

W-exchange contribution to the decays $\Xi_{cc}^{++} \rightarrow \Xi_c^{+(')} \pi^+$ using light-cone sum rule

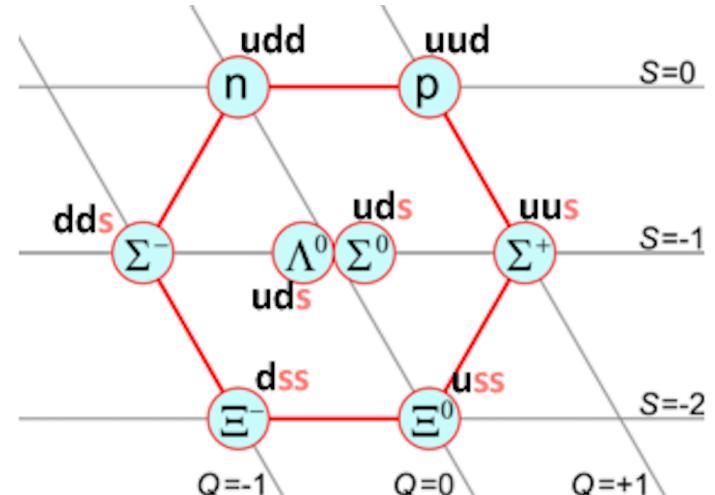
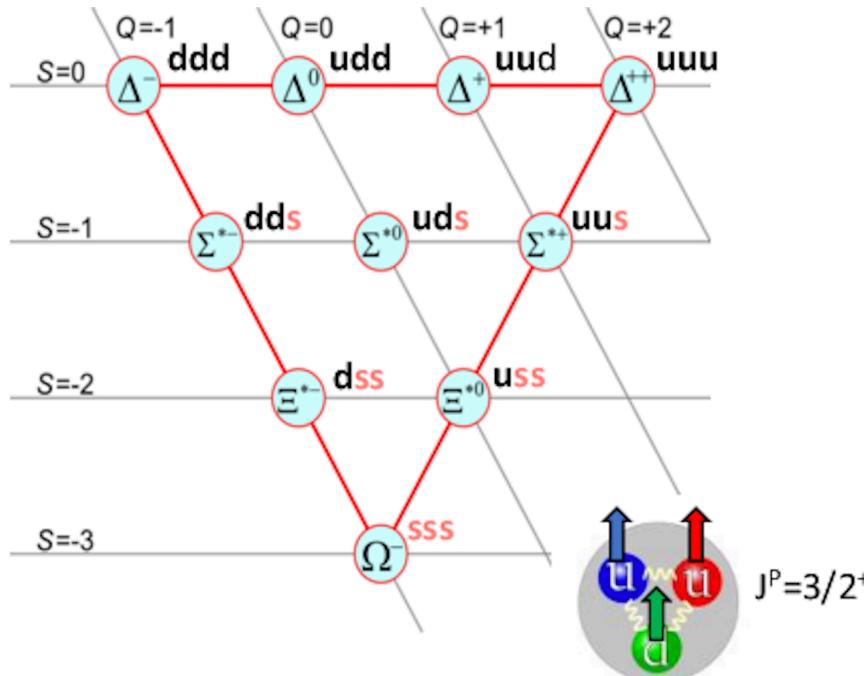
Shi Yu-Ji 施瑀基

Helmholtz-Institut für Strahlen- und Kernphysik and
Bethe Center for Theoretical Physics,
Universität Bonn

14th July, 2022

Cooperated with Zhen-Xing Zhao, Ye Xing, and Ulf-G. Meissner

Outline



- Observation of doubly charmed baryon
- Status of the theoretical studies on $\Xi_{cc}^{++} \rightarrow \Xi_c^{+(')}\pi^+$:
W-emission and W-exchange contribution
- Light-cone sum rules calculation for the
W-exchange diagram
- Numerical Results: Amplitudes and branching fraction

Motivation

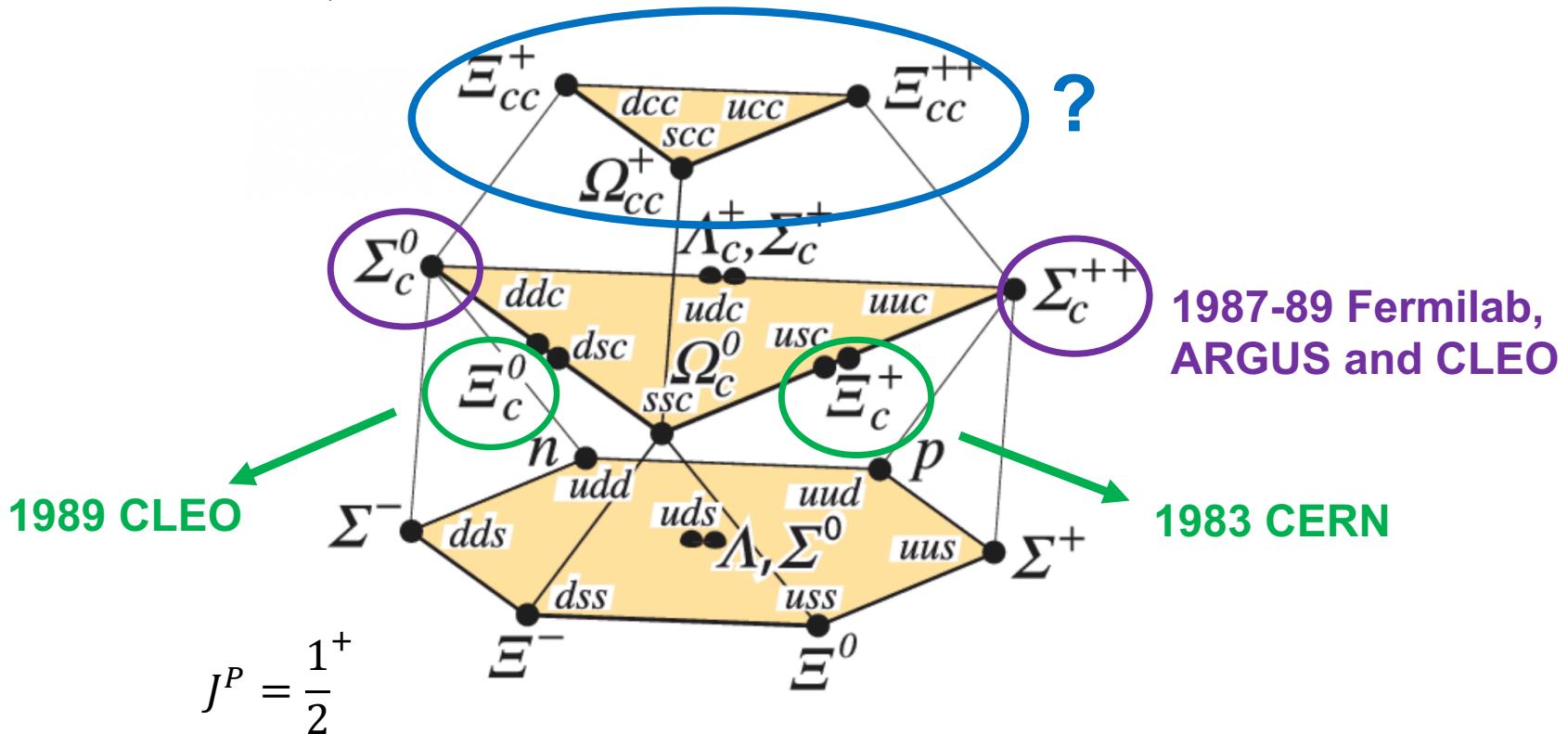
Observation of doubly charmed baryon

Prediction from the quark model

QUARKS	UP mass 2,3 MeV/c ² charge 2/3 spin 1/2 u	CHARM 1,275 GeV/c ² 2/3 2/3 c	TOP 173,07 GeV/c ² 2/3 1/2 t	GLUON 0 0 1 g	HIGGS BOSON 126 GeV/c ² 0 0 H
	DOWN 4,8 MeV/c ² -1/3 1/2 d	STRANGE 95 MeV/c ² -1/3 1/2 s	BOTTOM 4,18 GeV/c ² -1/3 1/2 b	PHOTON 0 0 1 γ	
LEPTONS	ELECTRON 0,511 MeV/c ² -1 1/2 e	MUON 105,7 MeV/c ² -1 1/2 μ	TAU 1,777 GeV/c ² -1 1/2 τ	Z BOSON 91,2 GeV/c ² 0 1 Z	Gauge Bosons
	ELECTRON NEUTRINO <2,2 eV/c ² 0 1/2 ν _e	MUON NEUTRINO <0,17 MeV/c ² 0 1/2 ν _μ	TAU NEUTRINO <15,5 MeV/c ² 0 1/2 ν _τ	W BOSON 80,4 GeV/c ² ±1 1 W	

