Rediscovery of Numerical Luescher＇s Formula from the Neural Network

Based on arXiv： 2210.02184
Yu Lu（陆宇）
In collaboration with
Yi－Jia Wang（王一佳）Ying Chen（陈莹）Jia－Jun Wu（吴佳俊）
＠第二届中国格点QCD年会，上海交通大学李政道研究所
2022．10．10

Contents

- Introduction to the Neural Network (NN)
- Basic Concepts
- Some examples
- Motivation
- Hamiltonian Effective Field Theory(HEFT) \& Data Preparation
- Results Analysis
- Summary \& Outlook

Introduction to NN

- Artificial Intelligence (AI)=Machine Learning (ML) \approx NV, although ML includes other techniques
- Anatomy/Neural Science Inspired
- Feed Forward Fully Connected NN
- Activation function can be any continuous function
- Specify suitable loss functions for different tasks
- Optimized by Back propagation

Introduction to NN

－Modern NN is wide \＆deep \rightarrow Deep Learning
－1998：LeNet－5， 6×10^{4}
－2022：DALL－E 2， 3.5×10^{9}
＂Teddy bears working on new Al research underwater with 1990s technology＂
－NN is the infrastructure of modern digital life
－Face recognition，recommendation AI，Autopilot，etc．

Possible Questions from Physicists

- 10^{n} parameters?! That's Toooooo Many!
- Explainability/Interpretability, can be partially explained.
- Personal comment at the end of this talk.

\qquad $\sqrt{\pi}$

Possible Questions from Physicists

- 10^{n} parameters?! That's Toooooo Many!
- Explainability/Interpretability, can be partially explained.
- Personal comment at the end of this talk.
- Difference between NN and fitting?
- Fundamentally the same but somehow not that trivial

 University of Chinese Academy of Sciences

Possible Questions from Physicists

－ 10^{n} parameters？！That＇s Toooooo Many！
－Explainability／Interpretability，can be partially explained．
－Personal comment at the end of this talk．
－Difference between NN and fitting？
－Fundamentally the same but somehow not that trivial
－Why bother？
－Vague idea becomes solid
－In the spirit of Duck Test－＞NN \approx Underline Function

University of Chinese Academy of Sciences

Motivations

- QCD is hard
- Phenomenological models/ ChiPT etc.
- LQCD
- Is there a model-independent link between model-dependent quantities?
- Exceedingly hard
- If you know LF, you already know an positive example

Hamiltonian Effective Field Theory(HEFT) \& Data Generation

$\pi \pi \rightarrow \pi \pi$, s wave elastic scattering

$$
H=H_{0}+H_{I}
$$

$$
H_{0}=|\sigma\rangle m_{\sigma}\langle\sigma|+\int d \boldsymbol{k}\left(|\boldsymbol{k}\rangle \sqrt{m_{\pi}^{2}+k^{2}}\langle\boldsymbol{k}|\right)
$$

$$
H_{I}=\int d \boldsymbol{k}(|\boldsymbol{k}\rangle g(k)\langle\sigma|+h . c .)+\int d \boldsymbol{k} d \boldsymbol{k}^{\prime}|\boldsymbol{k}\rangle v\left(k, k^{\prime}\right)\left\langle\boldsymbol{k}^{\prime}\right|
$$

$$
g(k) \propto f(k), v\left(k, k^{\prime}\right) \propto f^{2}(a, k) f^{2}\left(a, k^{\prime}\right)
$$

Lippmann-Schwinger equation $\rightarrow T \rightarrow \delta(E)$

Discretization, Eigenfunction:

$$
H(L)|\psi\rangle=E(L)|\psi\rangle
$$

Hamiltonian Effective Field Theory(HEFT)
 \& Data Generation J..J. Wu etal. Phys.Rev.c.90.055206

- $\delta(E)$ contains the full information
- SoftPlus Not ReLU
- Lowest 10 Energy levels
- LossFunction: mean square error
- $2500 \delta(E)$ for each model, batch size $10^{\wedge} 4,4^{*} 10^{\wedge} 4$ epoch

Result Analysis

$$
\Delta E:=E_{\text {model }}-E_{N N}
$$

- Decently trained on model A, C
- $\Delta E(L)<1 \mathrm{MeV}, E(L) \sim 300-900 \mathrm{MeV}$
- For model B,
- as a test set, slightly worse
- ΔE has heavier-tail on the right
- Signifies the existence of link
- Under the hood, LF is in charge
- -> Check against LF

- LF is model-independent
- Check $\delta\left(E_{L}\right)$ against LF

$$
\delta(E)=\arctan \left(\mathrm{q} \frac{\pi^{3 / 2}}{\mathcal{L}_{00}\left(1 ; q^{2}\right)}\right)+n \pi \quad \mathcal{L}_{00}\left(1 ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\vec{n}}\left(\vec{n}^{2}-q^{2}\right)^{-1}
$$

- NN tries to collect the points towards LF
- UAT-> NN captures model-independent link (to some degree)

LF NN Model

- Go Far beyond training set \& challenge the NN with constant $\delta(E)$

Even closer to LF!

$\mathrm{L}=10 \mathrm{fm}$, Energy Level Corrected

Summary

- Even $\delta(E), E(L)$ are both model dependent,

NN can extract model-independent link (LF) when $\delta(E) \rightarrow E(L)$

$$
\mathrm{LF}+o\left(e^{-m L}\right) \rightarrow E(L)
$$

Where there is a link, there is a neural network :)

Outlook

Sensible mathematics involves neglecting a quantity when it is small
not neglecting it just because it is infinitely great and you do not want it!

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk

BackUp

Results after level correction

$\delta(E)$ is evenly sampled by 100 points in [$2 m_{\pi}, 1 \mathrm{GeV}$]

$$
m_{\sigma} \in[350,700], a \rightarrow c, d \in[0.5,2]
$$

$\mathrm{L}=13 \mathrm{fm}$

$$
\begin{aligned}
& \delta(E)=\arctan \left(\mathrm{q} \frac{\pi^{3 / 2}}{\mathcal{L}_{00}\left(1 ; q^{2}\right)}\right)+n \pi \\
& \mathcal{L}_{00}\left(1 ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\vec{n}}\left(\vec{n}^{2}-q^{2}\right)^{-1}
\end{aligned}
$$

