Hadronic system reconstruction at CEPC and searching for New Physics

Manqi Ruan

Outline

- Introduction & Motivation
- Boson Mass Resolution (BMR) & Higgs invisible, Higgs width, Higgs to di-tau
- Jet energy response & W mass measurement
- Jet flavor tagging & Higgs→bb, cc, gg and V_cb from W decay
- Jet charge measurement
- Summary

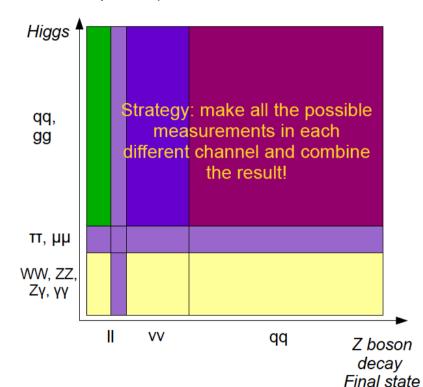
Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 4M Higgs boson
 - Absolute measurements of Higgs boson width and couplings

Low Energy Booster(0.4Km)

- Searching for exotic Higgs decay modes (New Physics)
- Z & W factory: 100M W Boson, 4 Tera Z boson
 - Precision test of the SM
 - Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
 - ...

Heavy ion, e-p collision...


Complementary

(240m)

IP3

Hadronic final states at Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - $Z\rightarrow II$, vv (30%); $H\rightarrow 0$ jets (~10%, $\tau\tau$, $\mu\mu$, $\gamma\gamma$, $\gamma Z/WW/ZZ\rightarrow leptonic)$
 - 2 jets (+n with gluon emission...): 32%
 - $Z \rightarrow qq$, $H \rightarrow 0$ jets. 70%*10% = 7%
 - $Z \rightarrow II$, vv; $H \rightarrow 2$ jets. 30%*70% = 21%
 - Z→II, vv; H→WW/ZZ→semi-leptonic. 3.6%
 - 4 jets: 55%
 - Z→qq, H→2 jets. 70%*70% = 49%
 - Z→II, vv; H→WW/ZZ→4 jets. 30%*15% = 4.5%
 - 6 jets: 11%
 - Z→qq, H→WW/ZZ→4 jets. 70%*15% = 11%

- 97% of the SM Higgsstrahlung Signal involves Jets
- 66% need color-singlet identification: grouping the hadronic final sate particles into color-singlets (Z, H, W, gamma, ...).

BMR @ Baseline

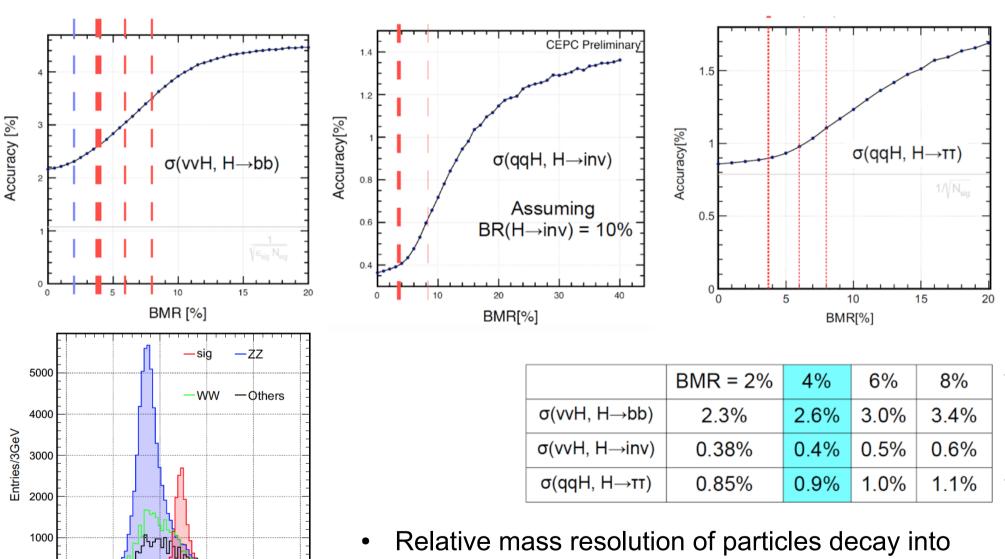
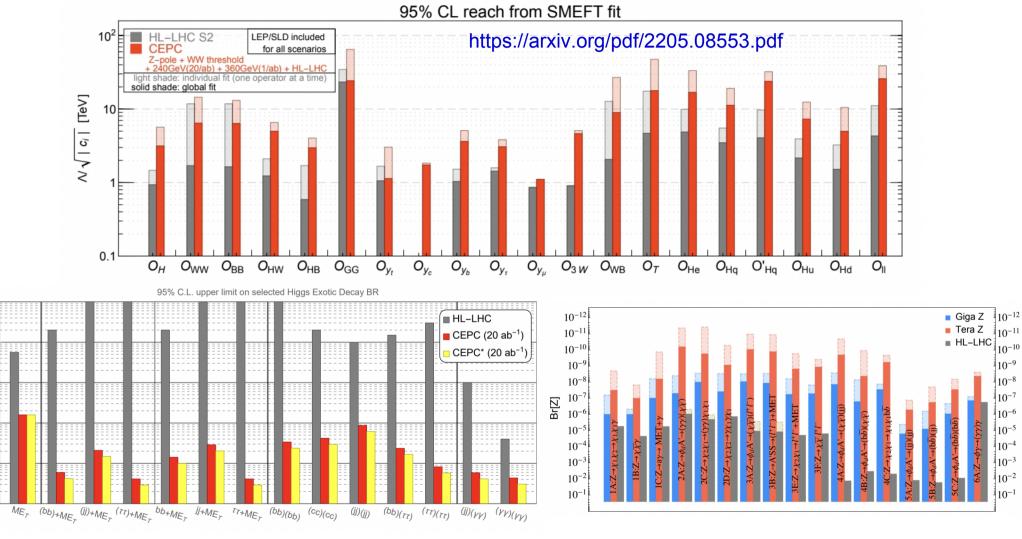



Table 3. Higgs boson mass resolution $(\sigma/Mean)$ at different decay modes with jets as final state particles, after the event cleaning.

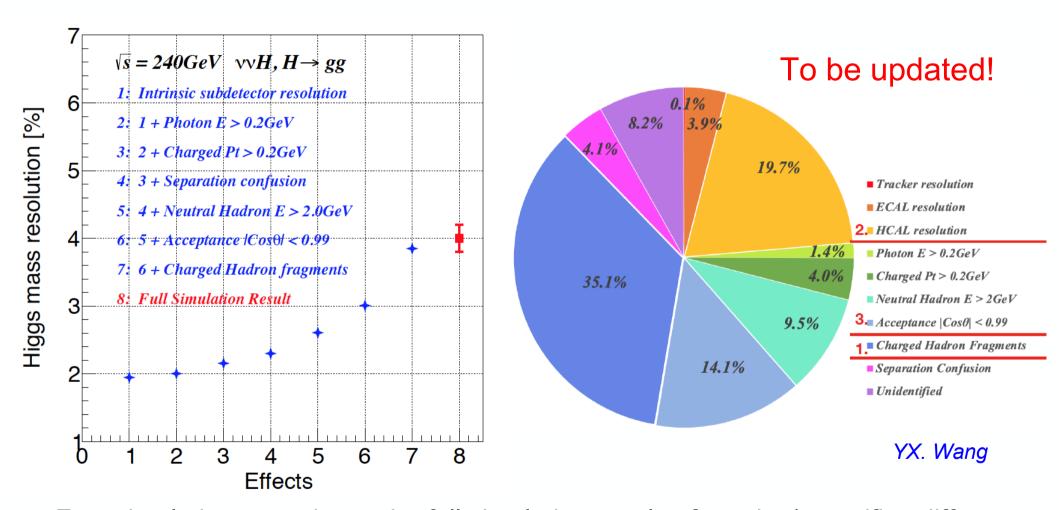
Higgs→bb	Higgs→cc	$Higgs \rightarrow gg$	$\mathrm{Higgs}{\rightarrow}\ \mathrm{WW}^*$	$\mathrm{Higgs}{\to}~\mathrm{ZZ^*}$
3.63%	3.82%	3.75%	3.81%	3.74%

BMR Benchmarks


150

M_{aa}^{re∞il}[GeV]

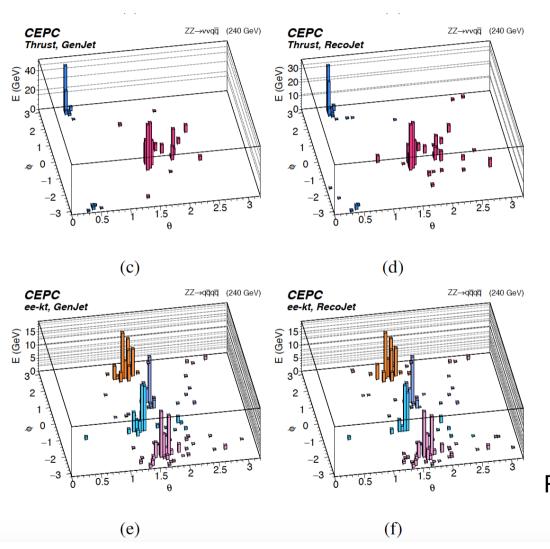
18/12/2022


- Relative mass resolution of particles decay into hadronic final state: quantified with vvH, H→gg
- Higgs measurement require BMR < 4%;

