter is the mysterious substance that makes up roughly a quarter of the Universe.

Dark matter candidates


 10^{-1}

 10^{-2}

 $m_{A'}/m_{\chi} = 3, \alpha_D = 0.5$

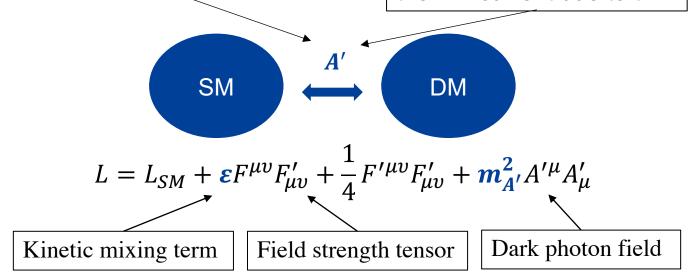
 m_{χ} [GeV]

Experimental search:

- Space experiments: DAMPE, AMS etc.
- Collider experiments: LHC, BELLE-II, BESIII etc.
- Underground experiments: CDEX, PandaX, LUX, Xenon etc.

Searching for light DM:

- Sub-GeV mass range is not fully explored yet.
- Dark photon A':
- 1. Dark matter particles may interact with other dark matter particles via a new force mediated by A'.
- 2.Collider/accelerator-based experiments searching for dark photon: NA64@CERN, BESIII, BEPCII, LDMX, Lohengrin, etc.



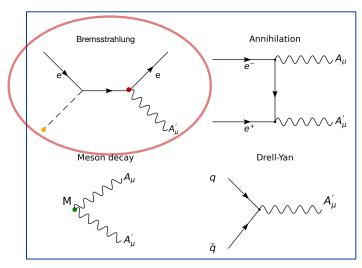
Search for dark photon

 Dark photon is an important portal between the standard model (SM) particles and the dark matter.

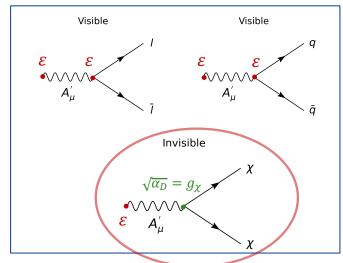
not couple directly to SM particles

obtain a small coupling to the EM current due to ε

 DarkSHINE is an experiment based on the minimal dark-photon model with 3 unknown parameters:


 ϵ : kinetic mixing between the SM hypercharge and A' field strength tensors. $m_{A'}$: dark photon mass. $m_{A'}$: dark photon mass.

Decay branching ratio of $A' \rightarrow \chi \chi$ (assumed to be 1 or 0)


Search for dark photon

- Bremsstrahlung, $eZ \rightarrow eZA' \& pZ \rightarrow pZA'$, fixed-target experiment
- Annihilation, $e^+e^- \rightarrow A'\gamma$, e^+e^- collider
- Drell-Yan, $q\bar{q} \rightarrow A'$, hadron collider / fixed nuclear target w/ proton-beam
- Meson decay, $\pi^0 \to A' \gamma$ or $\eta \to A' \gamma$ (w/ $m_{A'} < m_{\pi,\eta}$), any experiment w/ high meson production rates

A' decay:

- Visible decay

Two interaction vertices → production rate highly suppressed

- Invisible decay

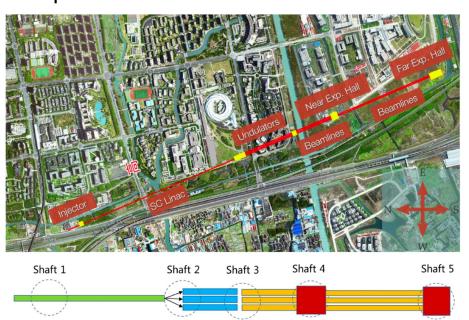
One interaction vertice → interaction probability enhanced

Better sensitivity!

The SHINE facility

DarkSHINE:

- **Fixed-target** experiment w/ high frequency **single electron beam** provided by Shanghai High Repetition-Rate XFEL and Extreme Light Facility(**SHINE**)


8GeV SCRF linac

- Invisible decay: $m_{A'}>2m_\chi$, missing energy / missing momentum
- Search for A' in $[m_{A'}, \varepsilon]$ parameter space

The SHINE:

- Under construction in Zhangjiang area, Shanghai (2018-2026).
- $E_{beam} = 8GeV$ with frequency 1MHz
- Beam intensity: 6.25×10⁸ electrons per bunch

Science Bulletin 61, 117(2016), 720-727

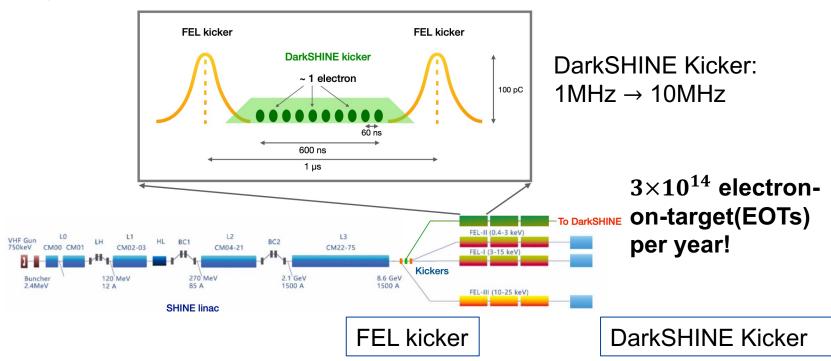
BLs

NEH

BLs

FEH

BDS FELs



The SHINE facility

Single electron beam is needed for DarkSHINE.



