Lattice studies on light hadrons in J/ψ radiative decays

Feiyu Chen

Institute of High Energy Physics

October 8, 2022

Based on 2206.02724 and 2207.04694

Feiyu Chen (IHEP)

Lattice studies on light hadrons in J/ψ radia

October 8, 2022 1 / 17

Motivation

2 Lattice setup

4 Numeric details

- Two point functions
- Three point function

5 Results

The radiative decay of J/ψ is a good place to study light hadrons For $J/\psi\to\gamma\eta$

- Isoscalar η in $N_f=2$ is the counterpart of the flavor singlet η_1 in $N_f=3;$
- $\ensuremath{\mathfrak{O}}$ Isoscalar η is the lightest isoscalar pesudoscalar in $N_f=2$ and is stable
- (a) The production rates of pseudoscalars are usually large in J/ψ radiative decays

 $\eta_1(1855) \ (I^G J^{PC} = 0^{+}1^{-+})$ observed by BESIII (arXiv:2202.00621)

Figure: Blue dot lines: PWA fit excluding $\eta_1(1855)$

Resonance parametres of $\eta_1(1855)$: $m_{\eta_1} = 1855 \pm 9^{+6}_{-1}$ MeV, $\Gamma_{\eta_1} = 188 \pm 18^{+3}_{-8}$ MeV Combined branching ratio: $Br(J/\psi \rightarrow \gamma \eta_1 \rightarrow \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$ **First candidate** for isoscalar 1⁻⁺ hybrid. Table: Parametres of the gauge ensemble.

$L^3 \times T$	β	$a_t^{-1}(GeV)$	ξ	$m_{\pi}(MeV)$	$N_{\rm cfg}$
$16^3 \times 128$	2.0	6.894(51)	~ 5.3	348.5(1.0)	6991

- Tadpole improved Symanzik's gauge action, $N_f = 2$ with degenerate u, d quarks;
- **②** A large statistics is mandatory for the study of J/ψ radiative decay into light hadrons;
- Oistillation method is used to calculate the relevant correlation functions.

Formalism and methodology

Formalism for calculating partial decay width of $J/\psi \to \gamma \eta$

- $\begin{array}{l} \bullet \quad \text{Radiative decay} \\ \text{width:} \Gamma(i \rightarrow \gamma f) = \frac{1}{2J_i + 1} \frac{1}{32\pi^2} \int \mathrm{d}\Omega_q \frac{|\vec{q}|}{M_i^2} \sum |\mathcal{M}(r_i, r_f, r_\gamma)|^2 \end{array}$
- 2 Transition amplitude: M(r_i, r_f, r_γ) = ε^{*}_μ(p_γ, r_γ) ⟨f(p_f, r_f)|j^μ_{em}|i(p_i, r_i)⟩
 3 Multipole decomposition: ⟨f(p_f, r_f)|j^μ_{em}|i(p_i, r_i)⟩ = Σ_k α^μ_k(p_i, p_f, ε_i, ε_f)F_k(Q²)
 3 Decay width in terms of form factors: Γ(i → γf) ∝ Σ_k F_k(0)
 3 The major task is thus to calculate the matrix elements

$$\mathcal{M}^{i\mu j}(\vec{p}) = \sum_{\lambda,\lambda'} \epsilon^{i}_{\lambda'}(\vec{0}) \langle \eta_1(\vec{0},\lambda') | j^{\mu}_{\mathrm{em}}(0) | J/\psi(\vec{q},\lambda) \rangle \epsilon^{*j}_{\lambda}(\vec{p})$$

which can be extracted from the three point function

$$\Gamma_3^{i\mu j}(\vec{p}_f, \vec{q}, t_f, t) = \sum_y \left\langle 0 | \mathcal{O}_f^i(\vec{p}_f, t_f) j_{\rm em}^\mu \mathcal{O}_i^j(\vec{p}_i, 0) | 0 \right\rangle, \mathcal{M}^{i\mu j} \sim \frac{\Gamma_3^{i\mu j}}{\Gamma_2^i \Gamma_2^j}$$