Physics reach at CEPC

CEPC* scenario further utilizes the hadronically decaying Z boson

PFA Fast simulation

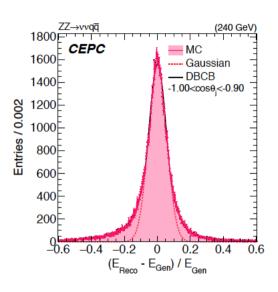


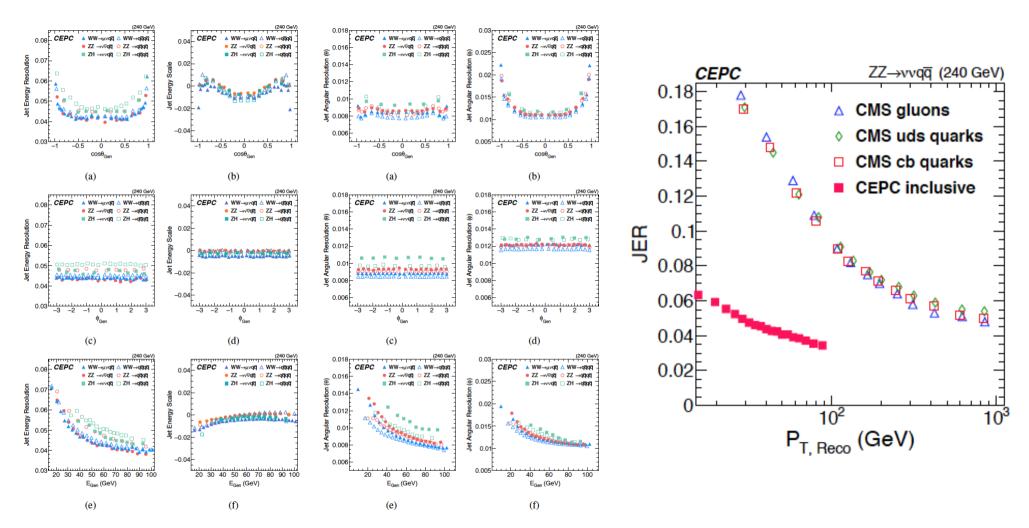
Fast simulation reproduces the full simulation results, factorize/quantifies different impacts

Individual Jet

Remark - BMR dosen't depend on Jet

Individual jet: jet clustering - matching

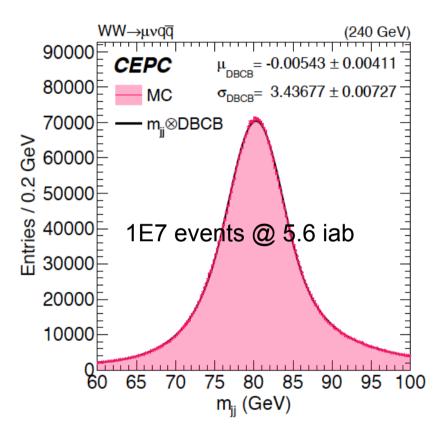



Fig. 7: σ and \bar{x} from the core of the DBCB fit to R are defined as JER/S, respectively. The $cos\theta_j$ indicates the specific polar angle of the jets.

Jet Clustering & Matching is critical: ee-kt is used as CEPC baseline

Relative difference between Gen/Recojet is define to be the detector jet response

Jet: lots of ambiguities & large theoretical uncertainty... not ideal, but works


Energy response

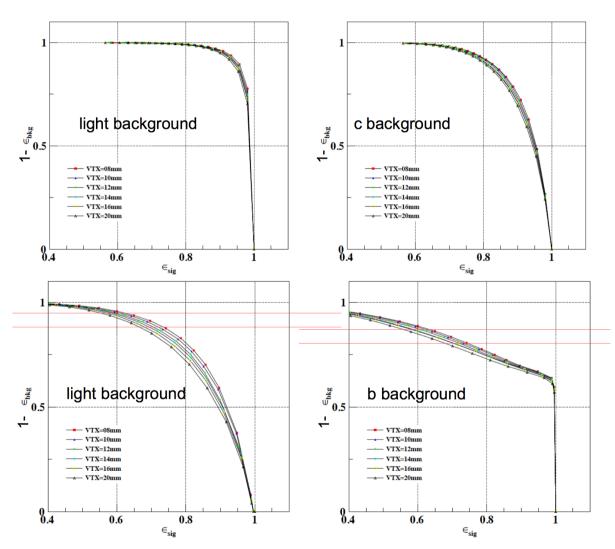
Jet Energy Response: 2.5 – 4 times better than LHC in the same Pt range, Jet Energy Scale: 3 times better before sophisticated calibration

W-mass direct reconstruction at 240 GeV. Challenge & interesting

- W mass measurement at 240 GeV:
 - Statistic uncertainty @ 20 iab~
 - 0.3 MeV using only µvqq final state
 - Bias ~ 2.5 MeV once Z mass calibrated to known value
 - Ultimate accuracy?
 - Can we better control the systematic using the differential information?
 - Control the jet confusion?...
 - Identify & tame ISR?
 - Better calibrate?
 - Can we maintain sufficient stability over 7/10 years? ...

Quasi analysis: JES calibrated to pure ISR return qq sample

Jet Flavor


Is a jet fragmented from

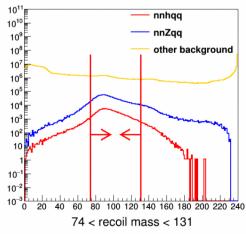
b, c, light (gluon or uds) \rightarrow

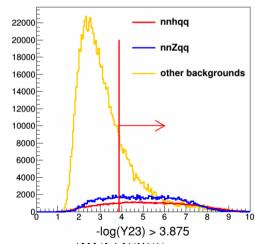
b, c, light, gluon, s?

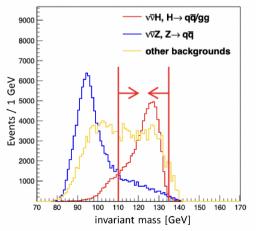
Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ MEPA2022

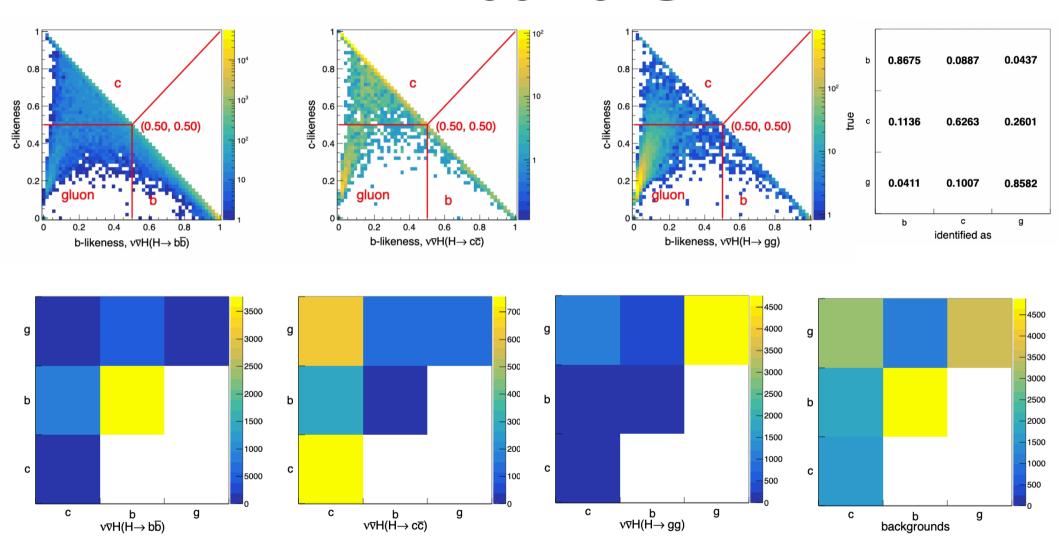

18/12/2022


H→bb, cc, gg


- Core physics measurements, excellent benchmarks for BMR, Flavor Tagging & CSI
- Tactic
 - Analysis
 - Concentrate Higgs to di jet event using Cut Chain + BDT
 - Using Flavor Tagging to disentangle different decay modes, and extract/resolve the relevant signal strengths
 - Optimization
 - Modelling the different Flavor tagging performance using interpolation method, and resolve the corresponding accuracies

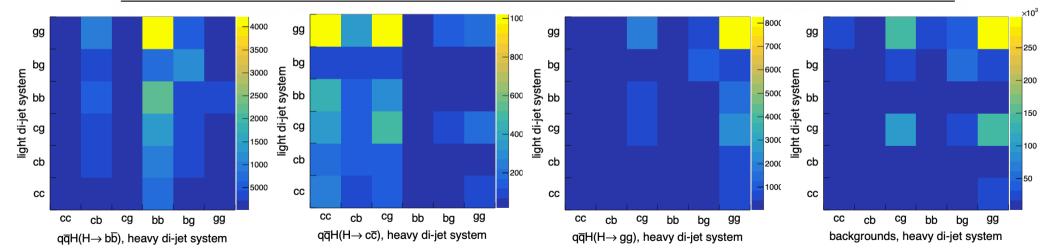
vvH, H→bb, cc, gg

	ννΗq̄q/gg	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07 <i>E</i> 6	5.08 <i>E</i> 7	6.39 <i>E</i> 6	2.18 <i>E</i> 7	961606	16.86
recoilMass (GeV) $\in (74, 131)$	157822	5.11 <i>E</i> 7	2.17 <i>E</i> 6	1.38 <i>E</i> 6	4.78 <i>E</i> 6	1.30 <i>E</i> 6	1.08 <i>E</i> 6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37 <i>E</i> 7	1.35 <i>E</i> 6	8.81 <i>E</i> 5	3.60 <i>E</i> 6	1.03 <i>E</i> 6	6.29 <i>E</i> 5	50989	3.92
leadLepEn (GeV) $∈$ (0, 42)	141926	2.08 <i>E</i> 7	3.65 <i>E</i> 5	7.24 <i>E</i> 5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66 <i>E</i> 7	2.36 <i>E</i> 5	5.24 <i>E</i> 5	2.62 <i>E</i> 6	9.07 <i>E</i> 5	4977	42751	3.29
leadNeuEn (GeV) ∈ (0, 41)	138653	1.46 <i>E</i> 7	2.24 <i>E</i> 5	4.72 <i>E</i> 5	2.49 <i>E</i> 6	8.69 <i>E</i> 5	4552	42303	3.12
<i>Pt</i> (GeV) ∈ (20, 60)	121212	248715	1.56 <i>E</i> 5	2.48 <i>E</i> 5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
Pl (GeV) ∈ (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30 <i>E</i> 5	1.13 <i>E</i> 5	847	34279	0.94
$-\log 10(Y23)$ $\in (3.375, +\infty)$	96156	40861	26088	60349	2.25 <i>E</i> 5	82560	640	10691	0.76
InvMass (GeV) $\in (116, 134)$	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (−0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47



18/12, 2022 Thanks to BMR ~ 3.8%!