1300 buckets provided by 1.3GHz microwave

100pC in one bucket 6.25×10^8 electrons per bunch

electron beam w/ one electron per bunch

DarkSHINE detector

Tracker:

- Tagging tracker (7 layers) + recoil tracker (6 layers)
- Incident and recoil electron tracks
- Two silicon strip sensors w/ a small angle (0.1rad)
- Resolution: $6\mu m$ (horizontal), $60\mu m$ (vertical)

• ECAL:

- Electron & photon
- Scintillator: LYSO(Ce)

high light yield (30000 p.e/MeV), fast decay time (40 ns), low electronic noise

- $20 \times 20 \times 11$ crystals

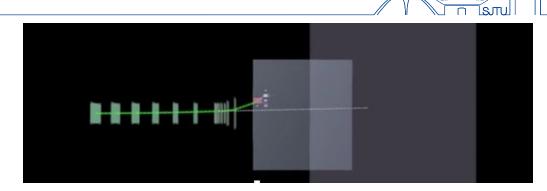
 $2.5 \times 2.5 \times 4 cm^{3}$

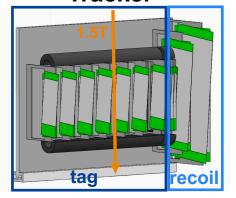
Energy resolution of LYSO:10%

HCAL:

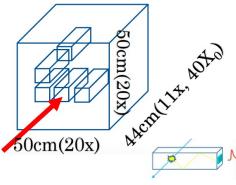
- Veto hadronic background
- Scintillator w/ steel absorber
- 4×4×1 modules

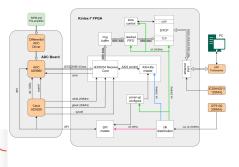
Additional system:

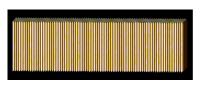

- Magnet: 1.5T magnetic field
- Readout electronics


Detector R&D

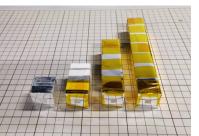
If an electron interacts with tungsten target and produce a dark photon ...



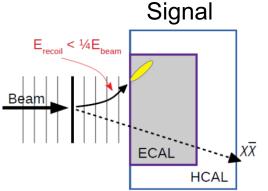

Tracker

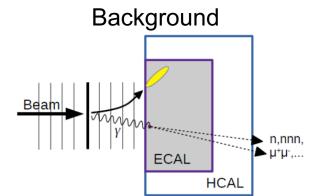

ECAL

Readout electronics

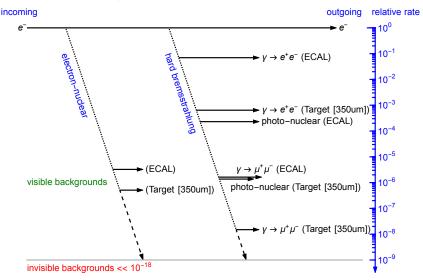

HCAL

silicon strip sensor prototype





Signal & background


Signal signature:

Most of the incident momentum is transferred to A'.

Major background processes:

Leading background:

photon bremsstrahlung

Rare processes:

photon-nuclear, $\gamma \rightarrow \mu\mu$, electron-nuclear

Invisible background:

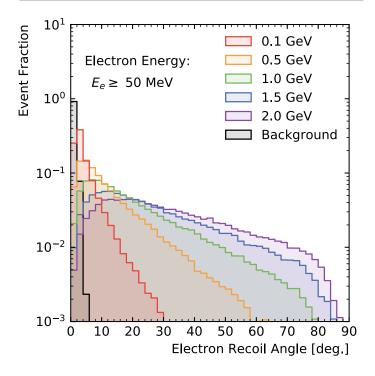
Neutrino productions

MC samples

- Signal samples:
 - Dark photon mass:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, 700, 1000, 1500, 2000 MeV.
 - 1×10^5 events in each sample.
- Background samples:

