Finite temperature QCD phase transition with 3 flavors of Mobius domain wall fermions

Yu Zhang
（RIKEN R－CCS）

In collaboration with
Y．Aoki，S．Hashimoto，I．Kanamori，T．Kaneko，Y．Nakamura

第二届中国格点量子色动力学研讨会
Oct．8－10， 2022

Outline

\& Background \& Motivation
\& Previous lattice studies
\& Lattice setup
\& Results
\& Summary \& Outlook

The nature of QCD phase transition at $\mu_{B}=0$

Columbia plot

Order of phase transition depends on $m_{l}, m_{s} \& N_{f}$

Sigma model: 1st order phase transition in the chiral limit for $\mathrm{N}_{\mathrm{f}}=3$
[Pisarski,Wilczek PRD 84]

This work:

\Rightarrow Explore $\mathbf{N}_{\mathrm{f}}=3$ chiral region using first-principle lattice QCD

Previous Nf=3 lattice QCD studies

\% $1^{\text {st }}$ order phase transition is found at non-zero quark masses using O (a) improved Wilson fermion and $m_{\pi}^{c} \lesssim 110 \mathrm{MeV}$ [Kuramashi et al., PRD 20]

- No direct evidence of a 1st order region was found using HISQ on $\mathrm{Nt}=6$ and $m_{\pi}^{c} \lesssim 50 \mathrm{MeV}$
[A. Bazavov et al., PRD 17]
2nd $2^{\text {nd }}$ phase transition was found in the continuum limit with staggered
[Francesca Cuteri et al., JHEP 21]
* $2^{\text {nd }}$ order phase transition was found in the chiral limit on Nt=8 using HISQ
[Lorenzo Dini et al., PRD 22]
Consensus: $1^{\text {st }}$ order region shrinks for both fermions [de Forcrand, O.P. PoS LAT 07; jin et al. PRD I5, 17]

Our aim is to investigate $\mathbf{N}_{\mathrm{f}}=3$ QCD phase structure with Mobius Domain Wall Fermion

Why MDWF

- Exact chiral symmetry at finite a for infinite Ls
- Reduced $\chi_{S B}$ parameterized by residual mass when Ls is finite

Lattice Setup

- $\mathrm{N}_{\mathrm{f}}=3$ Mobius Domain Wall Fermion with $\mathrm{L}_{\mathrm{s}}=16$
© Symanzik gauge action at $\beta=4.0$ ($a=0.1361$ (20) fm)
\& Using Wilson flow to to set the scale and matching with $\mathrm{N}_{\mathrm{f}}=2+1$ physical point ${\sqrt{t_{0}}}^{\text {phys }}=0.1465(21)(13) \mathrm{fm}$
[S.Borsanyi et al., JHEP 2012]
~T > 0:
- $\mathrm{N}_{\mathrm{t}}=8(\mathrm{~T}=181.1(2.6) \mathrm{MeV}): \quad \mathrm{N}_{\mathrm{s}}=16,0 \leq m_{l} \leq 0.2$
$\mathrm{N}_{\mathrm{s}}=24,0 \leq m_{l} \leq 0.14$
$\square \mathrm{N}_{\mathrm{t}}=12(\mathrm{~T}=120.8(1.8) \mathrm{MeV}): \quad \mathrm{N}_{\mathrm{s}}=24,-0.006 \leq m_{l} \leq 0.1$
UT = 0 :

$$
\mathrm{N}_{\mathrm{s}}=24, \mathrm{~N}_{\mathrm{t}}=48,0.02 \leq m_{l} \leq 0.045
$$

\& Measured: residual mass, chiral condensate, disconnected chiral susceptibility \& Binder cumulant

* Codes: Grid \& Hardons
* Resources: Supercomputer Fugaku

Residual chiral symmetry breaking

- For finite Ls chiral symmetry is broken, leading to an additive renormalization of the quark mass $m_{l} \rightarrow m_{l}+m_{\text {res }}$
- $m_{\text {res }} \rightarrow 0$ as $L_{s} \rightarrow \infty$, cost is high when increase Ls, practical simulation: Ls=16
- Measure the ratio of midpoint correlator to the pion correlator evaluated at large distance

$$
m_{\mathrm{res}}=R(t)=\frac{\left\langle\sum_{\vec{x}} J_{5 q}^{a}(\vec{x}, t) \pi^{a}(\overrightarrow{0}, 0)\right\rangle}{\left\langle\sum_{\vec{x}} J_{5}^{a}(\vec{x}, t) \pi^{a}(\overrightarrow{0}, 0)\right\rangle}
$$

Smallest input m_{l} is -0.006

Residual chiral symmetry breaking on chiral condensate

- From low energy effective QCD \mathscr{L}, the effect of mixing between chiral walls for long-distance quantities will result in $m_{l} \rightarrow m_{l}+m_{\text {res. }}$. e.g. $m_{\pi}^{2} \propto m_{l}+m_{\mathrm{res}}$
- For quantities whose sensitivity to $\chi_{S B}$ effects extends up to the cutoff scale, the above argument doesn't go through. e.g. $\langle\bar{\psi} \psi\rangle$
$\left.\langle\bar{\psi} \psi\rangle\right|_{D W F} \sim \frac{m_{l}+x m_{\text {res }}}{a^{2}}+\left.\langle\bar{\psi} \psi\rangle\right|_{\text {cont. }}+\ldots$
 x is not known, expected $x=\mathcal{O}(1)$