Flavor tagging @ vvH

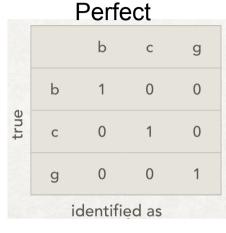


Relative accuracies on signal strength: 0.5%/5.8%/1.8%, for vvH, H to bb/cc/gg respectively.

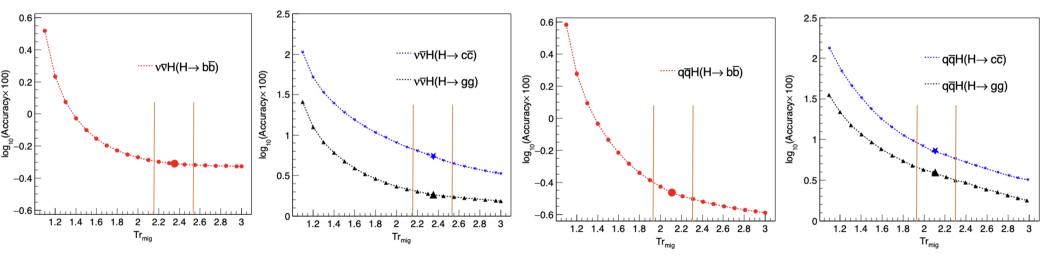
18/12/2022 MEPA2022 17

qqH, H→bb, cc, gg

total	qqHqq 527488	2f 8.01 <i>E</i> 8	SW 1.95 <i>E</i> 7	SZ 9.07 <i>E</i> 6	WW 5.08 E 7	ZZ 6.39 <i>E</i> 6	Mixed 2.18 <i>E</i> 7	ZH 613008	√ <u>S+B</u> 5 5.71
multiplicity	527488	3.04 <i>E</i> 8	1.46E7	3.37E6	4.85 <i>E</i> 7	6.00E6	1.81 <i>E</i> 7	577930	3.77
\in (27, $+\infty$) leadLepEn \in (0, 59)	527036	2, 98 E 8	6.76 E 6	2.44 E 6	3.93 <i>E</i> 7	5.40 <i>E</i> 6	1.79 <i>E</i> 7	531411	3.65
visEn ∈ (199, 278)	510731	1.21 <i>E</i> 8	1.29 <i>E</i> 6	551105	2.14 <i>E</i> 7	3.06 <i>E</i> 6	1.71 <i>E</i> 7	180571	2.52
leadNeuEn ∈ (0, 57)	509623	5.68 <i>E</i> 7	716161	168030	2.04 <i>E</i> 7	2.93 <i>E</i> 6	1.65 <i>E</i> 7	176387	1.94
thrust ⊂ ∈ (0, 0.86)	460535	7.81 <i>E</i> 6	473732	132126	1.88 <i>E</i> 7	2.60 <i>E</i> 6	1.54 <i>E</i> 7	167863	1.47
$-log(Y_{34})$ $\in (0, 5.8875)$	451468	4.90 <i>E</i> 6	181432	119836	1.74E7	2.40 <i>E</i> 6	1.45 <i>E</i> 7	165961	1.40
HiggsJetsA ∈ (2.18, 2π)	326207	2.83 <i>E</i> 6	110156	58613	4.54 E 6	870276	3.74 <i>E</i> 6	96560	1.08
Z JetsA $\in (1.97, 2\pi)$	279030	1.37 <i>E</i> 6	33491	37101	2.39 E 6	496611	2.00 <i>E</i> 6	74005	0.93
ZHiggsA ∈ (2.32, 2π)	274530	1.32 <i>E</i> 6	17026	33847	2.28 E 6	468340	1.91 <i>E</i> 6	69620	0.92
circle	268271	1.20E6	10193	31567	2.13 E 6	424514	1.79E6	65434	0.90
BDT ∈ (0.02, 1)	192278	378300	40	307	271436	141446	244126	30022	0.57



Relative accuracies on signal strength: 0.35%/7.7%/4.0%, for bb/cc/gg respectively.


Interpolation

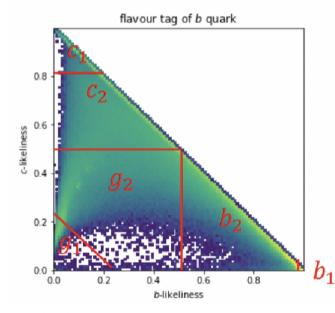
$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_I - Tr_{opt}} \cdot (M_I - M_{opt}) + M_{opt}$$

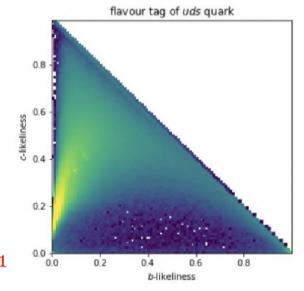
$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt}$$

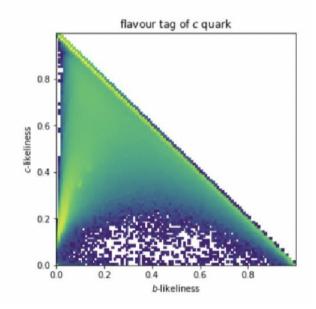
	Worst							
		b	С	9				
	b	1/3	1/3	1/3				
true	С	1/3	1/3	1/3				
	9	1/3	1/3	1/3				
identified as								

 Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

Vcb from W decay

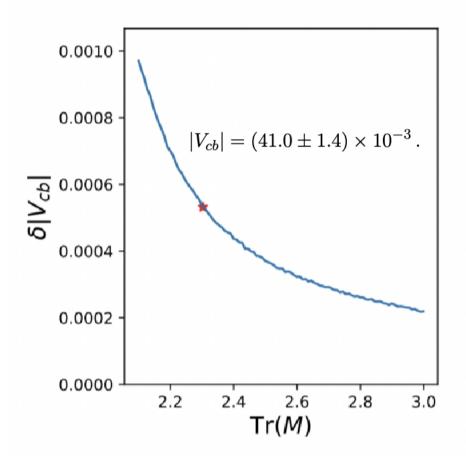



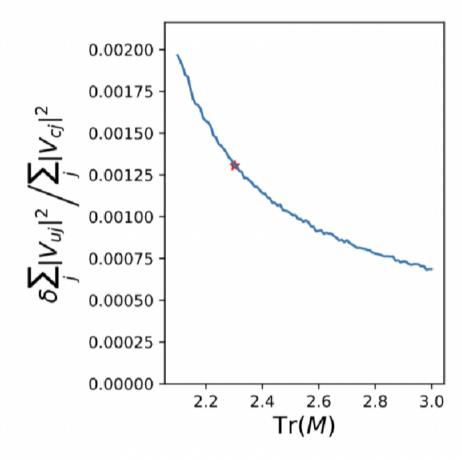

Figure 12.1: Sketch of the unitarity triangle.


$|V_{cb}| = (41.0 \pm 1.4) \times 10^{-3}$.

	b1	b2	c1 0.0197	c2	g1	g2
b	0.47	0.378	0.0197	0.0965	0.00397	0.0315
$M = \mathbf{Q}$	0.00042	0.078	0.298	0.373	0.0682	0.182
uds	0.00042 0.000104	0.00477	0.00145	0.054	0.538	0.401

Flavour tagging at Z-pole





18/12/2022

At changing Flavor tagging performance

- Percentage level accuracy on Vcb anticipated; using only muvqq events at 5.6 iab. Can be improved by 3-4 times... if using 20 iab and all leptonic channels, plus better analysis method
- Compared to baseline... ideal FT improves the accuracy by 2.5 times

18/12/2022 MEPA2022 21

Jet Charge

b or b-bar? c or c-bar?

Essential for CKM measurements with neutral hadron oscillations.

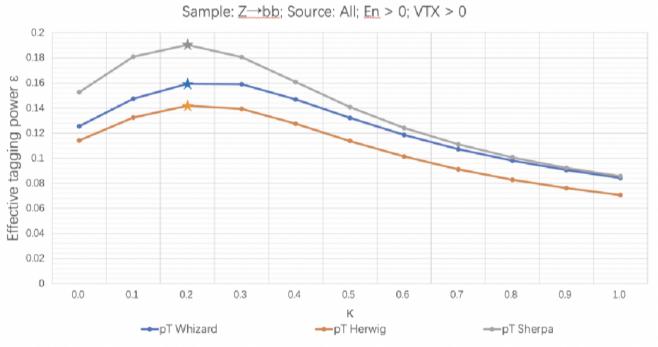
Afb_b, Afb_c measurement

enable differential measurements that depends on quark charge

Far future: might be well extended & combine with Jet Flavor tagging → to identify the species & charge of quark/gluon that induces a jet

Effective tagging power

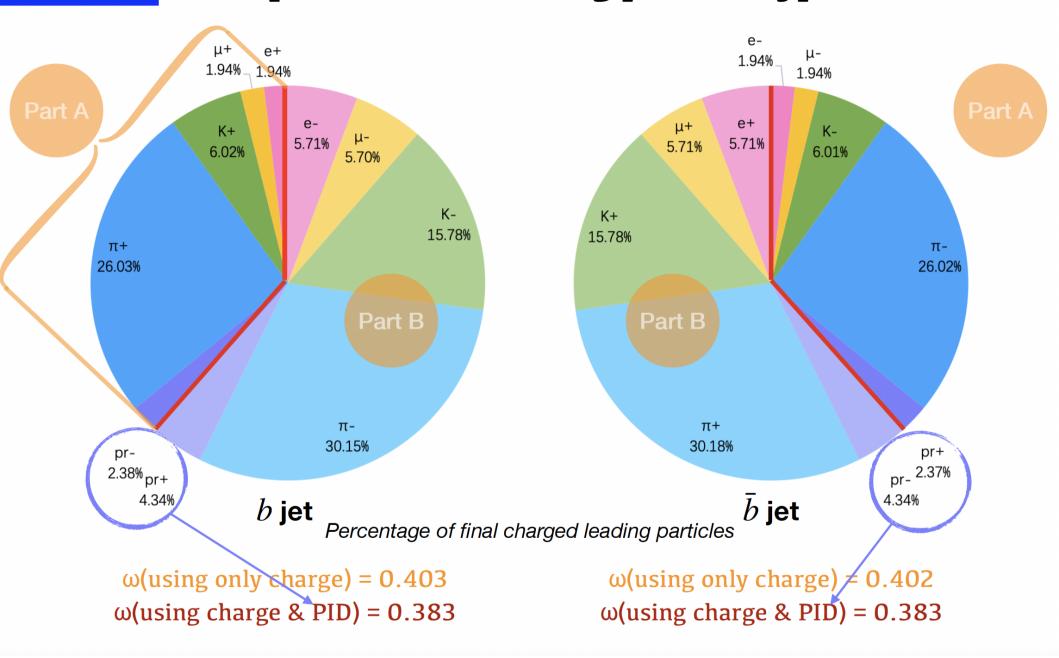
- Tagging power = efficiency * $(1 2*omega)^2$
- Omega ~ chance of mis-id, value between 0 − 0.5.