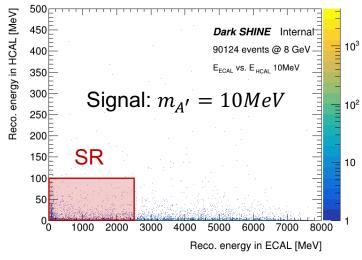
Process	Generate Events	Branching Ratio	EOTs
Inclusive	2.5×10^{9}	1.0	2.5×10^{9}
Bremsstrahlung	1×10^{7}	6.70×10^{-2}	1.5×10^{8}
GMM_target	1×10^{7}	$1.5(\pm 0.5) \times 10^{-8}$	4.3×10^{14}
GMM_ECAL	1×10^{7}	$1.63(\pm0.06) \times 10^{-6}$	6.0×10^{12}
PN_target	1×10^7	$1.37(\pm0.05) \times 10^{-6}$	4.0×10^{12}
PN_ECAL	1×10^{8}	$2.31(\pm0.01)\times10^{-4}$	4.4×10^{11}
EN_target	1×10^{8}	$5.1(\pm0.3)\times10^{-7}$	1.6×10^{12}
EN_ECAL	1×10^{7}	$3.25(\pm0.08) \times 10^{-6}$	1.8×10^{12}

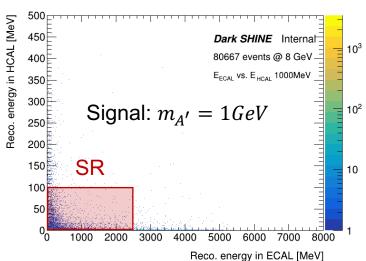
Simulation

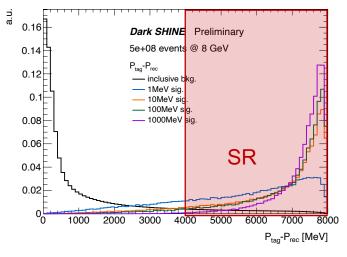

Signal

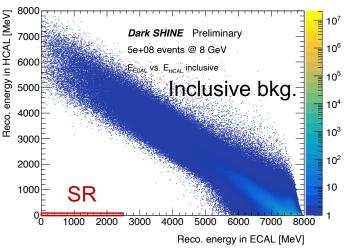
- Low momentum of recoil electron
- Recoil electron angle has on average value

10^{2} **Event Fraction** 0.1 GeV Electron Energy: 0.5 GeV 1.0 GeV $E_e \ge 50 \text{ MeV}$ 10^{1} 1.5 GeV 2.0 GeV Background 10^{0} 10^{-1} 10^{-2} 10^{-3} 2 6 Electron Recoil Energy E_e [GeV]

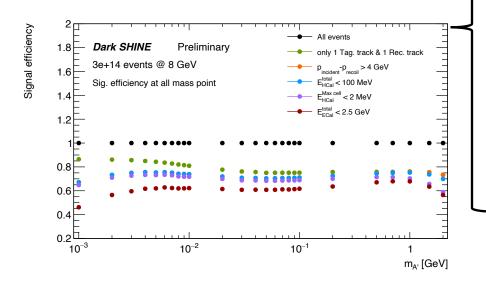

Background


- Recoil electron carry most of the incident momentum
- Recoil electron angle small





ECAL energy vs. HCAL energy


Signal region

Signal region definition:

number of the reconstructed tracks, $N_{trk}^{tag,rec} = 1$; missing momentum of electron, $p_{tag} - p_{rec} > 4$ GeV; total energy reconstructed in ECAL, $E_{ECAL}^{total} < 2.5$ GeV; total energy reconstructed in HCAL, $E_{HCAL}^{total} < 0.1$ GeV; max. cell energy in HCAL, $E_{HCAL}^{MaxCell} < 2$ MeV.

Signal efficiency:

- 25 mass points are produced.
- Around 60% signal events survive the cut-flow.
- Efficiency drops in:

Low-mass region of a few MeV: tight energy cuts.

High-mass region above 1 GeV: particles with large incident/recoil angle go into the HCAL directly.

Cut-flow:

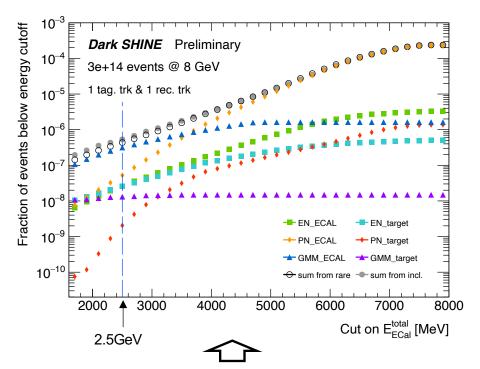
EOTs:

	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	hard_brem	inclusive
total events	100%	100%	100%	100%	100%	100%	100%	100%
only 1 track	58.87%	70.48%	87.36%	5.85%	5.88%	$< 10^{-3}\%$	78.73%	84.40%
$p_{tag} - p_{rec} > 4 \text{ GeV}$	0.0044%	0.0033%	0.0041%	5.58%	5.46%	< 10 ⁻⁵ %	70.49%	4.80%
$E_{HCAL}^{total} < 100 \text{ MeV}$	< 10 ⁻³ %	< 10 ⁻³ %	0%	0.30%	0.72%	0%	69.61%	4.76%
$E_{HCAL}^{MaxCell} < 10 \text{ MeV}$	< 10 ⁻³ %	< 10 ⁻³ %	0%	0.13%	0.27%	0%	65.00%	4.48%
$E_{HCAL}^{MaxCell} < 2 \text{ MeV}$	< 10 ⁻³ %	< 10 ⁻³ %	0%	0.058%	0.095%	0%	58.14%	4.04%
$E_{ECAL}^{total} < 2.5 \text{ GeV}$	0%	0%	0%	0%	0%	0%	0%	0%

Process **EOTs** 2.5×10^{9} Inclusive 1.5×10^{8} Bremsstrahlung 4.3×10^{14} GMM_target 6.0×10^{12} GMM_ECAL 4.0×10^{12} PN_target 4.4×10^{11} PN_ECAL 1.6×10^{12} EN_target 1.8×10^{12} EN_ECAL

Inclusive background: 2.5×10⁹ EOTs

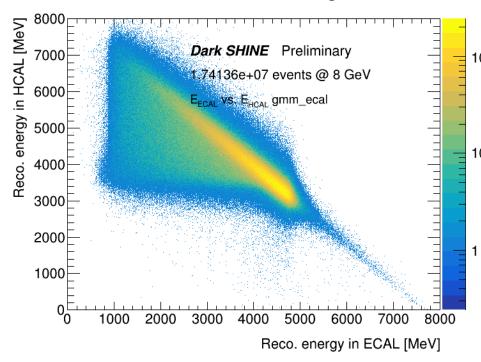
 \Rightarrow > 3×10¹⁴EOTs (1year run)


Lack of statistics!

 Δ

Extrapolate from fit results

No background events left after SR selection.



rare processes scaled according to the corresponding branching ratio.

- Extrapolate from rare processes simulation.
- Rare processes background samples are produced with larger statistics.
- Fit the fraction of events below energy cutoff in other rare processes (EN_ECAL, EN_target, PN_ECAL, PN_target).

- Extrapolate from rare processes simulation.
- Estimate the number of background events corresponds to 3×10¹⁴ EOTs.

Don't need to further extrapolation on:

GMM_target - enough statistics
GMM_ECAL - can reject by HCAI requirements

GMM_target:

 $4.3 \times 10^{14} EOTs > 3 \times 10^{14} EOTs$

GMM_ECAL:

 $6.0 \times 10^{12} EOTs$

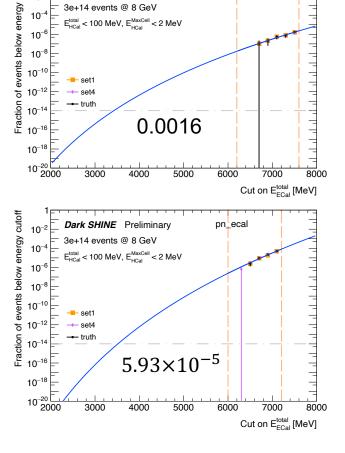
Energy carried by the muon pair

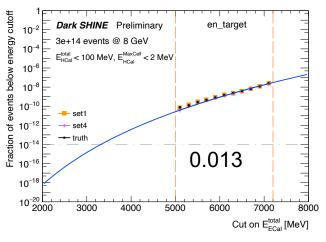
HCAL requirements can highly suppress these events (fraction of the remaining GMM events $< 10^{-6}$)