Decuplet

Searching for the doubly charmed baryon

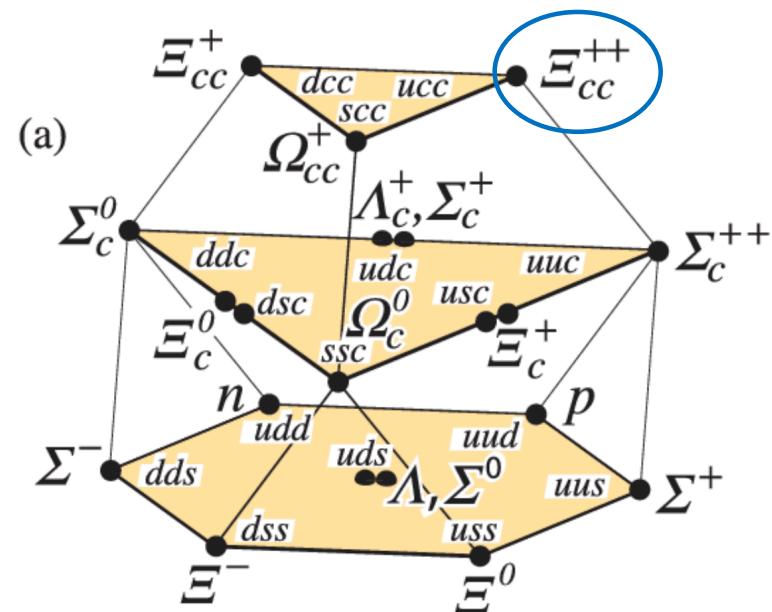
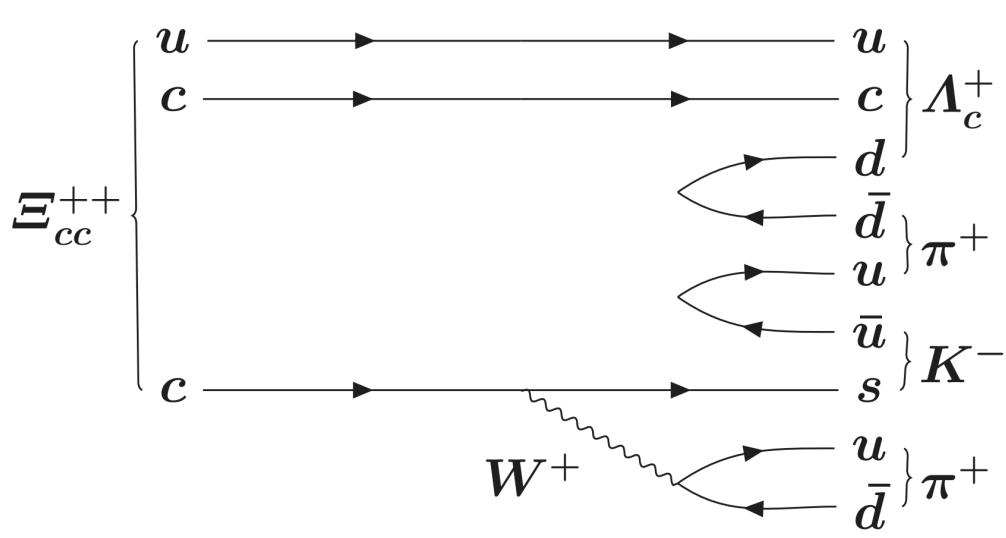

The **SELEX** collaboration: Phys. Rev. Lett. **89**, 112001 (2002) $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$

Phys. Lett. B **628**, 18 (2005) $\Xi_{cc}^+ \rightarrow p D^+ K^-$

Mass:

$3518.7 \pm 1.7 \text{ MeV}/c^2$

Not confirmed by other experiments !



Searching for the doubly charmed baryon

In 2017, the LHCb collaboration observed the Ξ_{cc}^{++} baryon.

Mass: $3620.6 \pm 1.5(\text{stat}) \pm 0.4(\text{syst}) \pm 0.3(\Xi_c^+) \text{MeV}/c^2$

$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

Phys. Rev. Lett. 112001 (2017)

It is firstly predicted by: F.-S. Yu, H.-Y. Jiang, R.-H. Li, C.-D. Lü, W. Wang and Z.-X. Zhao, Chin. Phys. C 42, 051001 (2018)

Searching for the doubly charmed baryon

In 2018, the LHCb collaboration observed a two-body decay of Ξ_{cc}^{++} :

Phys. Rev. Lett. 121, 162002 (2018)

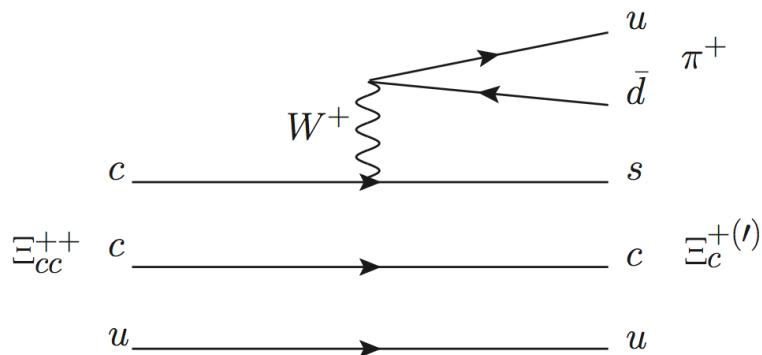
$$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$$
$$\mathcal{R}(\mathcal{B}) \equiv \frac{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \rightarrow p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \rightarrow p K^- \pi^+)}$$
$$= 0.035 \pm 0.009(\text{stat}) \pm 0.003(\text{syst})$$

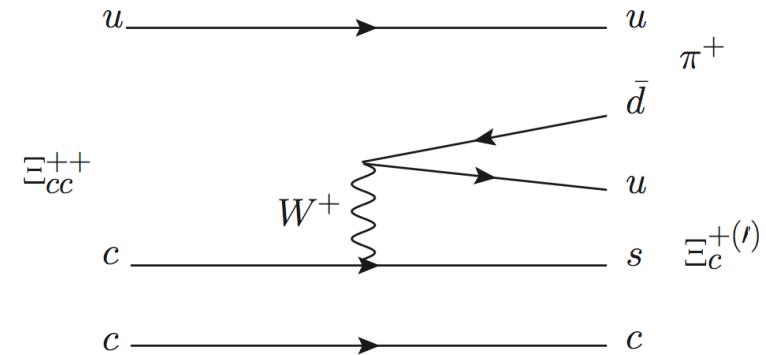
Also predicted by:

Chin. Phys. C 42, 051001 (2018)

In 2022, a similar two-body decay of Ξ_{cc}^{++} was observed by LHCb:

JHEP 05 (2022) 038

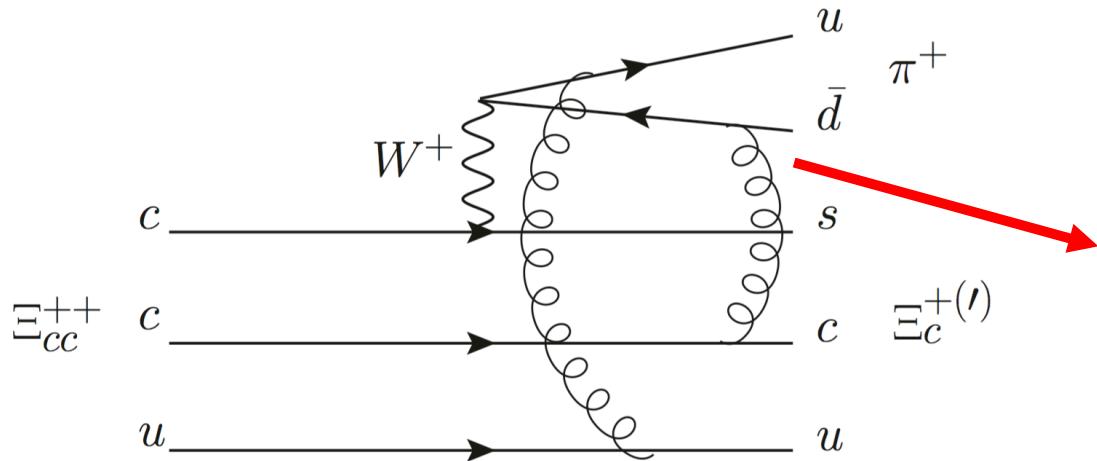

$$\Xi_{cc}^{++} \rightarrow \Xi_c^{+ \prime} \pi^+$$
$$\frac{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^{+ \prime} \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+)} \equiv \frac{\mathcal{B}'}{\mathcal{B}} = 1.41 \pm 0.17 \pm 0.1$$


It is much larger than theoretical predictions

The weak decay of $\Xi_{cc}^{++} \rightarrow \Xi_c^{+(')} \pi^+$

$\Xi_{cc}^{++} \rightarrow \Xi_c^{+(')} \pi^+$ receives contributions from two topological diagrams: the **W-emission diagram (left)** and the **W-exchange diagram (right)**:

Factorizable (fac)



Non-factorizable (nf)

Recently, the theoretical prediction show that:

$$\text{fac} + \text{nf} : \quad \mathcal{B}'/\mathcal{B} \sim 0.8 < 1 \quad \text{Too small}$$

The W-emission diagram

Color transparency:

The fast running pion can hardly be caught up by the soft gluons.