- To 1st order, accuracy ~ 1/sqrt(N*tagging power).
- Tagging power highly sensitive to mis-id chance.
- Many method to measure Jet Charge: VTX charge, weighted sum, jet lepton/kaon, 2nd leading kaon, ...

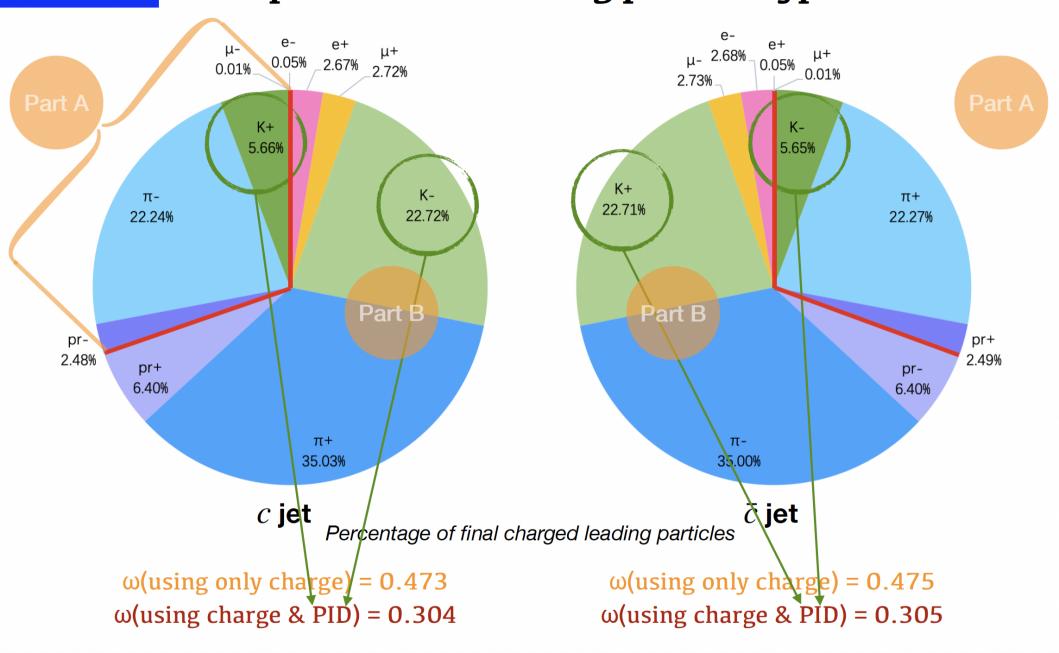
Weighted charge method (WCJC)

Method:

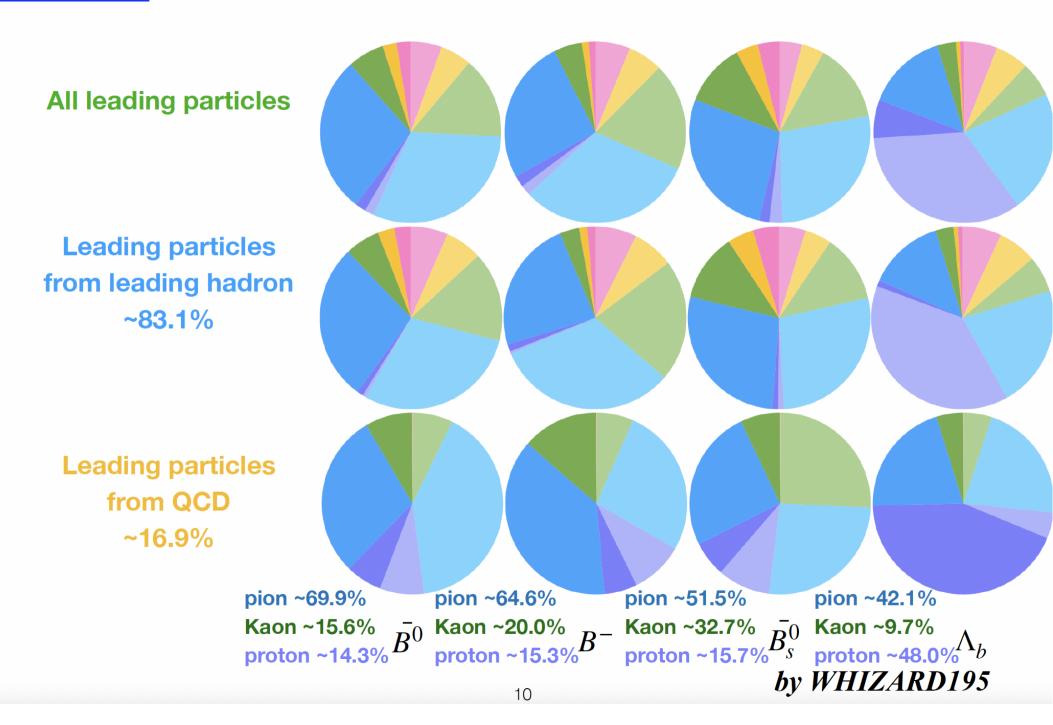
- Use the charge and momentum of all final charged particles in a jet with a weight parameter κ to calculate Q_{jet}κ.
- the weight parameter κ is optimized for different decay modes.
- if Q_{jet}^k<0, we consider this is a b quark, and vise versa.


$$Q_{jet}^{\kappa} = \frac{\Sigma_i(E_i)^{\kappa} Q_i}{\Sigma_i(E_i)^{\kappa}}$$

Methods	Optimized κ						
Generat or	Whi	zard	Her	wig	Sherpa		
source	all	from B/ D	all	from B/ D	all	from B/ D	
All b hadrons	(ĸ=0.2)	(K=0)	(ĸ=0.2)	(K=0)	(ĸ=0.2)	(K=0)	
B0/ B0bar	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.2)	(ĸ=0.6)	(ĸ=0.3)	(ĸ=0.6)	
B+/B-	(ĸ=0.3)	(K=0)	(ĸ=0.4)	(K=0)	(ĸ=0.3)	(K=0)	
Bs/ Bsbar	(K=0)	(K=0)	(ĸ=0)	(K=0)	(ĸ=0.2)	(K=1.0)	
Bc+/Bc-	(K=0.2)	(K=0)	(ĸ=0.7)	(K=0)	(ĸ=0.6)	(K=0)	
Λb/ Λbbar	(K=0)	(ĸ=1.0)	(ĸ=0)	(ĸ=0.9)	(K=0)	(K=0)	

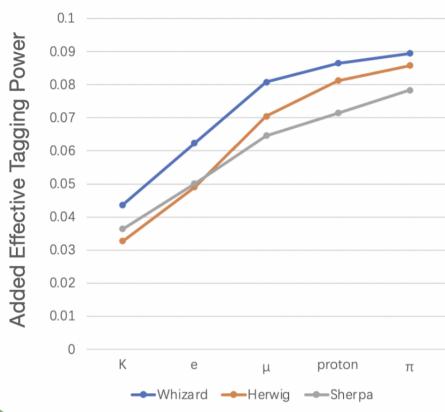

$Z \rightarrow b\bar{b}$

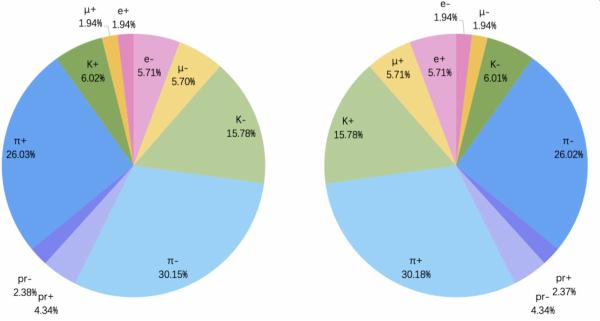
Dependence on leading particle type



$Z \rightarrow c\bar{c}$

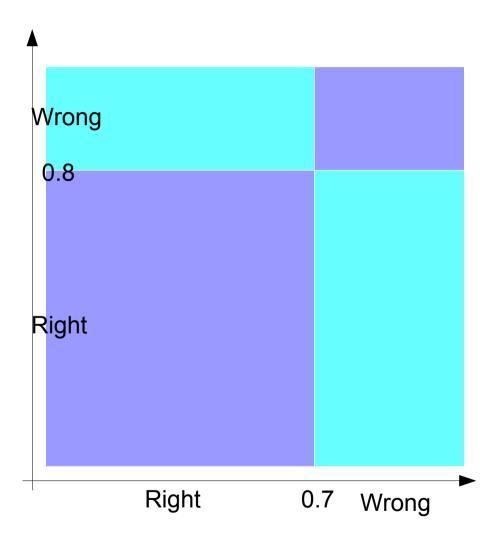
Dependence on leading particle type




Percentage of leading particles (b jet, Whizard195)

Leading particle method (LPJC)

LP	Whizard	Herwig	Sherpa
е	0.019	0.018	0.015
μ	0.018	0.021	0.015
K	0.045	0.033	0.036
π	0.003	0.005	0.006
р	0.005	0.007	0.006
Tot	0.089	0.084	0.078


Dependence on leading particle type

Dependence on b/c hadron type

Dependence on decay source of leading particle: hadron or QCD.

Combine...