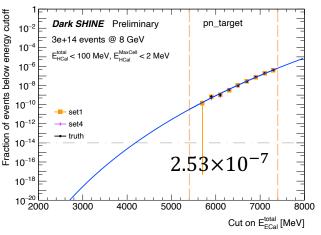
Dark SHINE Preliminary

3e+14 events @ 8 GeV

cutoff


 10^{-2}




Background estimation

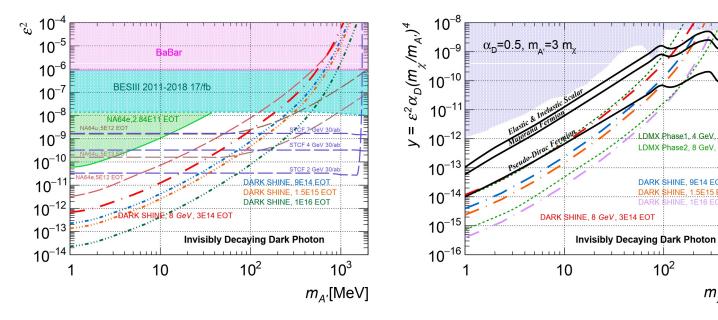
en_ecal

 3×10^{14} EOTs

Bkg. Events: 0.015

Sensitivity study

LDMX Phase2, 8 GeV, 1E16 EO


 10^{3}

 $m_{\nu}[\text{MeV}]$

DARK SHINE, 9E14 EOT

 10^{2}

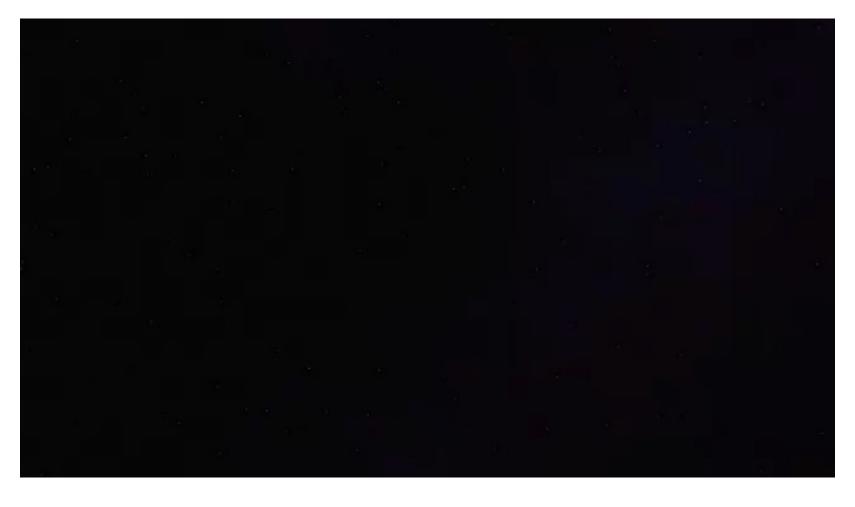
Expected 90% C.L. limit estimated with 3×10^{14} EOTs (running ~1 year), 9×10^{14} EOTs (~3 years), 1.5×10^{15} EOTs (~5 years) and 1×10^{16} EOTs (with Phase-II upgrade).

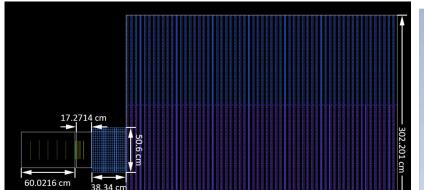
Comparing with other experiments, DarkSHINE can provide competitive sensitivity.

Summary

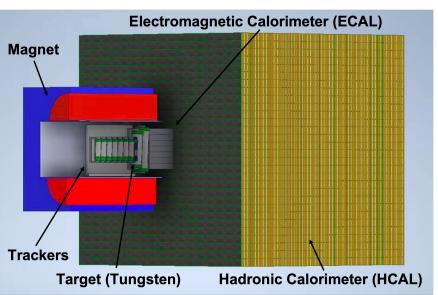
- DarkSHINE: a fixed-target experiment to search for light dark matter.
- Detector R&D ongoing.
- First round of preliminary study has been finished:
 - Production: bremsstrahlung, $eZ \rightarrow eZA'$.
 - Invisible decay: $A' \rightarrow \chi \chi$.
 - Most of the incident momentum is transferred to A'.
 - Track, missing momentum, deposit energy in ECAL and HCAL: good signal efficiency, background well suppressed (~0.015 bkg. event expected for 1 year operation).
 - Expecting competitive sensitivity.
 - Sci. China-Phys. Mech. Astron., 66(1): 211062 (2023)

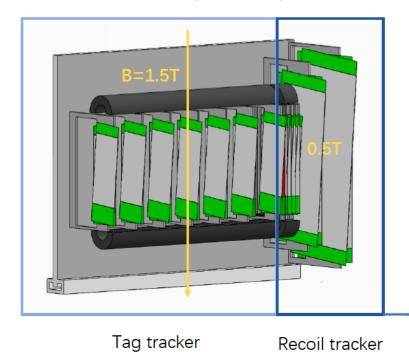
Backup




Event display

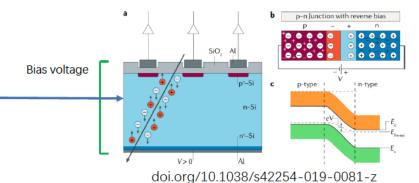
DarkSHINE detector

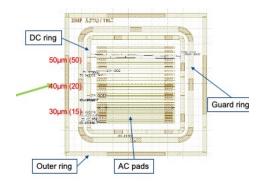



 Table 1
 The detector geometry overview.

Node	Centre (mm)	Size (mm)		Arrangement	Comments	
	z	x	У	z		
Tagging Tracker	-307.783	200	400	600.216	7 layers	Second layer rotation: 0.1 rad
Target	0	100	200	0.35		
Recoil Tracker	94.032	500	800	172.714	6 layers	Second layer rotation: 0.1 rad
ECAL	408.539	506	506	454.3	$20 \times 20 \times 11$ cells	
HCAL	2660.69	4029.51	4029.51	4048.01	$4 \times 4 \times 1$ modules	

Tracker design


Silicon tracker geometry

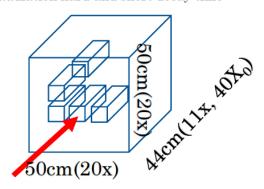

Tag tracker							
Z position/mm	-607.5	-507.5	-407.5	-307.5	-207.5	-107.5	-7.5
X size/mm	100	100	100	100	100	100	100
Y size/mm	200	200	200	200	200	200	200