Naïve factorization: $\mathcal{A}_{\text{fac}} \propto \langle \pi^+ | \bar{u} \gamma_\mu (1 - \gamma_5) d | 0 \rangle \langle \Xi_c^{+(1)} | \bar{s} \gamma^\mu (1 - \gamma_5) c | \Xi_{cc}^{++} \rangle$

Pion decay constant
Form factors

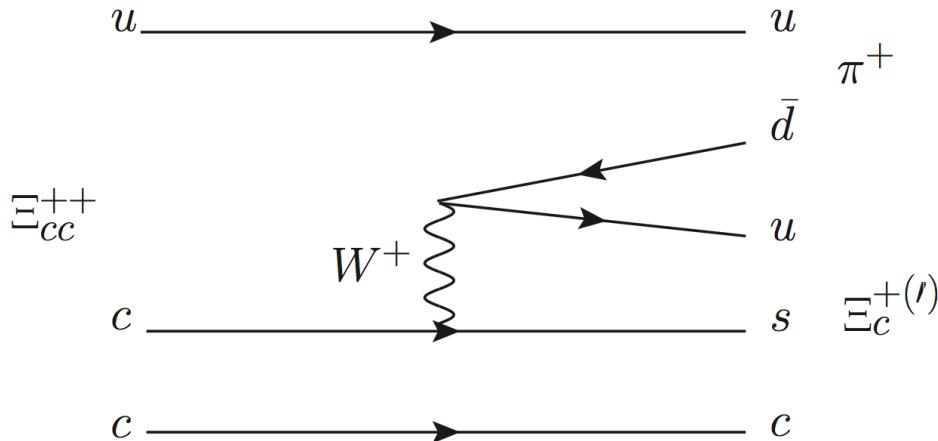
$$\langle \pi(q) | \bar{u} \gamma_\mu (1 - \gamma_5) d | 0 \rangle = i f_\pi q_\mu$$

$$\bar{u}_2 \left[f_1(q^2) \gamma_\mu - f_2(q^2) i \sigma_{\mu\nu} \frac{q^\nu}{M} + f_3(q^2) \frac{q_\mu}{M} \right. \\ \left. - \left(g_1(q^2) \gamma_\mu - g_2(q^2) i \sigma_{\mu\nu} \frac{q^\nu}{M} + g_3(q^2) \frac{q_\mu}{M} \right) \gamma_5 \right] u_1$$

The W-emission diagram

$$\langle \Xi_c^{+(\prime)}(p - q) \pi^+(q) | \mathcal{H}_{\text{eff}}(0) | \Xi_{cc}^{++}(p) \rangle_{\text{fac}, \text{nf}} = i \bar{u}(p - q) [A^{(\prime)\text{fac}, \text{nf}} + B^{(\prime)\text{fac}, \text{nf}} \gamma_5] u(p)$$

$\Xi_{cc}^{++} \rightarrow \Xi_c^{+(\prime)} \pi^+$	A^{fac}	B^{fac}	A'^{fac}	B'^{fac}
QCDSR	-8.74	16.76	-3.55	34.13
LFQM	7.40	15.06	4.49	48.50
3LQM	-8.13	-12.97	-4.34	-37.59
NRQM	7.38	16.77	4.29	53.65
HQET	9.52	19.45	5.10	62.37


QCDSR: Y. J. Shi, W. Wang and Z. X. Zhao, Eur. Phys. J. C **80**, no.6, 568 (2020)

LFQM: H. Y. Cheng, G. Meng, F. Xu and J. Zou, Phys. Rev. D **101**, no.3, 034034 (2020)

3LQM: T. Gutsche et al. Phys. Rev. D **99**, no.5, 056013 (2019)

NRQM: }
HQET: } R. Dhir and N. Sharma, Eur. Phys. J. C **78**, no.9, 743 (2018)

The W-exchange diagram

It is non-factorizable and has only been evaluated by the **Pole Model** in the literature.

Pole Model:

$$A^{\text{pole}} = - \sum_{B_n^*(1/2^-)} \left[\frac{g_{B_f B_n^* P} b_{n^* i}}{m_i - m_{n^*}} + \frac{b_{f n^*} g_{B_n^* B_i P}}{m_f - m_{n^*}} \right]$$

Strong couplings

$$B^{\text{pole}} = \sum_{B_n} \left[\frac{g_{B_f B_n P} a_{ni}}{m_i - m_n} + \frac{a_{f n} g_{B_n B_i P}}{m_f - m_n} \right],$$

N. Sharma and R. Dhir, Phys. Rev. D **96**, no.11, 113006 (2017)

H. Y. Cheng, G. Meng, F. Xu and J. Zou, Phys. Rev. D **101**, no.3, 034034 (2020)

The W-exchange diagram

Method	$\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+)$	$\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+)$	$\mathcal{B}' / \mathcal{B}$
LFQM+PM	0.69 %	4.65 %	6.74
3LCQM	0.71 %	3.39 %	4.77
HQET+PM	6.64 %	5.39 %	0.81
NRQM+PM	9.19 %	7.34 %	0.8

Experiment:
$$\frac{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+)} \equiv \frac{\mathcal{B}'}{\mathcal{B}} = 1.41 \pm 0.17 \pm 0.1$$

This mismatching urges us to make a more in-depth study on the W-exchange contribution.

Theoretical Method

Light-cone sum rules

The framework of light-cone sum rules

To calculate a matrix element:

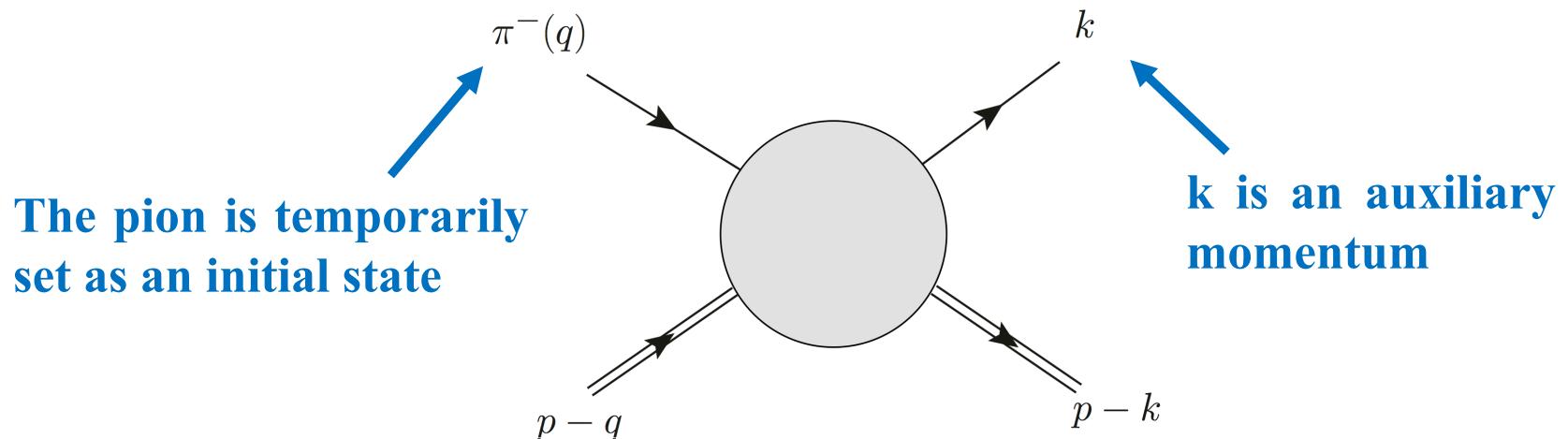
$$\langle \Xi_c^{+(I)}(p-q) \pi^+(q) | \mathcal{O}_i(0) | \Xi_{cc}^{++}(p) \rangle = i \bar{u}(p-q) (A^{(I)i} + B^{(I)i} \gamma_5) u(p)$$

$$\mathcal{O}_1 = \bar{s} \gamma_\mu (1 - \gamma_5) c \bar{u} \gamma^\mu (1 - \gamma_5) d,$$

$$\mathcal{O}_2 = \bar{s}_a \gamma_\mu (1 - \gamma_5) c_b \bar{u}_b \gamma^\mu (1 - \gamma_5) d_a,$$

We have to define a correlation function:

$$\Pi^{\mathcal{O}_i}(p, q, k) = i^2 \int d^4x e^{-i(p-q)\cdot x} \int d^4y e^{i(p-k)\cdot y} \langle 0 | T \left\{ J_{\Xi_c^{(I)}}(y) \mathcal{O}_i(0) \bar{J}_{\Xi_{cc}}(x) \right\} | \pi^-(q) \rangle$$


$$J_{\Xi_c} = \frac{1}{\sqrt{2}} \varepsilon_{abc} (u_a^T C \gamma_5 s_b - s_a^T C \gamma_5 u_b) Q_c,$$