- Naive case: non correlated two observer
 - O1, omega = 0.3, eff = 1, Tagging
 Power ~ 16%
 - O2, omega = 0.2, eff = 1, Tagging
 Power ~ 36%
- Since Tagging power depends stronger on omega rather than efficiency, we can select only event with consistent O1 & O2
 - Efficiency drops to
 - 0.7*0.8 + 0.2*0.3 = 62%
 - Omega:
 - 0.2*0.3/(0.7*0.8 + 0.2*0.3) = 6/62
 - Tagging Power ~ 40.3%

Result @ Truth level

two combination methods combination

Analysis of jet charge performance for single jet at CEPC Z pole:

- ★ Effective tagging power:
- ★ LPJC method: 0.089 / 0.203
- ★ WCJC method: 0.159 / 0.258
- ★ Decision level combination: 0.165 / 0.342 (improve 3.8% / 32.6%)
- ★ Tagger level combination: 0.182 / 0.372 (improve 14.5% / 44.2%)
- ★ Total combination 0.198 / 0.404 (improve 24.5% / 56.6%)

★ Dependences:

- High dependence on leading particle type.
- High dependence on b/c hadrons type, especially for B_s (Mingrui), Λ_b, Λ_c, ...
- High dependence on the decay source of leading particle.

two combination methods combination						
			€eff			
	е	Decision Level	0.025			
	μ	Decision Level	0.025			
la lak	K	Decision Level	0.060			
b jet	π	Tagger Level	0.076			
	р	Decision Level	0.012			
	Total		0.198			
	е	Tagger Level	0.025			
	μ	Tagger Level	0.027			
a int	K	Decision Level	0.137			
	π	Tagger Level	0.186			
	р	Decision Level	0.029			
	Total		0.404			

Summary

- Hadronic system is key to the success of e-e+ Higgs factory, ... has huge impact on the physics reach/NP sensitivity
- At CEPC: comprehensive understanding towards the requirement & performance, via simulation/detector R&D studies.
- BMR
 - 3.8% achieved at baseline + Arbor Manqi, Eur. Phys. J. C (2018) 78:426
 - Informative decomposition (Yuexin, thesis) + update (Yuexin, to be submit)
- Jet, an conventional, but not perfect method to describe hadronic event...
 - Energy Scale & resolution: ~3 times better than LHC, differential relationship quantified, W boson mass ~ 1 MeV
 Peizhu, 2021 JINST 16 P07037
 - Charge: Innovative method developed, achieves decent, possibly the best effective tagging power (~20%/40% for b/c-jets) (Hanhua, to be submit)
 - Flavor tagging:
 - Dependence on VTX geometry

Zhigang, 2018 JINST 13 T09002

Summary

- CSI: bottleneck for physics measurement with full hadronic final state
 - Concept arises:

Yongfeng, Eur. Phys. J. C (2019) 79:274

Dan. Eur. Phys. J. C (2020) 80:7

CPC Vol. 43, No. 4 (2019) 043002

Yuhang. CPC Vol. 44, No. 12 (2020) 123001

- Physics benchmarks
 - Vcb mesurement: Flavor tragging, to be submit
 - H→bb, cc, gg: BMR + Flavor Tagging + CSI, Yongfeng, *JHEP11(2022)100*
 - Bs→Phi vv: BMR + Pid, Yudong, *Phys.Rev.D* 105 (2022) 11
 - H→tautau: BMR.
 - H→invisible: BMR,
 - Higgs white paper: Everything,
 - Higgs Snowmass whitepaper,
 - https://arxiv.org/abs/2205.08553
- ...your ideas & requirements...

Backup

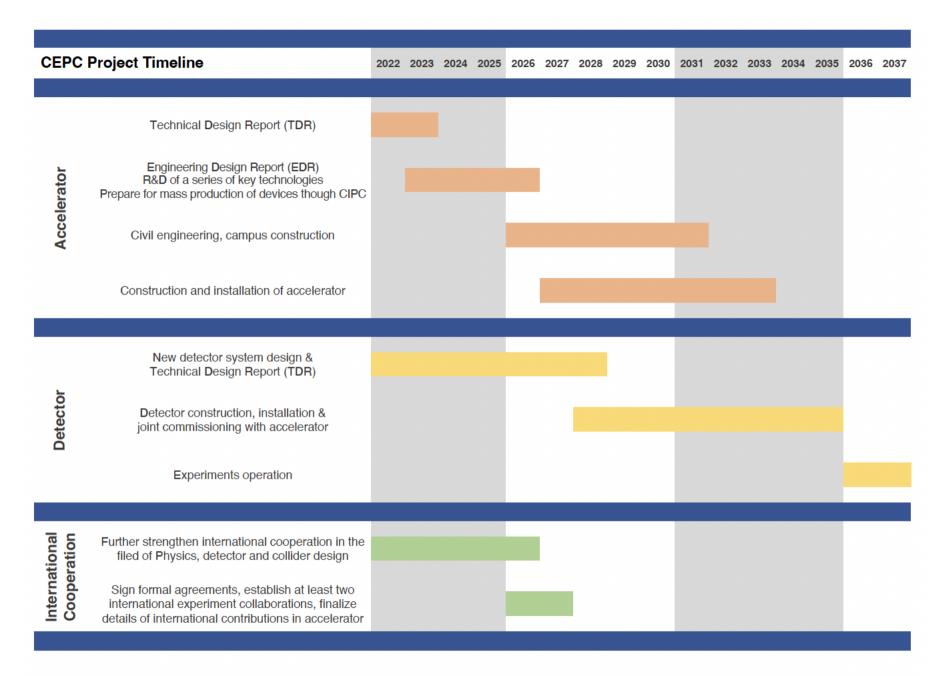
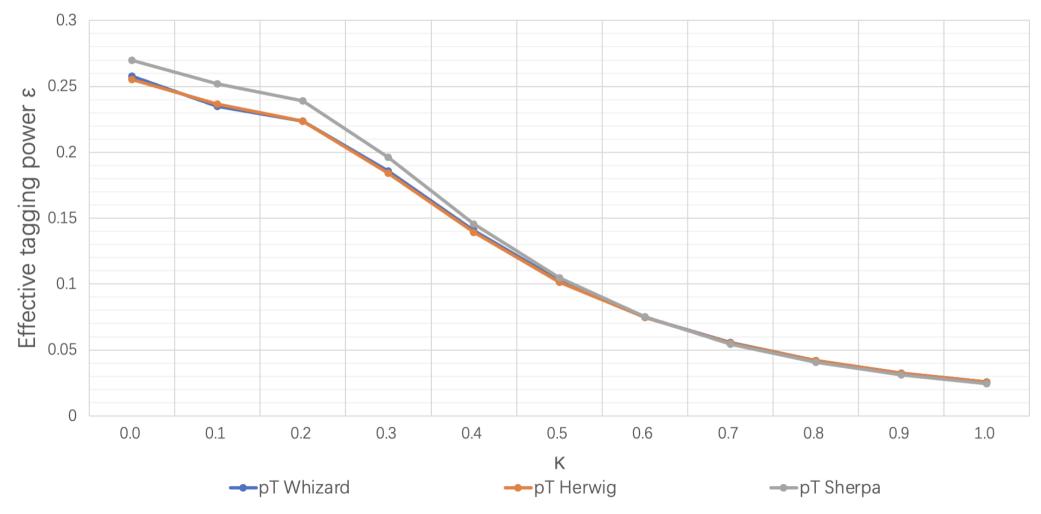


Figure 8.1 The CEPC timeline from the 14th to the 16th Five-Year plan

Summary

- Future Focus
 - BMR ~ 3%: Arbor upgrade + Detector Design/Optimization
 - Flavor tagging: Tri_M from ~ 2.2 → 2.5
 - Algorithm
 - Physics
 - VTX optimization + New tech. Development
 - Jet Charge:
 - Secure b/c tagging power 20%/40%
 - Detector has sufficient Pid & Low enough threshold
 - CSI:
 - Enhance qqH signal strength accuracy by ~ 50%
 - Iterate with QCD studies
 - To collaborate closely with QCD community... especially on the understanding of fragmentation & event topology description, etc

Discussion on Jet charge

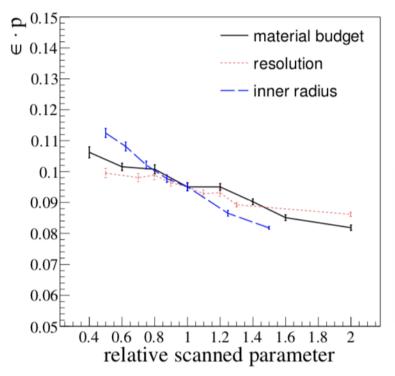

- We propose LPJC, a robust method that
 - Provide slightly worse tagging power compared to WCJC (reference method)
 - Significantly enhance the performance once combined with WCJC
 - c-jet with Eff. Tagging power ~ 37%, best of the world?
- LPJC, Preserve the physics information strongly depends on the
 - Hadron species that quark fragmented into
 - Final state that Heavy Hadron decays into
 - Num. results depends slightly on fragmentation models (Generator type)
- Dependency to the detector performance yet to be quantified. But LPJC & WCJC relies on different performance & highly complementary
 - Both need good acceptance & resolution.
 - LPJC: Pid!!!
 - WCJC: Momentum threshold
- Plan to submit soon.

Physics benchmarks

Anticipated Accuracy ~ Key Performance ~ Detector design & optimization

WCJC @ c jet

Sample: $Z \rightarrow cc$; Source: All; En > 0; VTX > 0


$$-2 \cdot log(\ell) = \sum_{i=1}^{i=6} \frac{[S_b \cdot N_{b,i} + S_c \cdot N_{c,i} + S_{light} \cdot N_{light,i} + N_{bkg,i} - N_i]^2}{N_i}$$

- S_b : the signal strength of $\nu\nu Hb\bar{b}$
- $N_{b,i}$: the event number of $\nu\nu Hb\bar{b}$ in *ith* bin
- N_i : the total event number in i'th bin of $vvHb\bar{b}$, $vvH/c\bar{c}$, vvHgg and backgrounds
- ullet $N_{bkg,i}$ is the expected event number in *ith* bin of backgrounds,
- similar for S_c , S_{light} , $N_{c,i}$, and $N_{light,i}$

$$hessian \ matrix = \begin{bmatrix} \frac{\partial^2 log(\ell)}{\partial S_g \partial S_c} & \frac{\partial^2 log(\ell)}{\partial S_g \partial S_b} & \frac{\partial^2 log(\ell)}{\partial S_g \partial S_g} \\ \frac{\partial^2 log(\ell)}{\partial S_b \partial S_c} & \frac{\partial^2 log(\ell)}{\partial S_b \partial S_b} & \frac{\partial^2 log(\ell)}{\partial S_b \partial S_g} \\ \frac{\partial^2 log(\ell)}{\partial S_c \partial S_c} & \frac{\partial^2 log(\ell)}{\partial S_c \partial S_b} & \frac{\partial^2 log(\ell)}{\partial S_c \partial S_g} \end{bmatrix}$$

- The error covariance is obtained from the hessian matrix.
- The relative accuracy of signal strength is the square roots of the diagonal elements of the covariance matrix, tt is 0.49%/5.75%/1.82% for $\nu\nu Hb\bar{b}/c\bar{c}/gg$.