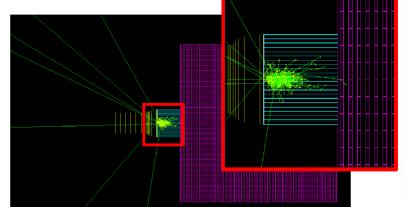
Recoil tracker							
Z position/mm	7.5	22.5	38.5	53.5	89.5	180.5	
X size/mm	100	100	100	120	180	250	
Y size/mm	200	200	200	230	280	400	

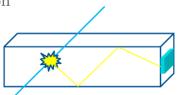
Z thickness ~100μm, 0.001λ Resolution x: ~6μm, y: ~60μm

Recoil tracker

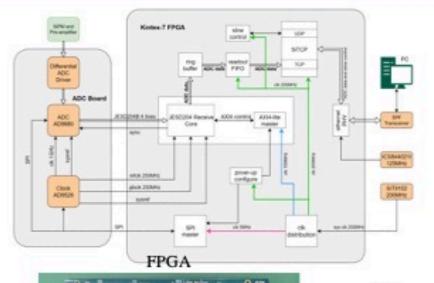
Dark Shine Simulation Workshop (20/1/2021)



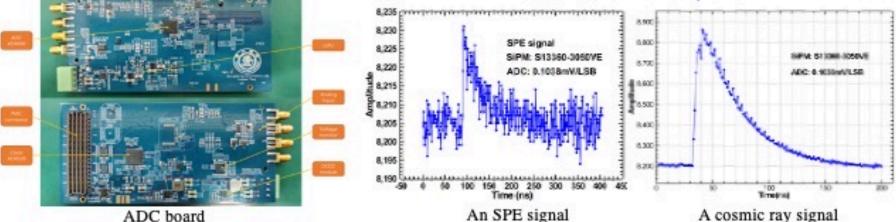

Calorimeter Design (ECAL)


- · Cubic design of crystal for the electronic calorimeter
 - · Z segmentation for 3D shower reconstruction and (potential) PID
 - · Potential PFA combined with tracker: location resolution and better track regression
- · Readout with SiPM(light sensor) and waveform sampling
 - · Wide dynamic range and abundant models for different application
 - · Compact size and (relatively) easy to drive
 - High repeated rate and strictly zero integral/dead time with fast ADC&DAQ

- · High light yield with good linearity
- · Radiation hard and short decay time



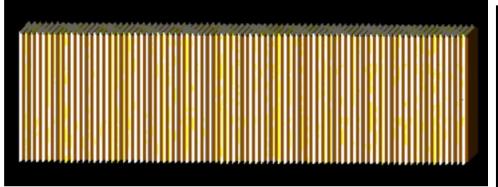
Detector R&D: ECAL readout system

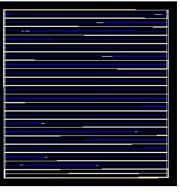


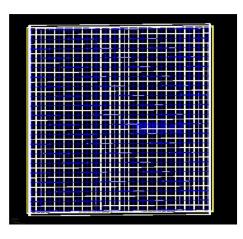
Photons from ECAL crystal are detected using SiPM + fast readout system.

- SiPM (width~10s ns, rising edge ~2ns)
- ADC chip (AD9680 from ADI)
- ADC Mezzanine Card

AEI workshop


- Data transfer and processing
- ADC performance has been tested.
 - Analog input: Cosmic ray + SiPM (S13360-3050VE) + plastic scintillator
 - Amplitude of SPE signal: ~42 LSB, 4.4mV
 - Noise level: ~10 LSB, 1mV

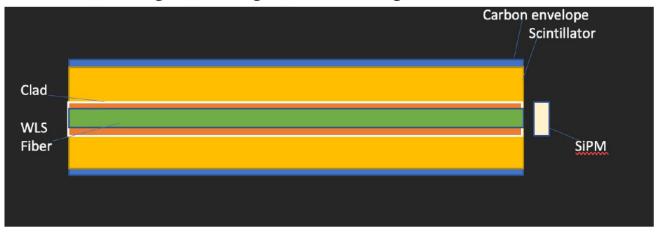




HCAL design

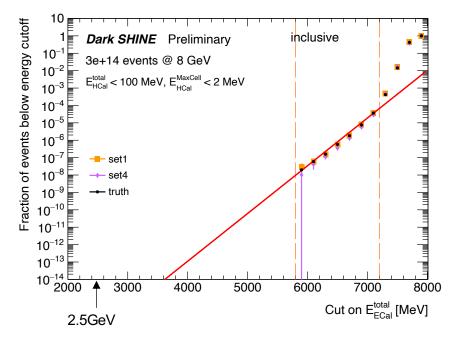
Parameter for the whole HCAL

X:100cm


Y:100cm

Z:360cm

Each scintillator wrapped by a carbon envelope, with a wavelength shifting (WLS) fiber placed in its center.