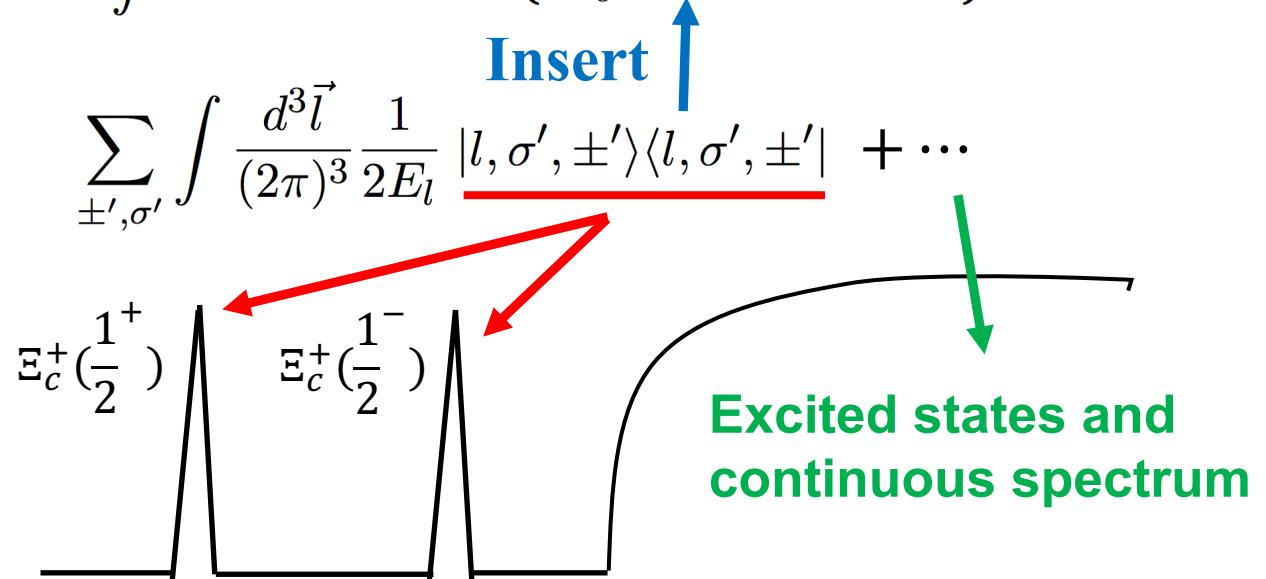
$$J_{\Xi'_c} = \frac{1}{\sqrt{2}} \varepsilon_{abc} (u_a^T C \gamma^\mu s_b + s_a^T C \gamma^\mu u_b) \gamma_\mu \gamma_5 Q_c,$$

$$J_{\Xi_{cc}} = \varepsilon_{abc} (Q_a^T C \gamma^\mu Q_b) \gamma_\mu \gamma_5 u_c,$$

Baryon currents:

The framework of light-cone sum rules

$$\Pi^{\mathcal{O}_i}(p, q, k) = i^2 \int d^4x e^{-i(p-q)\cdot x} \int d^4y e^{i(p-k)\cdot y} \langle 0 | T \left\{ J_{\Xi_c^{(\prime)}}(y) \mathcal{O}_i(0) \bar{J}_{\Xi_{cc}}(x) \right\} | \pi^-(q) \rangle$$


=

Expressed by $A^{(\prime)i}, B^{(\prime)i}$

Operator product expansion (OPE)

Hadron Level: insert Ξ_c

$$i^2 \int d^4x e^{-i(p-q)\cdot x} \int d^4y e^{i(p-k)\cdot y} \langle 0 | T \left\{ J_{\Xi_c^{(\prime)}}(y) \mathcal{O}_i(0) \bar{J}_{\Xi_{cc}}(x) \right\} | \pi^-(q) \rangle$$

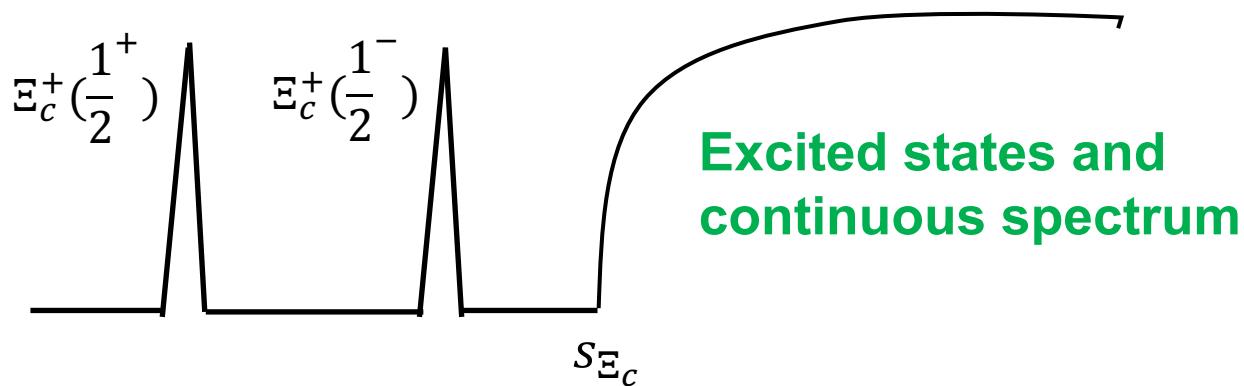
We can factorize out the matrix element:

$$\langle 0 | J_{\Xi_c}(y) | l, \sigma', + \rangle = \lambda_{\Xi_c}^+ u(l, \sigma') e^{-il \cdot y},$$

$$\langle 0 | J_{\Xi_c}(y) | l, \sigma', - \rangle = \lambda_{\Xi_c}^- i\gamma_5 u(l, \sigma') e^{-il \cdot y},$$

If the pion is arranged as a final state at the beginning, this factorization cannot be realized.

Hadron Level: insert Ξ_c



$$\begin{aligned}
 & i^2 \int d^4x d^4y \ e^{-i(p-q)\cdot x} e^{i(p-k)\cdot y} \\
 & \times \sum_{\pm', \sigma'} \int \frac{d^3\vec{l}}{(2\pi)^3} \frac{1}{2E_l} \langle 0 | J_{\Xi_c}(y) | l, \sigma', \pm' \rangle \langle l, \sigma', \pm' | \mathcal{O}_i(0) \bar{J}_{\Xi_{cc}}(x) | \pi^-(q) \rangle \\
 & + \int_{s_{\Xi_c}}^{\infty} ds' \frac{\rho_{\Xi_c}(s', (p-q)^2, P^2)}{s' - (p-k)^2},
 \end{aligned}$$

Depends on

$$p^2, q^2, k^2, (p-q)^2 \text{ and } P^2 = (p-k-q)^2.$$

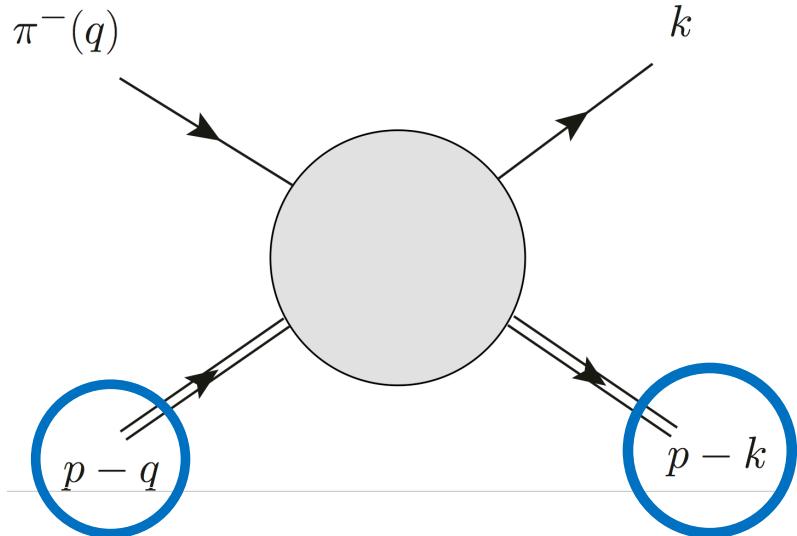
There is no l^2 since it is on shell

Hadron Level: insert Ξ_c

$$\begin{aligned}
 \Pi_H^{\mathcal{O}_i}(p, q, k)_{\text{WE}} &= i^3 \int d^4x \ e^{-i(p-q)\cdot x} \sum_{\pm', \sigma'} \frac{1}{(p-k)^2 - m_{\Xi_c}^{\pm' 2}} \\
 &\quad \times \lambda_{\Xi_c}^{\pm'} u^{\pm'}(p-k, \sigma') \langle p-k, \sigma', \pm' | \mathcal{O}_i(0) \bar{J}_{\Xi_{cc}}(x) | \pi^-(q) \rangle \\
 &\quad + \int_{s_{\Xi_c}}^{\infty} ds' \frac{\rho_{\Xi_c}(s', (p-q)^2, P^2)}{s' - (p-k)^2},
 \end{aligned}$$

Only depends on

$$(p-q)^2 \text{ and } P^2 = (p-k-q)^2$$


if for simplicity we require that:

$$p^2 = k^2 = 0 \quad q^2 = m_\pi^2 \approx 0.$$

Hadron Level: Quark-hadron duality

Set the external momentums at the deep Euclidean region:

$$(p - k)^2 \sim (p - q)^2 \sim P^2 \ll 0$$

Calculated by OPE

$$\Pi_H^{\mathcal{O}_i}(p, q, k)_{\text{WE}} = \Pi_{QCD}^{\mathcal{O}_i}(p, q, k)_{\text{WE}} = \frac{1}{\pi} \int_{(m_c+m_s)^2}^{\infty} ds' \frac{\text{Im} \Pi_{QCD}^{\mathcal{O}_i}(s', (p-q)^2, P^2)_{\text{WE}}}{s' - (p-k)^2}$$