Flavor tagging V.S VTX geometry

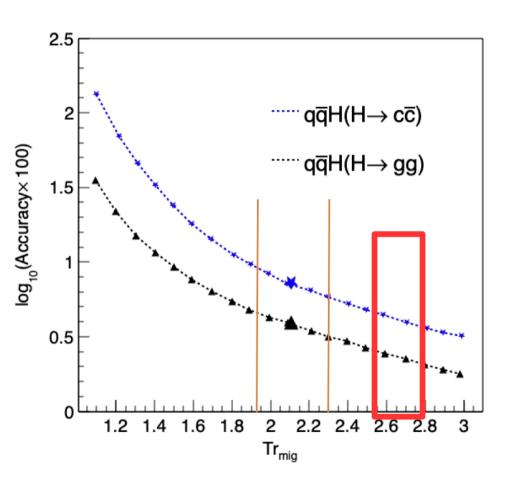
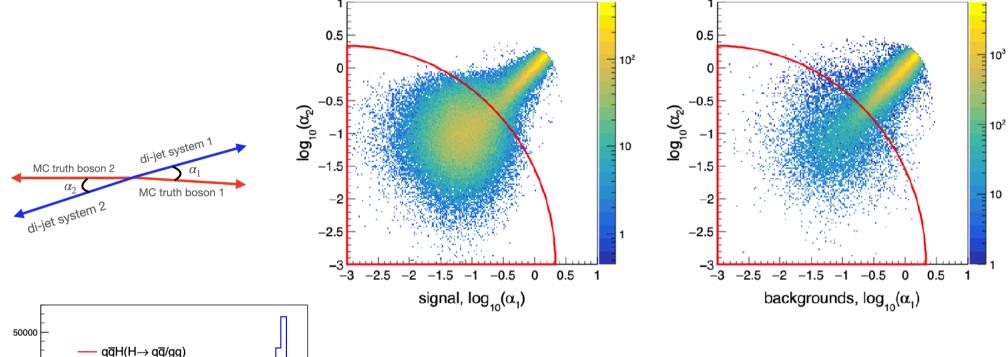

$$\epsilon \cdot p = 0.095(1 - 0.14 \frac{\Delta x_{\text{material}}}{x_{\text{material}}})(1 - 0.09 \frac{\Delta x_{\text{resolution}}}{x_{\text{resolution}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radius}}})$$

Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
trace	2.3	2.1	1.9


$$\textit{Tr}_{\textit{mig}} = 2.118 + 0.054 \cdot log_2 \frac{R_{\textit{material}}^0}{R_{\textit{material}}} + 0.040 \cdot log_2 \frac{R_{\textit{resolution}}^0}{R_{\textit{resolution}}} + 0.098 \cdot log_2 \frac{R_{\textit{radius}}^0}{R_{\textit{radius}}}$$

Perspective to the far future

- If we put the VTX inside the beam pipe:
 - the material & radius halves from Aggressive scenario...
 - a much better polar angle coverage...
- Much intelligent algorithm...

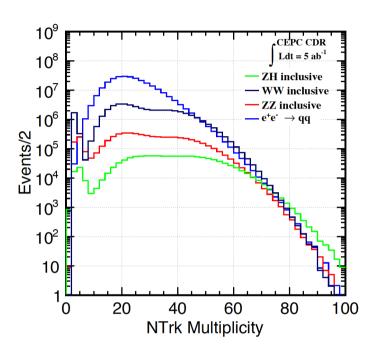
CSI: impact on H→bb, cc, gg

50000 - $q\overline{q}H(H\rightarrow q\overline{q}/gg)$ - backgrounds - 20000 - 0 2 4 6 8 10 12 14 16 18 20 22 $(\log 10(\alpha_1)+3)^2 + (\log 10(\alpha_2)+3)^2$

10/12/2022

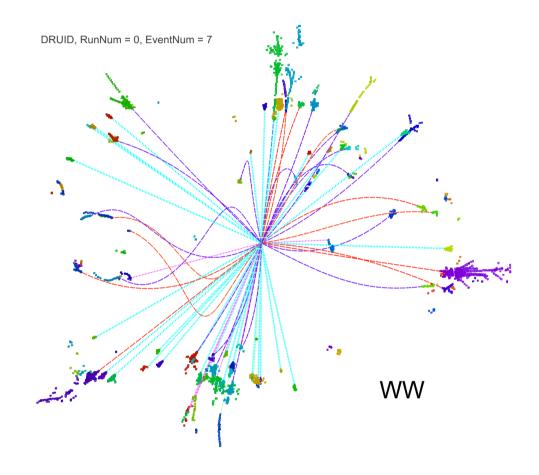
- If we find an observable that evaluates the performance of CSI – and eventually veto events with bad CSI, we can improve the accuracy on H->bb, cc, gg by ~ 2 times at qqH channel.
- Many ppl interested in: Yongfeng Zhu, Huaxing Zhu, Meng Xiao, Chen Zhou, MQ, ... New ideas under test
- Physics Picture, then goes to sophisticated tools.

MEPA2022

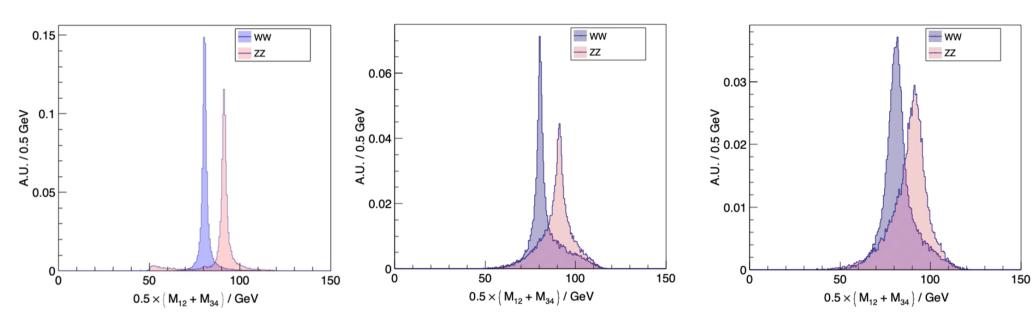

42

CSI

How to find all the final state particles generated from one boson decay, in a full hadronic WW/ZZ/ZH events?

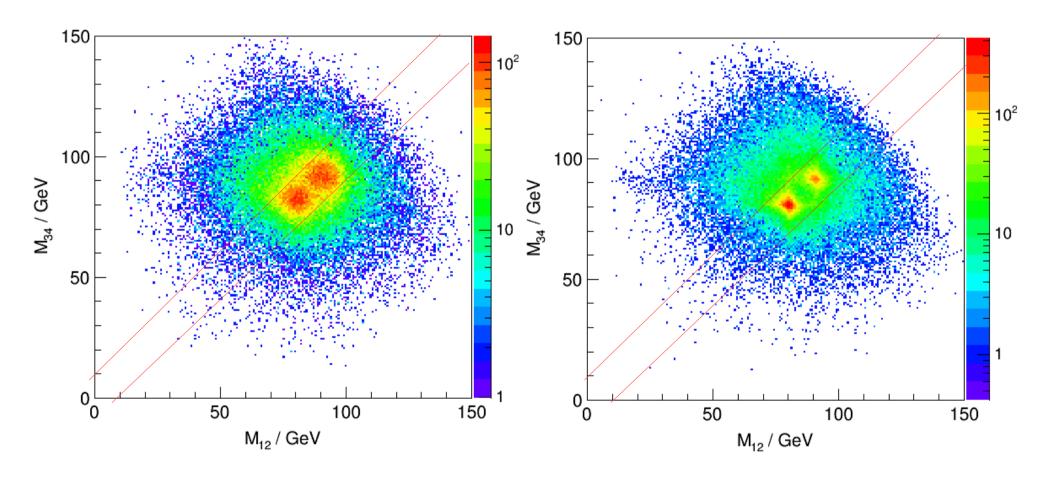

Jet clustering + matching, or goes beyond?

Full hadronic WW-ZZ separation



- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response

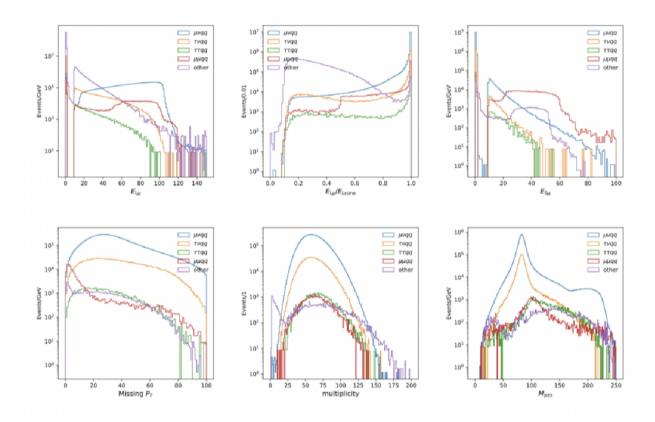
Jet confusion: the leading term



- Separation be characterized by
- Final state/MC particles are clustered into Reco/Genjet with ee-kt, and paired according to chi2
- overlapping ratio = $\sum_{bins} min(a_i, b_i)$

$$\chi^2 = \frac{(M_{12} - M_B)^2 + (M_{34} - M_B)^2}{\sigma_B^2}$$

- WW-ZZ Separation at the inclusive sample:
 - Intrinsic boson mass/width lower limit: Overlapping ratio of 13%
 - + Jet confusion Genjet: Overlapping ratio of 53%
 - + Detector response Recojet: Overlapping ratio of 58%