Veto the muon and hadron backgrounds.

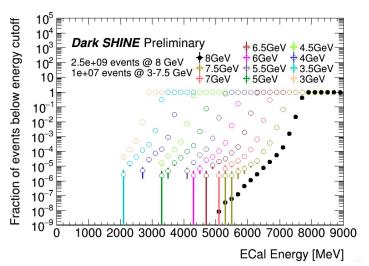
 Simulation study ongoing with inject particles of different type and energy.

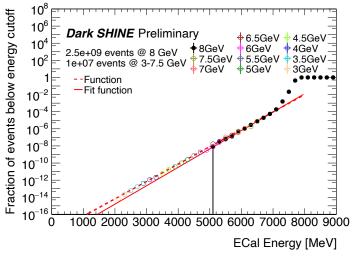
- Fit the fraction of events below energy cutoff as a function of cut values on ECAL energy.
- Extrapolate from inclusive background simulation.
- Validation from inclusive background simulation.
- Extrapolate from rare processes simulation.

 $y = 10^{-14}$: less than one background event left w/ ECAL energy cut.

Extrapolate from the fit results.

Lack of statistics in low "cut on E_{ECal}^{total} " region.


Event yield $(3\times10^{14}EOTs)$:

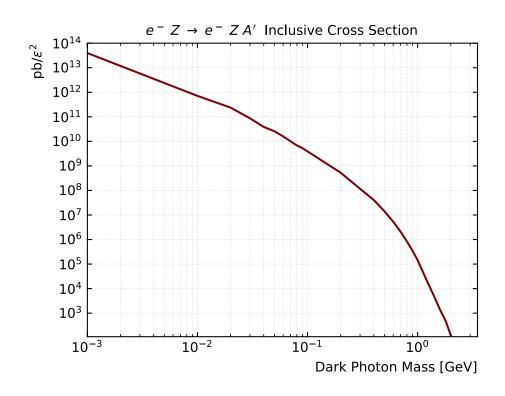

$$2.53 \times 10^{-3}$$

- Validation from inclusive background simulation.
- Statistics is limited in $E_{beam} = 8 \text{GeV}$ inclusive samples.
- In extrapolation of inclusive background simulation, the fit range is far away from the final E_{ECal}^{total} cut (2.5 GeV).
- Inclusive samples with E_{beam} from 3 7.5 GeV are used to estimate events in low E_{ECal}^{total} .
- Scale low E_{beam} events to match the shoulder with $E_{beam} = 8$ GeV events.
- Event yield from direct extrapolation(3×10¹⁴EOTs):

$$N_{100,2} = 3 \times 10^{14} \times N_{100,20} \cdot \frac{N_{fit,100,2}}{N_{fit,100,20}}$$
$$= 9.23 \times 10^{-3}$$

Invisible background

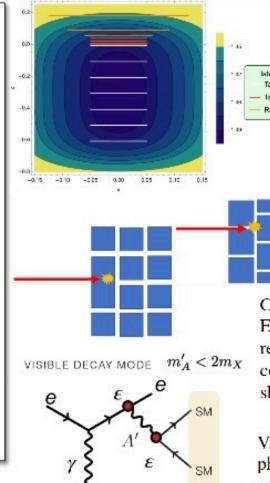
- Neutrino productions:
 - Moller scattering $e^-e^- \rightarrow e^-e^-$ followed by charged-current quasi-elastic (CCQE) reaction $e^-p \rightarrow \nu_e n$.
 - Neutrino pair production $e^-N \rightarrow e^-N\nu\bar{\nu}$.
 - Bremsstrahlung \oplus CCQE and charge-current exchange with exclusive $e^-p \to vn\pi_0$. No recoil electron, track requirement can remove these processes.


Table 6 Expected invisible background production corresponds to 3×10^{14} EOTs, estimated from different irreducible reaction scenarios. The Bremsstrahlung \bigoplus CCQE and the charge-current exchange productions can be effectively rejected by the one-track requirement.

irreducible reaction	Moller scattering	neutrino pair production		
estimated yield	3×10^{-4}	$< 1.8 \times 10^{-5}$		
irreducible reaction	Bremsstrahlung CCQE	charge-current exchange		
estimated yield	0.3	0.3		

Inclusive cross-section

Inclusive cross-section of dark photon bremsstrahlung from electron interacting with W target, assuming $\varepsilon = 1$.



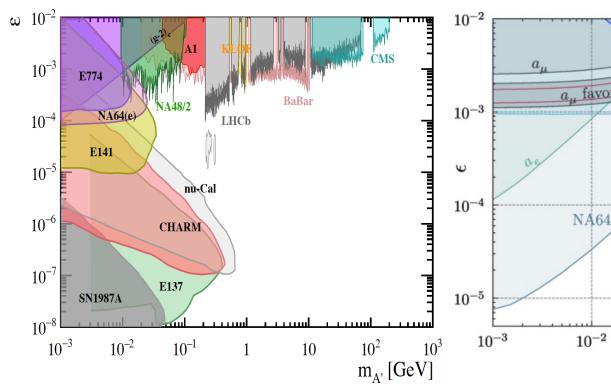
What's next?