Power divergence remains if one extrapolates to $m_{q}=m_{l}+m_{\text {res }}=0$
$\left.\left.\Rightarrow \lim _{m_{q} \rightarrow 0} \lim _{L \rightarrow 0}\langle\bar{\psi} \psi\rangle\right|_{D W F} \sim\langle\bar{\psi} \psi\rangle\right|_{\text {cont. }}+(x-1) \frac{m_{\text {res }}}{a^{2}} \ldots$

Chiral condensate at $\mathrm{T}=181.1(2.6) \mathrm{MeV}$

Order parameter for $\chi_{S B}:\langle\bar{\psi} \psi\rangle=\frac{1}{N_{s}^{3} N_{t}} \operatorname{Tr}\left\langle M^{-1}\right\rangle$

- Quark mass in $\overline{\mathrm{MS}}$ scheme: $m^{\overline{\mathrm{MS}}}(2 \mathrm{GeV})=Z_{m}^{\overline{\mathrm{MS}}}(2 \mathrm{GeV}) a^{-1}(a m)$

Multiplicative renormalization: $\langle\bar{\psi} \psi\rangle^{\overline{\mathrm{Ms}}}(2 \mathrm{GeV})=\frac{a^{-3}\left(a^{3}\langle\bar{\psi} \psi\rangle\right)}{Z_{m}^{\overline{M s}}(2 \mathrm{GeV})}$

- Remove additive divergence $\frac{m_{l}+x m_{\text {res }}}{a^{2}}$ by $\langle\bar{\psi} \psi\rangle^{\mathrm{T}>0}-\langle\bar{\psi} \psi\rangle^{\mathrm{T}=0}$
- a crossover

Disconnected chiral susceptibility at $181.1(2.6) \mathrm{MeV}$

$$
\chi_{\mathrm{disc}}=\frac{1}{N_{S}^{3} N_{t}}\left(\left\langle\left(\operatorname{Tr} M^{-1}\right)^{2}\right\rangle-\left\langle\operatorname{Tr} M^{-1}\right\rangle^{2}\right)
$$

Renormalized to $\overline{\mathrm{MS}}(\mu=2 \mathrm{GeV})$ with $\left(\mathrm{Z}_{\mathrm{m}}^{\overline{\mathrm{MS}}}\right)^{-2}: \chi_{\text {disc }}^{\overline{\mathrm{MS}}}(\mu=2 \mathrm{GeV})\left[\mathrm{GeV}^{2}\right]=\left(\frac{1}{Z_{m}^{\overline{\mathrm{Ms}}}}\right)^{2} \chi_{\text {disc }}^{\text {bare }}\left(a^{-2}\left[\mathrm{GeV}^{2}\right]\right)$
Describes fluctuations of the chiral condensate \& Peak at transition point

\% Pseudo critical mass is around 44 MeV

Binder cumulant of chiral condensate at $181.1(2.6) \mathrm{MeV}$

Chiral condensate at $\mathrm{T} \sim 120.8(1.8) \mathrm{MeV}$

- Residual additive divergence remains

- Additive \& multiplicative divergence has been removed

Disconnected chiral susceptibility at $120.8(1.8) \mathbf{M e V}$

Transition point is around 3.7 MeV

Binder cumulant of chiral condensate at $120.8(1.8) \mathbf{M e V}$

Suggests a crossover, though another volume would be important to confirm

Summary and outlook

Summary:

${ }^{\square}$ For $\langle\bar{\psi} \psi\rangle$, the explicit $\chi_{S B}$ effect due to finite Ls is more complicated than a simple additive shift of the input quark mass by $m_{\text {res }}$

- It is a crossover at T~181.1(2.6) MeV, pseudo critical quark mass is around 44 MeV
- Data suggest a crossover at T~120.8(1.8) MeV and pseudo critical quark mass is around 3.7 MeV , need another volume to confirm

Outlook:

- Add another larger volume $36^{3} \times 12$ for $\mathrm{T} \sim 120.8(1.8) \mathrm{MeV}$
- Investigate the Ls dependence to check whether our chiral symmetry is ok

Acknowledgements

- Codes
- HMC
- Grid (Regensburg branch)
- Measurements
- Bridge++
- Hadrons / Grid
- Computers
- Supercomputer Fugaku provided by the RIKEN Center for Computational Science through HPCI project \#hp210032 and Usability Research ra000001.
- Wisteria/BDEC-01 Oddysey at Univ. Tokyo/JCAHPC through HPCI project \#hp220108 Ito supercomputer at Kyushu University through HPCI project \#hp190124 and hp200050
- Hokusai BigWaterfall at RIKEN
- Grants
- JSPS Kakenhi (20H01907)

Backup