Threshold to produce Ξ_c

Expressed by dispersion integration

Hadron Level: Quark-hadron duality

Quark-Hadron duality

$$\Pi_H^{\mathcal{O}_i}(p, q, k)_{\text{WE}} = \Pi_{QCD}^{\mathcal{O}_i}(p, q, k)_{\text{WE}} = \frac{1}{\pi} \int_{(m_c + m_s)^2}^{s_{\Xi_c}} ds' \frac{\text{Im} \Pi_{QCD}^{\mathcal{O}_i}(s', (p - q)^2, P^2)_{\text{WE}}}{s' - (p - k)^2}$$

$$+ \frac{1}{\pi} \int_{s_{\Xi_c}}^{\infty} ds' \frac{\text{Im} \Pi_{QCD}^{\mathcal{O}_i}(s', (p - q)^2, P^2)_{\text{WE}}}{s' - (p - k)^2}$$

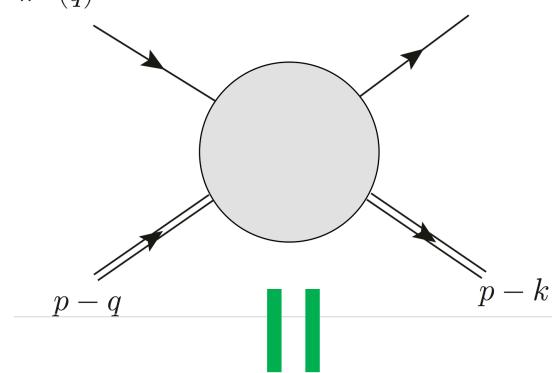
$$\int_{s_{\Xi_c}}^{\infty} ds' \frac{\rho_{\Xi_c}(s', (p - q)^2, P^2)}{s' - (p - k)^2}$$

Canceled above s_{Ξ_c} $s_{\Xi_c} > (m_c + m_s)^2$

Borel Transformation for $(p - k)^2$

$$\mathcal{B}_{T'^2} [(p - k)^{2n}] = 0$$

$$\mathcal{B}_{T'^2} \left[\frac{1}{[s' - (p - k)^2]^n} \right] = \frac{1}{(n - 1)!} \frac{\exp[-s'/T'^2]}{(p - k)^{2(n-1)}}$$

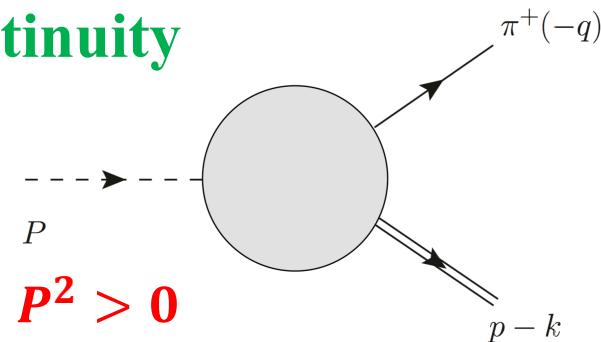
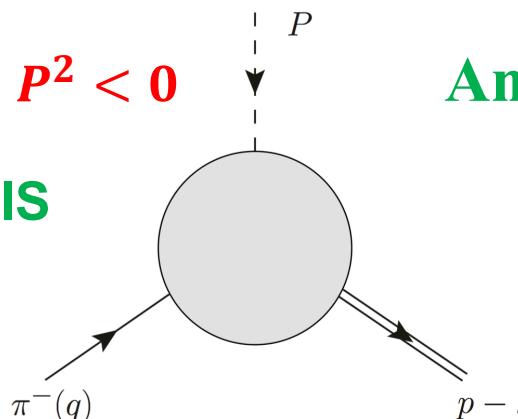


Excited states (large s') can be suppressed

Hadron Level: Analytical continuity

We have to move the pion to the final state

$$\Pi_H^{\mathcal{O}_i}(p, q, k)_{\text{WE}} = \frac{1}{\pi} \int_k^{\infty} ds' \frac{\text{Im} \Pi_{QCD}^{\mathcal{O}_i}(s', (p-q)^2, P^2)_{\text{WE}}}{s' - (p-k)^2}$$

An analytical function of P^2

$$P^2 < 0$$

Analytical continuity

Like DIS

$$P^2 > 0$$

Hadron Level: insert Ξ_{cc}

The sum rules equation:

$$\begin{aligned}
 & \sum_{\pm', \pm, \sigma', \sigma} e^{-m_{\Xi_c}^{\pm'} T'^2 - m_{\Xi_{cc}}^{\pm} T^2} \lambda_{\Xi_c}^{\pm'} \lambda_{\Xi_{cc}}^{\pm} \\
 & \times u^{\pm'}(p - k, \sigma') \langle p - k, \sigma', \pm'; \pi^+(-q) | \mathcal{O}_i(0) | p - q, \sigma, \pm \rangle_{\text{WE}} \bar{u}^{\pm}(p - q, \sigma) \\
 & = \frac{1}{\pi^2} \int_{(m_c + m_s)^2}^{s_{\Xi_c}} ds' \int_{4m_c^2}^{s_{\Xi_{cc}}} ds e^{-s'/T'^2} e^{-s/T^2} \text{Im}^2 \Pi_{QCD}^{\mathcal{O}_i}(s', s, P^2).
 \end{aligned}$$

Only depends on P^2

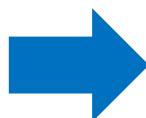
Parameterized as:

$$i \bar{u}^{\pm'}(p - k, \sigma') \left[A_{1,i}^{\pm' \pm}(P^2) + B_{1,i}^{\pm' \pm}(P^2) \gamma_5 + A_{2,i}^{\pm' \pm}(P^2) \frac{\not{q}}{m_{\Xi_{cc}}^{\pm}} + B_{2,i}^{\pm' \pm}(P^2) \frac{\not{q} \gamma_5}{m_{\Xi_{cc}}^{\pm}} \right] u^{\pm}(p - q, \sigma)$$

Two extra terms due to the non-vanishing k

Hadron Level: Extract amplitudes

$2 \times 4 \times 2 = 16$ structures in total:

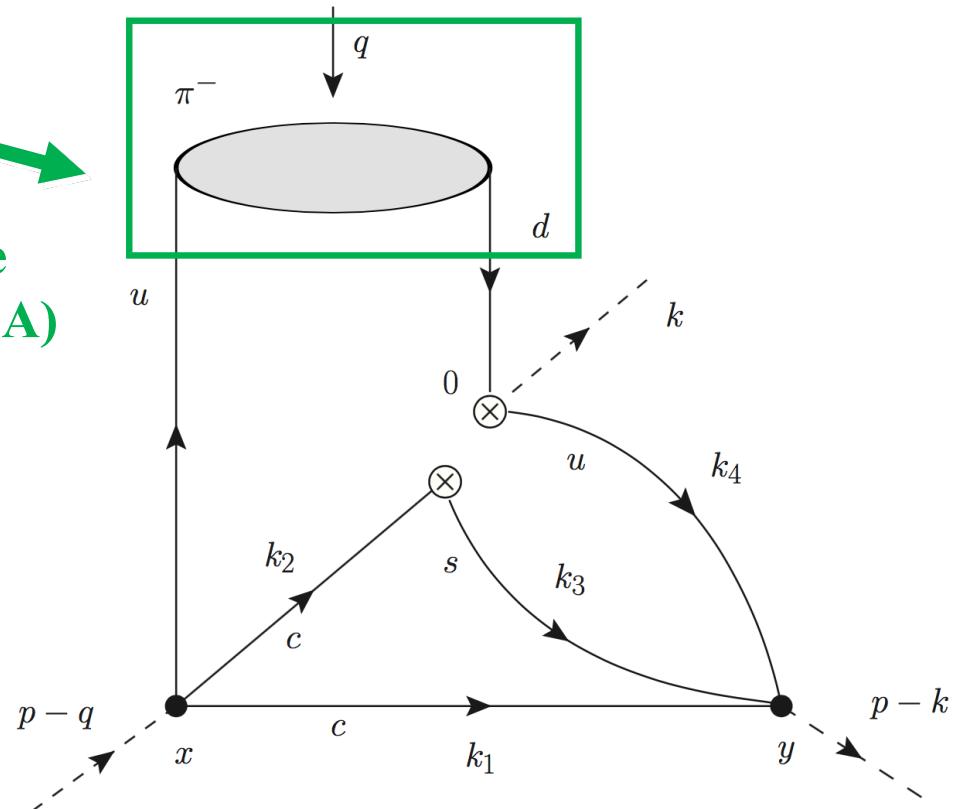

$$\begin{aligned}
 & i \sum_{\pm\pm'} e^{-m_{\Xi_c}^{\pm'2}/T'^2 - m_{\Xi_{cc}}^{\pm 2}/T^2} \lambda_{\Xi_c}^{\pm'} \lambda_{\Xi_{cc}}^{\pm} (\not{p}_2 + m_{\Xi_c}^{\pm'}) \left[A_{1,i}^{\pm'\pm} + B_{1,i}^{\pm'\pm} \gamma_5 + A_{2,i}^{\pm'\pm} \frac{\not{q}}{m_{\Xi_{cc}}^{\pm}} + B_{2,i}^{\pm'\pm} \frac{\not{q}\gamma_5}{m_{\Xi_{cc}}^{\pm}} \right] (\not{p}_1 + m_{\Xi_{cc}}) \\
 & = \frac{1}{\pi^2} \int_{(m_c+m_s)^2}^{s_{\Xi_c}} ds' \int_{4m_c^2}^{s_{\Xi_{cc}}} ds \ e^{-s'/T'^2} e^{-s/T^2} \text{Im}^2 \Pi_{QCD}^{\mathcal{O}_i}(s', s, P^2) \text{WE,}
 \end{aligned}$$