Many interesting tasks ongoing after the 1st round of prospective study based on truth information:

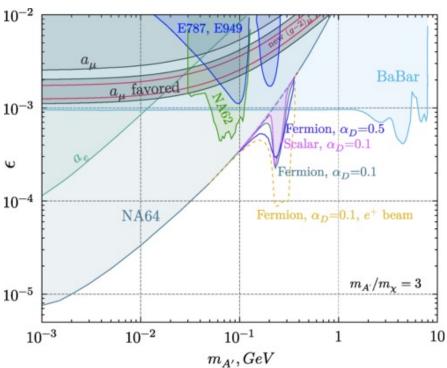
- Detector design optimization
 - strip sensor width, nonuniform magnetic field, calorimeter layout, radiation damage control, supporting structure & detector gap region, ...
- Analysis using reco-level information
 - track reconstruction from strip info., cell clustering, track-cell matching, machine learning application...
- Other signal model?
 - visible decay mode, axion-like particle, ...

We're stepping into the real world!

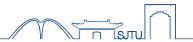
magnetic field:
optimization for
better track fitting
and acceptance
region.
AEI workshop


Nonuniform

Crystal arrangement in ECAL: avoiding gap region; increased complexity in shower shape reconstruction.

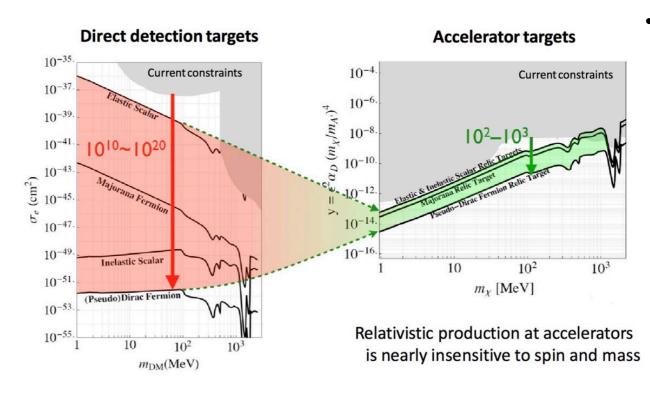

Visible decay of dark photon: no more missing energy, requiring better event reconstruction.

Dark photon search experimental results



arXiv: 1707.04591

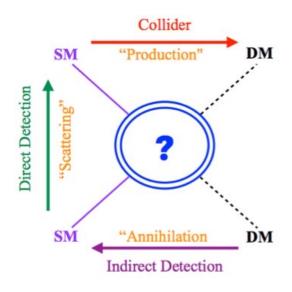
Phys. Rev. D 104, L091701 (2021)


Plan

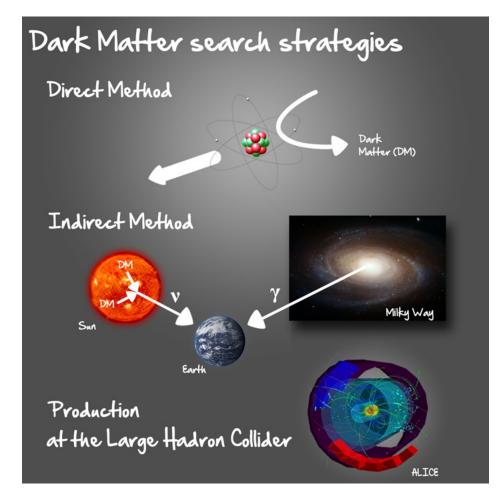
- 1st **simulation studies** of detector system; establish DarkSHINE collaboration formally with SHINE facility (start the R&D work on the beamline).
- 2023 R&D of the calorimeter systems, tracker system, magnet and mechanical supporting layout; determine 1st conceptual design of DarkSHINE beamline.
- In-lab technical demonstration of detector prototypes; overall conceptual design report of DarkSHINE detector system and the preliminary beamline conceptual design report.
- 2025 Sub-detector prototyping; cosmic tests and beam tests.
- 2026 Start the **construction** of the DarkSHINE beamline and detector systems.
- 1st **commissioning** of the overall DarkSHINE experiment at the accomplished SHINE facility and dedicated DarkSHINE specific beamline.

Why need accelerator-based program?

- experiments are much less sensitive to the details of the DM particle nature than direct detection experiments.
- Predictions with different theoretical models $\sim 10^2 10^3$.


Easy to carry out simultaneous verification in experiments.

arXiv:1707.04591



Dark matter detection

- Direct Detection: nuclear recoils from DM-nuclei scattering
- Indirect Detection: products from DM annihilation
- Colliders: DM production in highenergy collisions