Multipole decompositions for $J/\psi \rightarrow \gamma \eta$ and $J/\psi \rightarrow \gamma \eta_1$ η :

$$\langle \eta(p_f) | j_{\rm em}^{\mu}(0) | J/\psi(p_i,\lambda) \rangle = M(Q^2) \epsilon^{\mu\nu\rho\sigma} p_{i,\nu} p_{f,\rho} \epsilon_{\sigma}(p_i,\lambda)$$

$$\langle \eta_1(p_f, \lambda_f) | j_{\rm em}^{\mu}(0) | J/\psi(p_i, \lambda_i) \rangle = A_1^{\mu} M_1(Q^2) + A_2^{\mu} E_2(Q^2) + A_3^{\mu} C_1(Q^2) + A_4^{\mu} C_2(Q^2)$$

2 η_1 :

э

▲ 伊 ▶ ▲ 三

Numerical setups:

- $\textbf{0} \ \text{Kinetic configuration: } J/psi \text{ at rest and } \eta \text{ moves with momentum } \vec{q};$
- **2** Operator $\mathcal{O}_{\eta} = \bar{u}\Gamma u + \bar{d}\Gamma d$ where Γ is a combination of $\gamma_4\gamma_5$, $\gamma_4\gamma_5\gamma_i\nabla_i, \epsilon_{ijk}\gamma_i\nabla_j\nabla_k$;
- Three point function

- \mathcal{O}_{η} : using distillation method
- 2 $G_{\mu i}$: using wall source

Numerical results:

1 Dispersion relation of η :

$$E_{\eta}^2 a_t^2 = m_{\eta}^2 a_t^2 + \frac{1}{\xi^2} \left| \vec{p} \right|^2 a_s^2, \xi = 5.34(4), m_{\eta} = 717.4(8.4) \text{MeV}$$

Feiyu Chen (IHEP)

Lattice studies on light hadrons in J/ψ radia

Numerical results:

- **9** Decay width given by $\Gamma(J/\psi \to \gamma \eta) = \frac{4\alpha}{27} |\vec{p_{\gamma}}|^3 |M(0)|^2$
- 2 We set t' = 40 to make sure η dominate;
- $M(Q^2)$ still has t t' dependency;
- Fit function for $M(Q^2)$:

 $M(Q^2) = M(0) + aQ^2 + bQ^4, M(0) = 0.01051(61) \mathrm{GeV}^{-1}$

Feiyu Chen (IHEP)

Lattice studies on light hadrons in J/ψ radia

Numerical results:

Decay width and branching ratio:

$$\Gamma(J/\psi \to \gamma \eta) = 0.385(45) \text{keV}, \text{Br}(J/\psi \to \gamma \eta) = 4.16 \times 10^{-3}$$

Operation 2 Comparable with experimental result

$$Br(J/\psi \to \gamma \eta') = 5.25(7) \times 10^{-3}$$

Numeric details

- Chosen operators: $\mathcal{O}^{i}_{J/\psi} = \gamma^{i}$, $\mathcal{O}^{i}_{\eta_{1}} = \frac{1}{\sqrt{2}} \epsilon^{ijk} \left(\bar{u} \gamma_{j} B_{k} u + \bar{d} \gamma_{j} B_{k} d \right)$ with $B_{i} = \epsilon_{ijk} D_{j} D_{k}$
- 2 Kinetic setup: η_1 at rest while J/ψ moves
- § J/ψ to γ and η_1 loop are calculated using distillation method, but the former is more challenging

Figure: Schematic diagram of the process $J/\psi
ightarrow \gamma \eta_1$

Two point functions

 $m_{\eta_1} = 2.230(39) \text{GeV}, \qquad m_{\pi_1} = 1.950(28) \text{GeV}$ (1)

These results are in agreement with a previous lattice study (arXiv:1309.2608)

Calculating the J/ψ to γ loop $G_i\mu$ is highly non-trivial:

- **9** Full distillation method smears the current j_{em} , making it non-local;
- Point source method with $G_{i\mu}(\vec{0}, \vec{q}; t, t') = \sum_{x} e^{-i\vec{q}\cdot\vec{x}} \operatorname{Tr} \left[\gamma_5 S_c(\vec{x}, 0; t, t') \gamma_5 \gamma^{\mu} S_c(\vec{x}, 0; t', t) \gamma_i\right] \text{ has no signal, for some unknown reason;}$
- Momemtum source as used in arXiv:2206.02724 is too noisy;

We propose the "half perambulator" method:

$$G_{\mu i}(\vec{p}, \vec{q}; t, t') = \sum_{\vec{x}} e^{-i\vec{q}\cdot\vec{x}} \operatorname{Tr} \left\{ \gamma_5 [S_c V(t')]^{\dagger}(\vec{x}, t) \gamma_5 \gamma^{\mu} \times \left[S_c V(t') \right] (\vec{x}, t) [V^{\dagger}(t') D(\vec{p}) \gamma_i V(t')] \right\},$$
(2)

where $S_c V(t')$ may be calculated by inverting

$$MS_cV(t') = V(t') \tag{3}$$

Numerical results

- Decay width: $\Gamma(J/\psi \rightarrow \gamma \eta') = \frac{4\alpha}{27} \frac{|\vec{p}_{\gamma}|}{2m_{J/\psi}^2} \left[|M_1(0)|^2 + |E_2(0)|^2 \right]$
- *F_i(Q²)* are extracted using weighted average of matrix element for t' ∈ [20, 40]
- Solution Fit function for F_i :

$$\begin{split} F_i(Q^2) &= v(Q^2)(a_i + b_i v^2(Q^2) + c_i v^4(Q^2)) \\ v(Q^2) &= \frac{\Omega(Q^2)}{m_{J/\psi}^2 m_{\eta_1}^2} = \frac{|\vec{q}|}{m_{J/\psi}} (< 0.49) \\ \Omega(Q^2) &= \frac{1}{4} \left[(m_{J/\psi} + m_{\eta_1})^2 + Q^2 \right] \left[(m_{J/\psi} - m_{\eta_1})^2 + Q^2 \right] \end{split}$$

Figure: Extracted form factors

Numerical results

Extrapolating gives

$$M_1(0) = -4.96(90) \text{MeV}$$

$$E_2(0) = 1.41(26) \text{MeV}.$$
(4)

Prediction of the decay width and branching fraction:

 $\Gamma(J/\psi \to \gamma \eta_1) = 2.29(77) \text{eV}$ $\text{Br}(J/\psi \to \gamma \eta_1) = 2.47(83) \times 10^{-5}$

Considering $m_{\eta_1(1855)}^2/m_{\eta_1}^2 \approx 0.69$ and $(|p_{\gamma}(\eta_1(1855))|/|p_{\gamma}(\eta_1)|)^3 \approx 1.74$, Partial width for $\eta_1(1855)$ is predicted as

$$Br(\eta_1(1855) \to \eta \eta') \approx 4.3(1.7)\%, \Gamma(\eta_1(1855) \to \eta \eta') \approx 8.1(3.3) \text{ MeV.}$$
(5)

• Comparable to a phenomenological study (arXiv:2202.04918) predicts $\Gamma(\eta_1(1855) \rightarrow \eta \eta') \approx 11 \text{ MeV.}$ (6)

- J/ψ radiative decay is a good place to study the properties of light hadrons.
- Lattice QCD is promising for this task;
- Br $(J/\psi \to \gamma \eta)$ is calculated on $N_f = 2$ lattice, and the result is in agreement with experimental value.
- $\label{eq:Br} {\rm O} \ {\rm Br}(J/\psi\to\gamma\eta') \mbox{ is predicted to be } 6.1(2.2)\times 10^{-5} \mbox{ on } N_f=2 \mbox{ lattice.}$