The number of amplitudes is also 16

This enable us to solve out the $16 P^2$ dependent amplitudes.

$$k = 0 \text{ and } P^2 = m_{\Xi_{cc}}^{+2}$$

$$\Xi_{cc}^{++} \left(\frac{1}{2}^+ \right) \rightarrow \Xi_c^{+(')} \left(\frac{1}{2}^+ \right) \pi^+$$


$$A_{\text{WE}}^i = A_{1,i}^{++}(m_{\Xi_{cc}}^{+2}) + \left(1 - \frac{m_{\Xi_c}^+}{m_{\Xi_{cc}}^+} \right) A_{2,i}^{++}(m_{\Xi_{cc}}^{+2})$$

$$B_{\text{WE}}^i = B_{1,i}^{++}(m_{\Xi_{cc}}^{+2}) - \left(1 + \frac{m_{\Xi_c}^+}{m_{\Xi_{cc}}^+} \right) B_{2,i}^{++}(m_{\Xi_{cc}}^{+2})$$

Quark-Gluon Level

$$\begin{aligned}
& -2\sqrt{2}\varepsilon_{abc}\varepsilon_{ebc} \int d^4x d^4y \ e^{-i(p-q)\cdot x} e^{i(p-k)\cdot y} \\
& \times [S_Q(y-x)\gamma^\nu C S_Q^T(-x)C(1-\gamma_5)\gamma_\mu C S_s^T(y)C\gamma_5 S_u(y)\gamma^\mu(1-\gamma_5)]_{\alpha\beta} (\gamma_\nu\gamma_5)_{\rho\sigma} \\
& \times \langle 0 | \bar{u}_e^\rho(x) d_a^\beta(0) | \pi^-(q) \rangle
\end{aligned}$$

Parameterized by light-cone distribution functions (LCDA)

Quark-Gluon Level: LCDAs

Light-cone distribution amplitudes of pion:

$$\begin{aligned} \langle 0 | \bar{u}_e^\rho(x) d_a^\beta(0) | \pi^-(q) \rangle = & -\frac{i}{12} \delta_{ae} f_\pi \int_0^1 du \ e^{-i\bar{u}q \cdot x} \left[(\not{p} \gamma_5)_{\beta\rho} \varphi_\pi(u) + (\gamma_5)_{\beta\rho} \mu_\pi \phi_{3\pi}^p(u) \right. \\ & \left. + \frac{1}{6} (\gamma_5 \sigma_{\mu\nu})_{\beta\rho} q^\mu x^\nu \mu_\pi \phi_{3\pi}^\sigma(u) \right], \end{aligned}$$

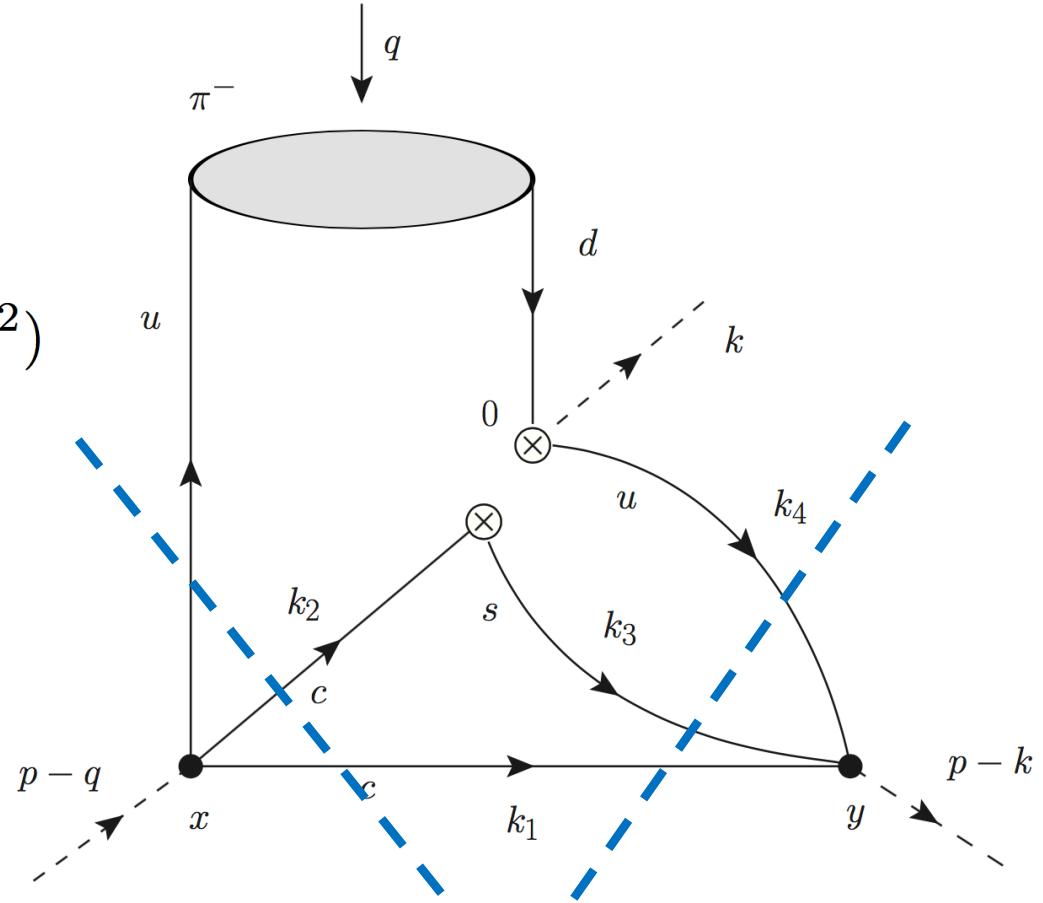
Twist

Gegenbauer polynomials

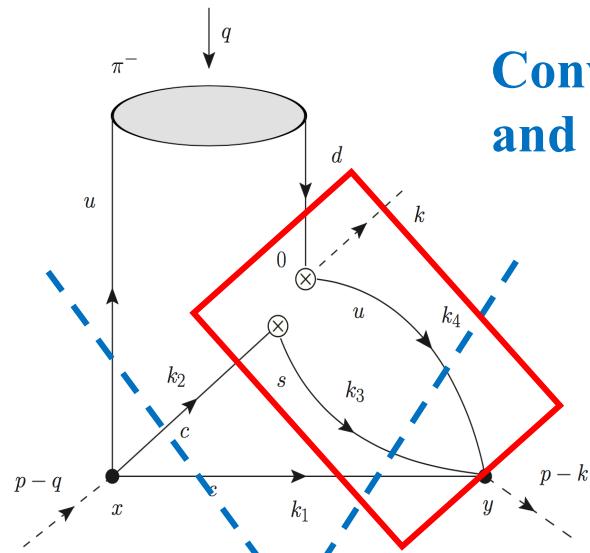
2 $\varphi_\pi(u) = 6u\bar{u} \left(1 + a_2 C_2^{3/2}(u - \bar{u}) + a_4 C_4^{3/2}(u - \bar{u}) \right),$

3p $\phi_{3\pi}^p(u) = 1 + 30 \frac{f_{3\pi}}{\mu_\pi f_\pi} C_2^{1/2}(u - \bar{u}) - 3 \frac{f_{3\pi} \omega_{3\pi}}{\mu_\pi f_\pi} C_4^{1/2}(u - \bar{u}),$

3σ $\phi_{3\pi}^\sigma(u) = 6u(1-u) \left(1 + 5 \frac{f_{3\pi}}{\mu_\pi f_\pi} \left(1 - \frac{\omega_{3\pi}}{10} \right) C_2^{3/2}(u - \bar{u}) \right)$

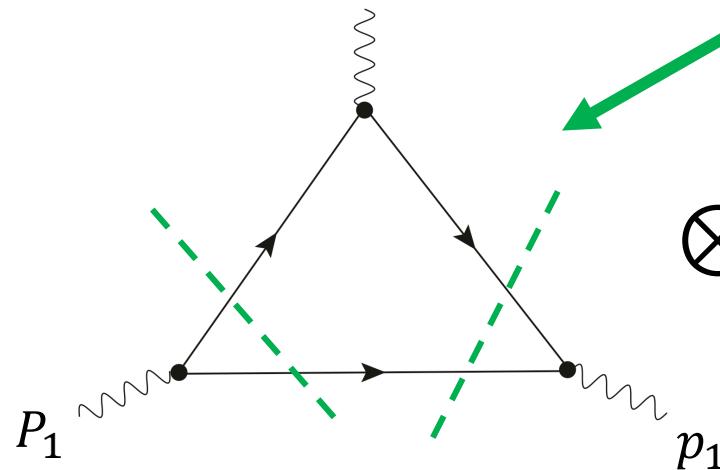

Quark-Gluon Level: Double imaginary part

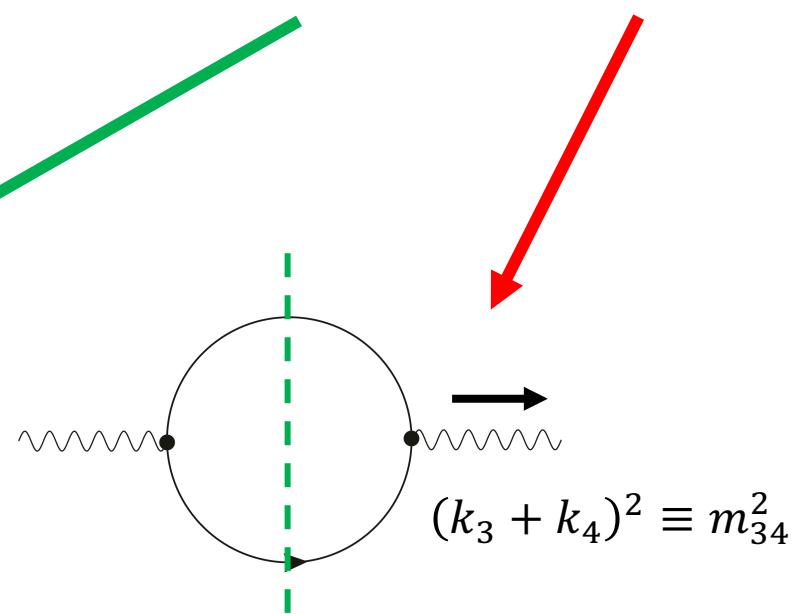
$$\text{Im}^2 \Pi_{QCD}^{\mathcal{O}_i}(s', s, P^2)$$