Reconstructed mass of the two di-jet system

Equal mass condition |M12 - M34| < 10 GeV: At the cost of half the statistic, the overlapping ratio can be reduced from 58%/53% to 40%/27% for the Reco/Genjet

Event selections

• Selection criteria are optimized for statistical uncertainty for $Br(W \rightarrow cb)$

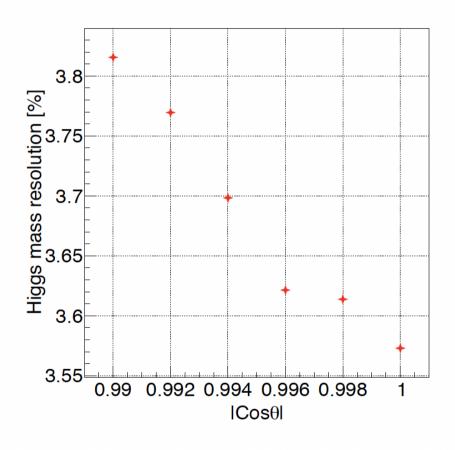
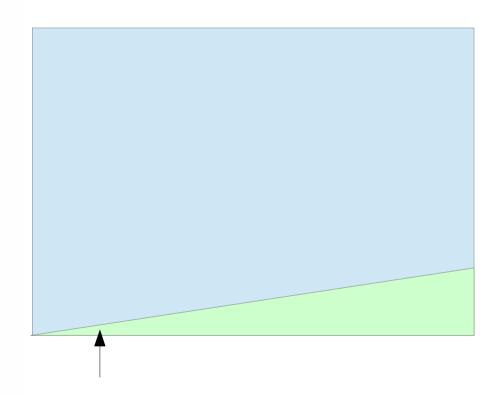
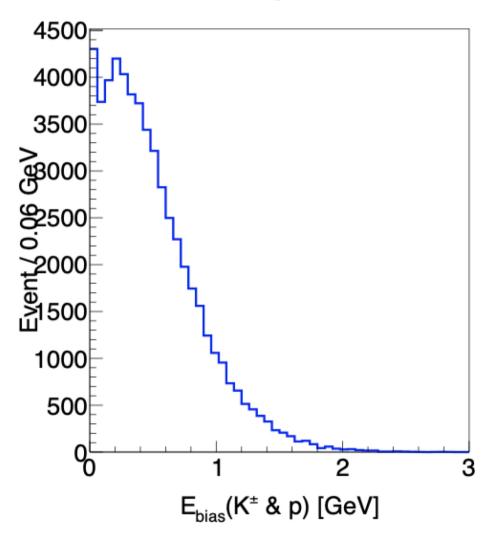
	$\mu\nu cb$	$\mu\nu ub$	$\mu\nu c(d/s)$	$\mu\nu u(d/s)$	$\mu 3\nu cb$	$\mu 3\nu c(d/s)$	$\mu 3\nu u(d/s)$
w.o. slections	11.3k	102	6.78M	6.78M	2.23k	1.18M	1.18M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	10.6k	94	6.32M	6.32M	1.5k	834k	829k
$R_{{ m L}\mu} > 0.95$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
$\cos(\theta_{L\mu})$	9.23k	78	5.52M	5.53M	1.21k	710k	710k
Second isolation muon veto	9.1k	77	5.5M	5.52M	1.2k	709k	710k
Missing P_T	8.92k	74	5.38M	5.41M	1.13k	685k	686k
multiplicity > 27	8.92k	74	5.37M	5.37M	1.13k	683k	681k
$M_{ m jets} > 50 { m GeV}$	8.86k	74	5.34M	5.35M	1.13k	679k	679k
$M_{ m jets} < 95 { m GeV}$	7.92k	70	4.79M	4.79M	1.05k	616k	613k
efficiency.	0.701(08)	0.682(88)	0.707	0.707	0.470(40)	0.524(02)	0.520(02)

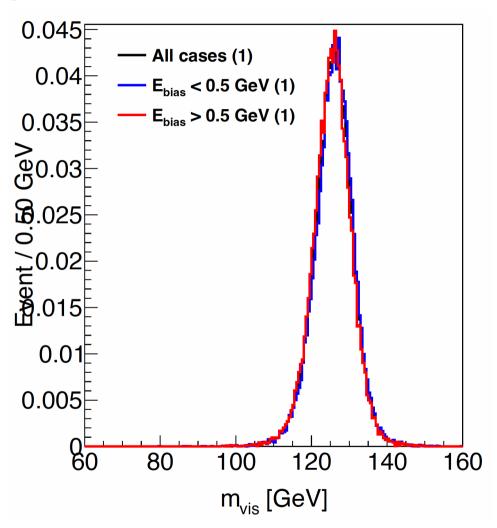
Table 2: Event selections for signals. The number in the parenthesis are the uncertainties of the last two digits of the efficiencies arise from the statistics of Monte Carlo sample.

	$e3\nu qq$	$\tau_{\rm had.} 3 \nu q q$	$\tau \tau qq$	$\mu\mu qq$	other
w.o. slections	2.43M	8.79M	609k	1.25M	364.9M
$E_{\mathrm{L}\mu} > 12 \mathrm{GeV}$	37.3k	190k	118k	790k	13.6M
$R_{\mathrm{L}\mu} > 0.95$	357	9.93k	65.4k	413k	85.1k
Second isolation muon veto	357	9.89k	64.1k	125k	57.9k
Missing P_T	349	9.59k	60.0k	47.7k	46.7k
multiplicity > 27	341	9.51k	59.6k	47.2k	38.0k
$M_{ m iets} > 50 { m GeV}$	318	9.41k	58.8k	45.7k	35.0k
$M_{ m jets} < 95 { m GeV}$	302	8.47k	6.72k	10.7k	4.02k
Eff.	0.000125	0.000964	0.011	0.00854	1.1e-05

Table 3: Event selections for backgrounds.

V.S. Acceptance

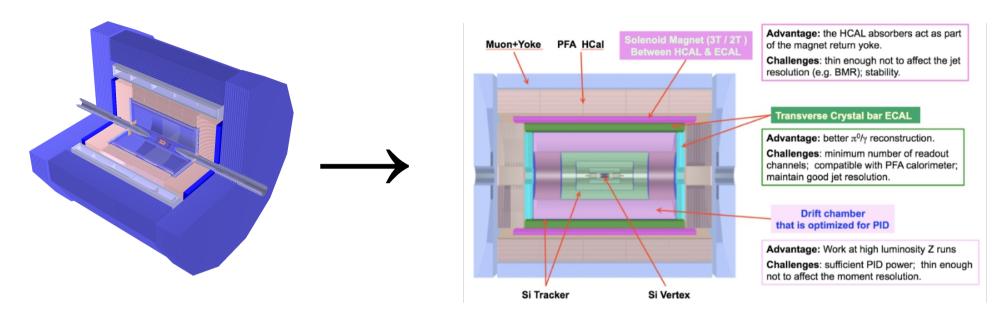

图 4-10 BMR 随探测器接收度的变化。

- 8.1 Degree ~ 0.14 rad
- Radius at endcap: 0.34 m

Update: impact of Pid

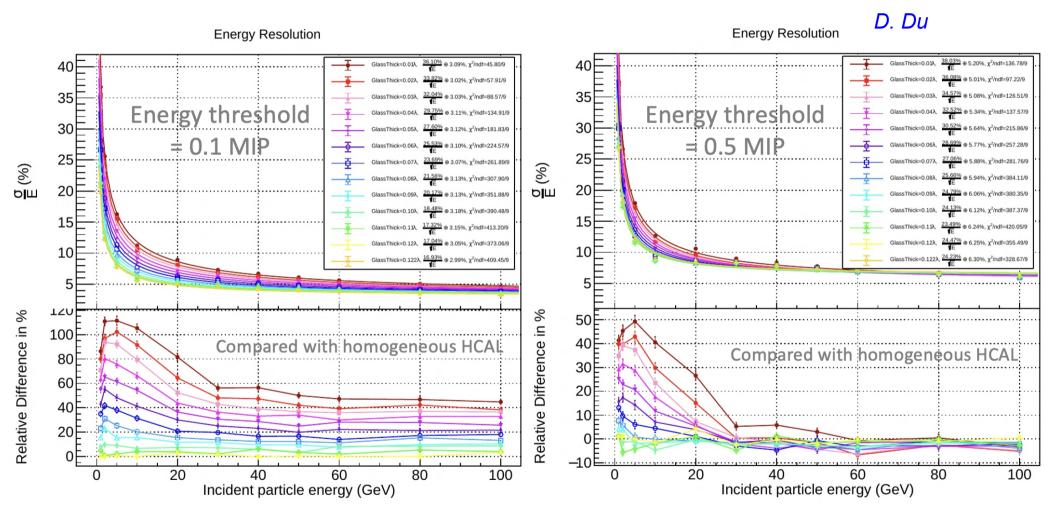
- Ebias = E_truth E_reco
- MFPerfect Pid will improve BMR by 1-2%

Tagger level combination of two methods


Method	Tagger	K	ε _{tag} =N _{tag} /N	$\omega_i = N_w/N_{tag}$	$ar{\omega}$	r²	ε _{eff}
LPJC	е		7.70%	25.45%		0.241	0.019
	μ		7.70%	25.53%		0.239	0.018
	K		21.97%	27.45%		0.203	0.045
	π		56.33%	46.34%		0.005	0.003
	р		6.30%	36.45%		0.073	0.005
	Total		100.00%	38.35%	35.06%	0.089	0.089
WCJC	All	2	100.00%	30.04%		0.159	0.159
	е	4	7.70%	22.36%		0.306	0.024
WCJC	μ	4	7.70%	22.35%		0.306	0.024
combined	Κ	4	21.97%	26.32%		0.224	0.049
with LP	π	2	56.33%	31.61%		0.135	0.076
PID	р	0	3.92%	27.94%		0.195	0.008
	Total		97.62%	28.13%	28.52%	0.185	0.180
Total Combined	е		7.65%	22.33%	22.36%	0.306	0.023
	μ		7.65%	22.31%	22.35%	0.306	0.023
	K		21.81%	26.46%	26.32%	0.224	0.049
	π		56.18%	31.72%	31.61%	0.135	0.076
	р		6.72%	30.40%	30.57%	0.151	0.010
	Total		100.00%	29.05%	28.68%	0.182	0.182