Cutting Rules

$$\frac{1}{l^2 - m^2} \rightarrow (-2\pi i) \delta(l^2 - m^2)$$

Each propagator is set
on shell


Quark-Gluon Level: Double imaginary part


Convolution of an on-shell triangle integration
and a two-body phase integration:

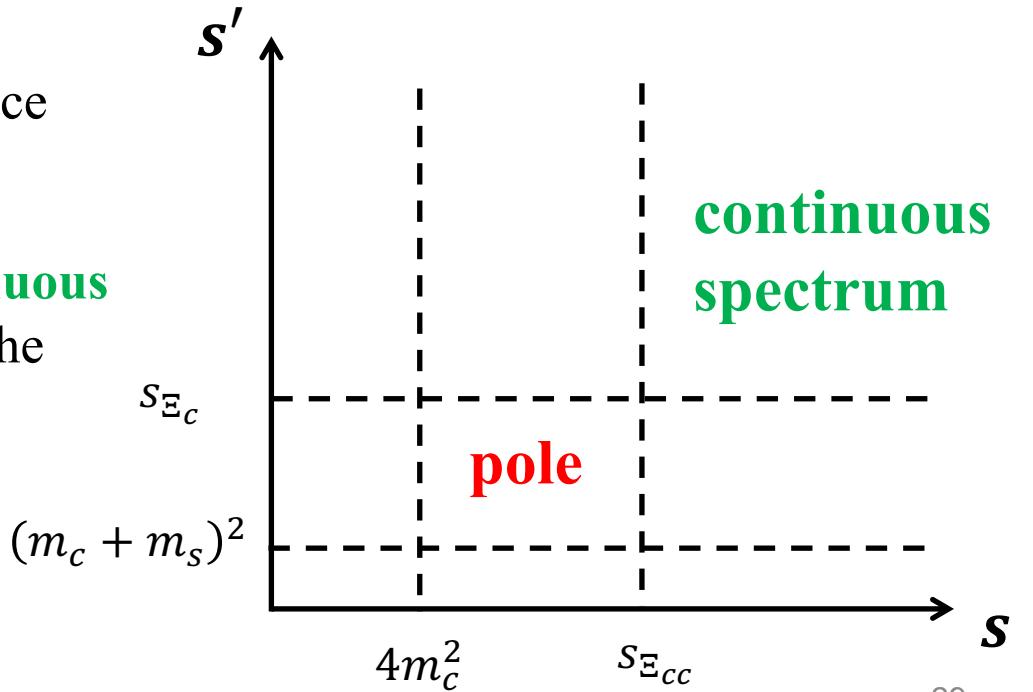
$$\propto \int_0^1 du \varphi_\pi(u) \int dm_{34}^2 \int d\Phi_\Delta(P_1^2, p_2^2) \int d\Phi_2(m_{34}^2)$$

×

triangle integration

two-body phase space integration

Numerical Results


Numerical Result: Borel parameters

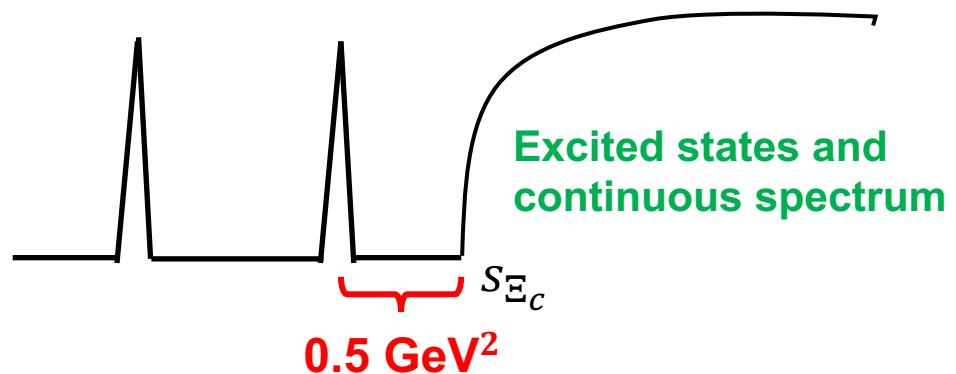
$$\begin{aligned}
 & i \sum_{\pm\pm'} e^{-m_{\Xi_c}^{\pm'2}/T'^2 - m_{\Xi_{cc}}^{\pm2}/T^2} \lambda_{\Xi_c}^{\pm'} \lambda_{\Xi_{cc}}^{\pm} (\not{p}_2 + m_{\Xi_c}^{\pm'}) \left[A_{1,i}^{\pm'\pm} + B_{1,i}^{\pm'\pm} \gamma_5 + A_{2,i}^{\pm'\pm} \frac{\not{q}}{m_{\Xi_{cc}}^{\pm}} + B_{2,i}^{\pm'\pm} \frac{\not{q}\gamma_5}{m_{\Xi_{cc}}^{\pm}} \right] (\not{p}_1 + m_{\Xi_{cc}}) \\
 & = \frac{1}{\pi^2} \int_{(m_c + m_s)^2}^{s_{\Xi_c}} ds' \int_{4m_c^2}^{s_{\Xi_{cc}}} ds e^{-s'/T'^2} e^{-s/T^2} \text{Im}^2 \Pi_{QCD}^{\mathcal{O}_i}(s', s, P^2)_{\text{WE}},
 \end{aligned}$$

The choice of Borel parameter T, T' must satisfy:

1. The result has little dependence on T, T'
2. The contribution from **continuous spectrum** must be less than the **pole** contribution

Numerical Result: Borel parameters

Two assumptions :

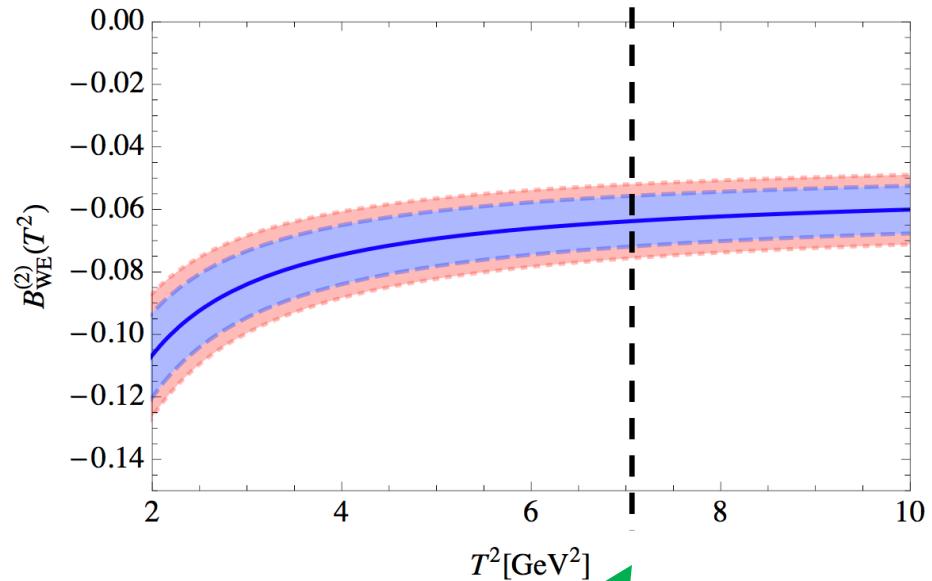
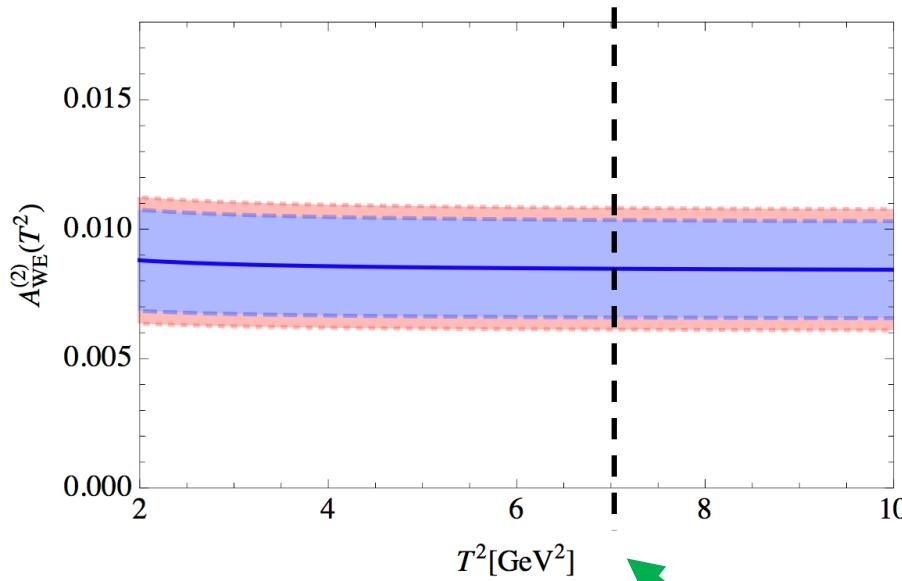

$$(1) \quad \frac{T^2}{T'^2} \approx \frac{M_1^2 - m_1^2}{M_2^2 - m_2^2}$$

$M_{1(2)}$ is the mass of the initial (final) baryon and $m_{1(2)}$ is the mass of the quark before(after) the weak decay.

Used in the study of D meson decays

P. Ball, V. M. Braun and H. G. Dosch, Phys. Rev. D **44**, 3567-3581 (1991)

$$(2) \quad \left. \begin{array}{l} s_{\Xi_{cc}} = (4.1 \pm 0.1)^2 \text{ GeV}^2 \\ s_{\Xi_c} = (3.2 \pm 0.1)^2 \text{ GeV}^2 \\ s_{\Xi'_c} = (3.3 \pm 0.1)^2 \text{ GeV}^2 \end{array} \right\}$$



An empirical value from the study of B_c decays

Z. G. Wang, Eur. Phys. J. A **49**, 131 (2013)

Numerical Result: Borel parameters

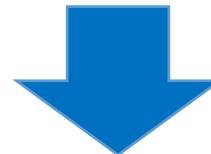
Blue band: uncertainty of the $s_{\Xi_{cc}}$ and s_{Ξ_c}

Red band: uncertainty of MC integration

Use “Pole > Continuous” to determine the upper bound.

Numerical Result: W-exchange Amplitudes

$6 < T^2 < 8 \text{ GeV}^2$ for $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$


$5 < T^2 < 7 \text{ GeV}^2$ for $\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+$

$$s_{\Xi_{cc}} = (4.1 \pm 0.1)^2 \text{ GeV}^2$$

$$s_{\Xi_c} = (3.2 \pm 0.1)^2 \text{ GeV}^2$$

$$s_{\Xi_c'} = (3.3 \pm 0.1)^2 \text{ GeV}^2$$

The uncertainties are used to evaluate the numerical error.

$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$	Twist-2	Twist-3p	Twist-3 σ	Total
A_{WE}	0.0084 ± 0.0024	-0.077 ± 0.01	-0.056 ± 0.002	-0.124 ± 0.011
B_{WE}	-0.064 ± 0.01	0.052 ± 0.01	0.165 ± 0.025	0.153 ± 0.029
$\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+$	Twist-2	Twist-3p	Twist-3 σ	Total
A'_{WE}	0.0027 ± 0.0005	0.0089 ± 0.002	-0.018 ± 0.0003	-0.0062 ± 0.002
B'_{WE}	0.0023 ± 0.0006	0.052 ± 0.016	0.011 ± 0.003	0.066 ± 0.016

Numerical Result: W-exchange Amplitudes

$$\langle \Xi_c^{+(I)}(p-q)\pi^+(q) | \mathcal{H}_{\text{eff}}(0) | \Xi_{cc}^{++}(p) \rangle_{\text{fac},\text{nf}} = i \bar{u}(p-q) [A^{(I)\text{fac},\text{nf}} + B^{(I)\text{fac},\text{nf}} \gamma_5] u(p)$$

{
fac+nf
}

$\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$	A^{fac}	A^{nf}	A^{tot}	B^{fac}	B^{nf}	B^{tot}
This work	--	-16.67 ± 1.41	--	--	20.47 ± 3.89	--
QCDSR	-8.74 ± 2.91	--	--	16.76 ± 5.36	--	--
LFQM + PM	7.40	-10.79	-3.38	15.06	-18.91	-3.85
3LQM	-8.13	10.50	3.37	-12.97	18.53	5.56
NRQM + PM	7.38	0	7.38	16.77	24.95	41.72
HQET + PM	9.52	0	9.52	19.45	24.95	44.40

$\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+$	A'^{fac}	A'^{nf}	A'^{tot}	B'^{fac}	B'^{nf}	B'^{tot}
This work	--	-0.83 ± 0.28	--	--	8.86 ± 2.16	--
QCDSR	-3.55 ± 0.68	--	--	34.13 ± 11.6	--	--
LFQM + PM	4.49	-0.04	4.45	48.50	-0.06	48.44
3LQM	-4.34	-0.11	-4.45	-37.59	-1.37	-38.96
NRQM + PM	4.29	0	4.29	53.65	0	53.65
HQET + PM	5.10	0	5.10	62.37	0	62.37

in unit $10^{-2}G_F \text{ GeV}^2$

33

Numerical Result: Branching fraction

"fac" from literature and "nf" from this work

Method	A^{tot}	B^{tot}	$\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+)$	A'^{tot}	B'^{tot}	$\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^{+'} \pi^+)$	\mathcal{B}'/\mathcal{B}
QCDSR+LCSR	-25.4 ± 4.32	37.23 ± 9.25	$40 \pm 14 \%$	-4.38 ± 0.96	42.99 ± 13.76	$3.91 \pm 2.5 \%$	0.098 ± 0.14
LFQM+LCSR	-9.27 ± 1.41	35.53 ± 3.89	$7.54 \pm 2.22 \%$	3.66 ± 0.28	57.36 ± 2.16	$5.83 \pm 0.5 \%$	0.77 ± 0.42
3LCQM+LCSR	-24.8 ± 1.41	7.5 ± 3.89	$35.55 \pm 4.29 \%$	-5.17 ± 0.28	-28.73 ± 2.16	$2.75 \pm 0.35 \%$	0.08 ± 0.02
NRQM+LCSR	-9.29 ± 1.41	37.24 ± 3.89	$7.82 \pm 2.25 \%$	3.46 ± 0.28	62.51 ± 2.16	$6.70 \pm 0.54 \%$	0.85 ± 0.44
HQET+LCSR	-7.18 ± 1.41	39.92 ± 3.89	$6.22 \pm 1.94 \%$	4.27 ± 0.28	71.23 ± 2.16	$8.85 \pm 0.62 \%$	1.42 ± 0.78
LFQM+PM	-3.83	3.85	0.69 %	4.45	48.44	4.65 %	6.74
3LCQM	3.37	5.56	0.71 %	-4.45	-38.96	3.39 %	4.77
HQET+PM	7.38	41.72	6.64 %	4.29	53.65	5.39 %	0.81
NRQM+PM	9.52	44.40	9.19 %	5.1	62.37	7.34 %	0.8
FSR($\eta = 1.0$)	--	--	7.11%	--	--	4.72 %	0.66
FSR($\eta = 1.5$)	--	--	8.48%	--	--	4.72 %	0.56
FSR($\eta = 2.0$)	--	--	10.75%	--	--	4.74 %	0.44

Final state rescattering

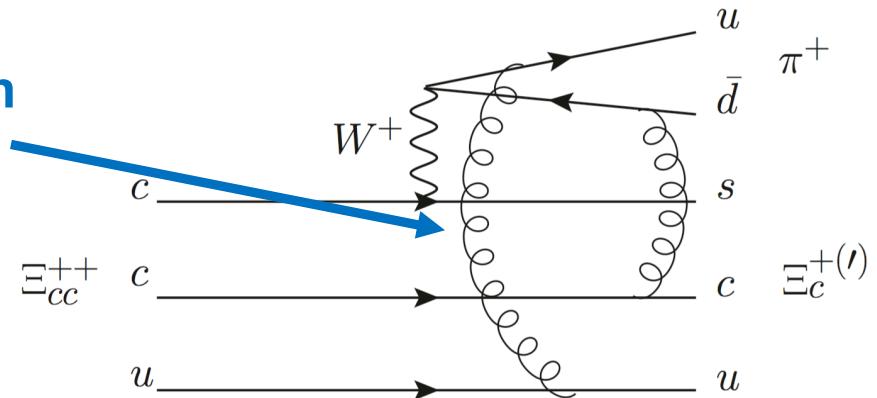
Chin. Phys. C 45, no.5, 053105 (2021)

The interference between B^{fac} and B^{nf}
tends to be constructive

Consistent with experiment

$$(\mathcal{B}'/\mathcal{B})_{\text{expt}} = 1.41 \pm 0.17 \pm 0.1$$

Summary


- The W-exchange amplitudes of $\Xi_{cc}^{++} \rightarrow \Xi_c^{+(')}\pi^+$ are calculated by light-cone sum rules.
- The possible branching fractions are obtained by combining our W-exchange amplitudes with the factorizable amplitudes from various theoretical works in the literature.
- One of the possible branching fractions is consistent with the experimental result.

Outlook

- Further studies on the W-emission contribution are required to determine the sign of the amplitudes

Effects of soft gluon exchange?

- Contributions from higher twist LCDAs for the calculation of the W-exchange diagram.

Thank you for your attention !