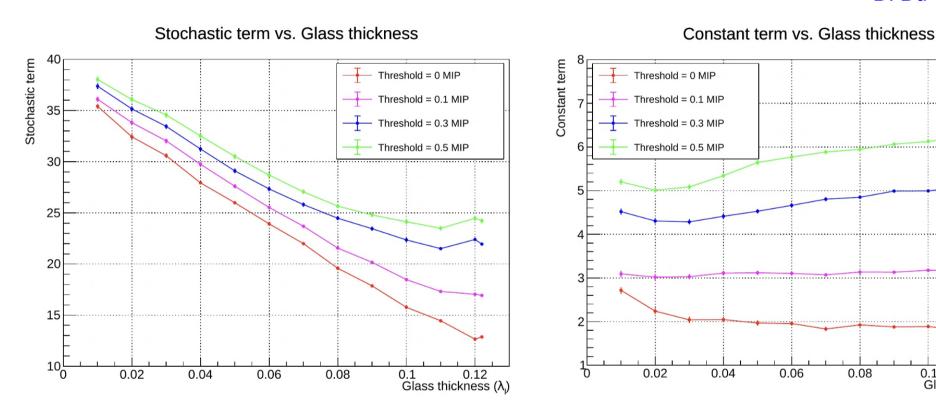
0

Tagger level combination of two methods


Method	Tagger	K	ε _{tag} =N _{tag} /N	$\omega_i = N_w/N_{tag}$		r ²	ε _{eff}
	е		2.75%	1.90%		0.926	0.025
	μ		2.76%	0.47%		0.981	0.027
LPJC	K		28.70%	19.73%		0.367	0.105
LPJU	π		57.56%	38.79%		0.050	0.029
	р		8.22%	28.00%		0.194	0.016
	Total		100.00%	30.36%	27.49%	0.203	0.203
				,			
WCJC	All	0	67.39%	19.07%		0.383	0.258
	е	10	2.75%	7.89%		0.709	0.020
WCJC	μ	10	2.76%	6.84%		0.745	0.021
combined	K	0	19.36%	18.99%		0.385	0.074
with LP	π	0	38.80%	19.11%		0.382	0.148
PID	р	3	8.22%	22.77%		0.297	0.024
	Total		71.89%	13.37%	18.41%	0.399	0.287
	е		2.72%	1.91%	1.90%	0.926	0.025
	μ		2.73%	0.46%	0.47%	0.981	0.027
Total	K		28.38%	19.32%	19.18%	0.380	0.108
Combined	π		57.28%	25.77%	21.49%	0.325	0.186
	р		8.88%	22.78%	22.77%	0.297	0.026
	Total		100.00%	22.33%	19.49%	0.372	0.372

From Baseline to 4th

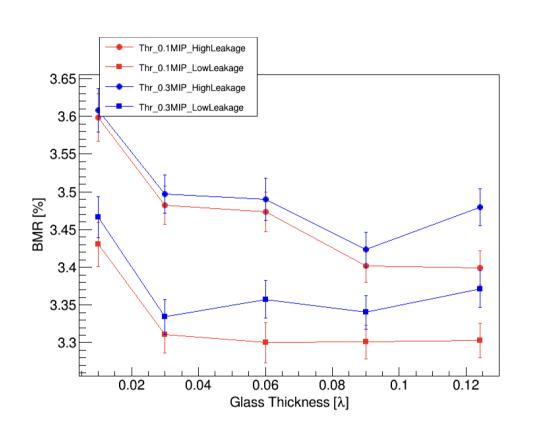
- Tracker: TPC + Silicon → Drift Chamber + Silicon
- ECAL: Si+W → Xstal
- HCAL: GRPC + Iron → Glass + Iron
- Solenoid: Outside HCAL → Between ECAL & HCAL


HCAL

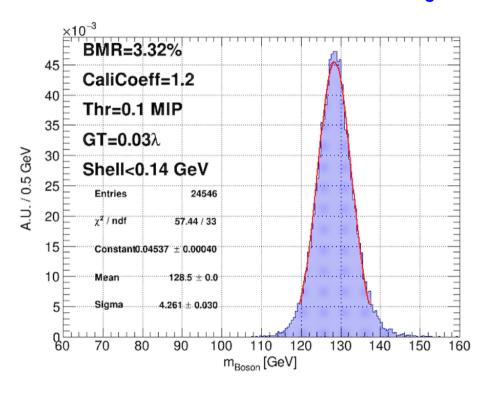
- In an ideal case ideal Geometry ~ semi infinite...
- HCAL resolution significantly w.r.t. Baseline, at single particle level

Single Particle @ GS HCAL

D. Du

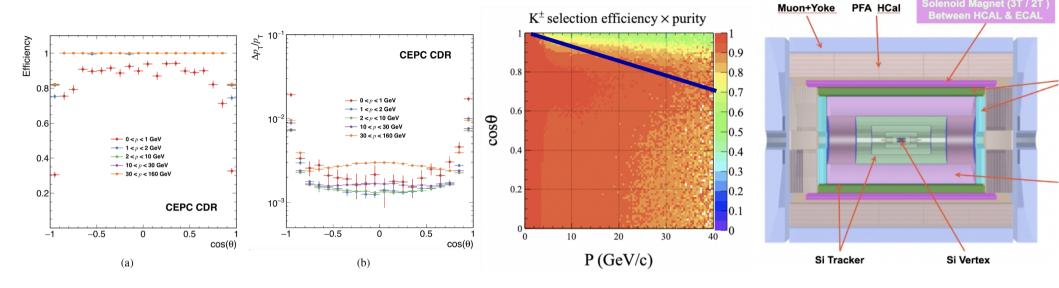


 Performance improves almost linearly at lower energy threshold, and larger sampling fraction

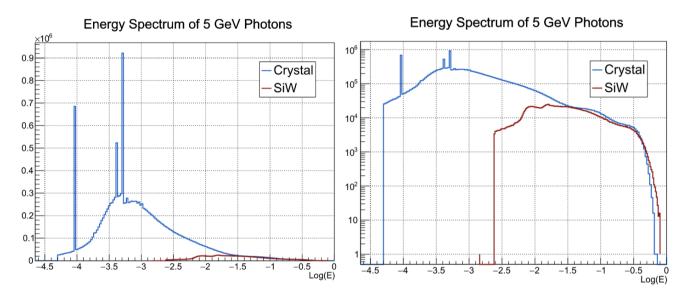

0.12

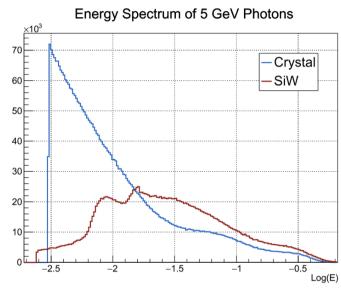
Glass thickness (λ,)

HCAL @ BMR



P. Hu & YX. Wang

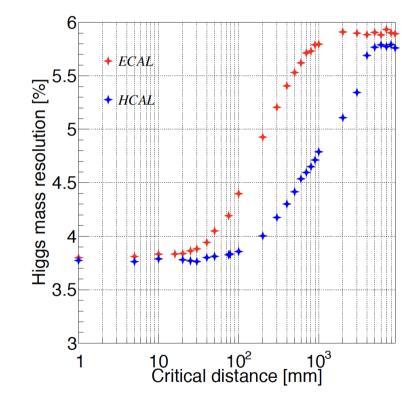



- Fits well with the model...
- Yet, a lot more to be understood

Tracker: tracking & Pid

- BMR insensitive to Tracker unless tracker is bad
 - Pid & Lower the threshold shall leads to small improve, by correcting hadron mass
- Baseline set a good reference. Move toward better realizability & performance
- Performance show the differential one!
 - Momentum resolution ~ 0.1%
 - Threshold ~ 0.1 MeV or lower & Larger Solid Angle Coverage!
 - dEdx or dNdx, if provided, better than 3% in barrel region for GeV level hadron (PS, very doubt for an DC inner radius of 600 mm... or larger)

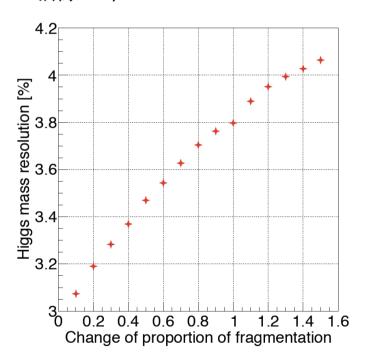
- Original energy spectrum, 10k events, threshold 50 keV
- A large number of low energy hits in crystal ECAL

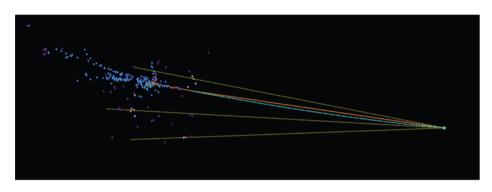

 Threshold (0.3 MIP): SiW 50 keV, crystal 3 MeV

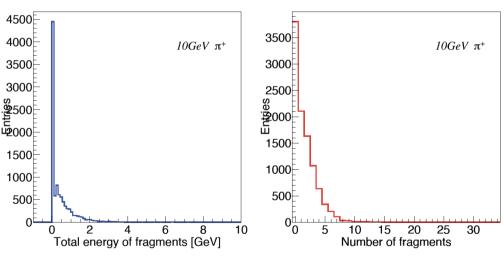
二、粒子流重建算法中误差源的拆解分析与模型构建

▶ 依赖关系分析——临近粒子分离能力

- ▶分离能力越差, BMR 越大, 最终趋于强子能量分辨
- ▶左侧拐点
 - ▶ 电磁簇射 < 20mm
 - ▶ 强子簇射 < 100mm
- > 基线临界分离距离
 - ▶ 电磁簇射 ~16mm
 - ▶ 强子簇射 ~78mm
 - ▶基本满足需求


二、粒子流重建算法中误差源的拆解分析与模型构建


▶ 依赖关系分析——带电强子碎裂簇团


▶对 BMR 的影响最显著

▶若能完全消除: BMR ~3.8% → 3%

▶消除一半: BMR~3.8% → 3.5%

