

中子β衰变的γW-box电弱修正计算

γW-box Electroweak corrections for Neutron β decay

马鹏翔 北京大学物理学院 Co-author: 冯旭, 靳路昶

第二届中国格点量子色动力学研讨会

Outline

- Motivation
 - CKM 幺正性
 - $|V_{ud}|$ 的实验来源
 - 中子β衰变实验
 - 辐射修正的更新
- Methodology
- Lattice setup
- Data analysis
 - π介子β衰变的数据分析
 - 推广到中子衰变道面临的问题
 - 中子β衰变的初步结果展示
- 总结与展望

CKM 幺正性

• Cabibbo–Kobayashi–Maskawa(CKM) matrix:

$$V_{ ext{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- •标准模型下,检验CKM矩阵的幺正性是精确检验的重要课题之一.
- CKM幺正性破坏→超出标准模型的新物理.
- 目前第一行的项精度最高,尤其是|V_{ud}|.
- β 衰变辐射修正的改进提供了更精确的 $|V_{ud}|$,给出偏离CKM幺正性 >2 σ 的结果:

$$\left| V_{ud}
ight|^2 + \left| V_{us}
ight|^2 + \left| V_{ub}
ight|^2 = 0.9985(6)_{V_{ud}}(4)_{V_{us}}$$

- 1. super-allowed β 衰变: $|V_{ud}| = 0.97373(31).$
 - ▶ 0+→0+, 树图阶只取决于弱流的矢量流部分.

▶ PDG 2022接受了新增的一项与核结构(Nuclear structure, NS)相关的误差, 主导目前计算的不确定度.

2. 中子 β 衰变: $|V_{ud}| = 0.9737(9).$

▶ 与super-allowed β 衰变具有相同的核结构无关辐射修正项(Radiative Correction, RC).

▶ 中子衰变实验的精度的提高能够在未来提供与super-allowed β 衰变可比拟的结果.

3. π 介子 β 衰变: $|V_{ud}| = 0.9739(27).$

➤ 实验部分不确定度较大, 短时间内很难有大幅度改进.
 > 理论上最为简洁, 可以作为格点计算应用的切入点.

中子β衰变实验

$$rac{1}{ au_n} = rac{G_\mu^2 {|V_{ud}|}^2}{2 \pi^3} m_e^5 \left(1 + 3 g_A^2
ight) (1 + \Delta_R^V) f \quad \Rightarrow \quad |V_{ud}|^2 = rac{5024.7 ext{ s}}{ au_n \left(1 + 3 g_A^2
ight) \left(1 + \Delta_R^V
ight)}$$

- $|V_{ud}| = 0.9737(3)_{ au_n}(8)_{g_A}(1)_{
 m RC}$
- 误差来源:
 - 中子寿命*τ_n*,
 - 轴矢耦合g_A,
 - 辐射修正 Δ_R^V .
- 最精确的 τ_n 来自超冷中子(Ultra Cold Neutron, UCN)实验.
- 目前, 实验最新的 τ_n 输入相比PDG fit的结果不确定度可以降低为原先的1/2.
- g_A 主导了目前计算的不确定度.
- 左图是 g_A/g_V 的PDG fit方案.

辐射修正的更新

Methodology

- 按照Sirlin 的参数化方案*,在所有修正项中,只有axial γW-box 贡献在强子尺度是敏感的.
- 格点QCD可以从第一性原理出发计算此项:

• 可进一步化简为:

$$\left. igcap_{\gamma W}^{VA}
ight|_{H} = rac{3lpha_{e}}{2\pi} \int rac{dQ^2}{Q^2} rac{m_W^2}{m_W^2 + Q^2} M_H \left(Q^2
ight)$$

*: A. Sirlin. Rev. Mod. Phys. 1978-07: 573-605.

Methodology

- 在高动量区域,格点QCD会因格点离散化误差的增大而不可避免地失效.
- •考虑到微扰论和格点理论的适用范围,引入动量分割 Q_{cut} :
 - 算符乘积展开(OPE)→微扰能区(高于 Q_{cut})
 - 格点QCD→非微扰能区(低于 Q_{cut})

$$igg igg |_{YW} \Big|_{H} = igg |_{YW}^{VA,\leq} \Big|_{H} + igg |_{YW}^{VA,>} \Big|_{H} = \left(\int_{0}^{Q_{ ext{cut}}^{2}} rac{dQ^{2}}{Q^{2}} + \int_{Q_{ ext{cut}}^{2}}^{\infty} rac{dQ^{2}}{Q^{2}}
ight) rac{m_{W}^{2}}{m_{W}^{2} + Q^{2}} M_{H}\left(Q^{2}
ight)$$

介子衰变涉及的四点关联函数

• 以π介子电弱修正项为例, 计算中涉及以下四种关联函数:

Type (C)

Type (D): 在 flavor SU(3) 极限下可忽略.

• 微扰论计算所忽略的高扭度项的量级可由(A)类关联函数估计.

ensemble	Μ _π /MeV	L ³ ×T	a/fm	L-a/fm	N _{conf}	N _r	N _{conf} ×N _r
24D	141.2(4)	24 ³ ×64	0.1944	4.665	46	1024	47104
32D	141.4(3)	32 ³ ×64	0.1944	6.221	32	2048	65536
32D-fine	143.0(3)	32 ³ ×64	0.1432	4.582	71	1024	72704
481	135.5(4)	48 ³ ×96	0.1140	5.474	28	1024	28672
64I	135.3(2)	64 ³ ×128	0.0836	5.353	62	1024	63488

- 我们使用五个格点组态,每个组态均选取物理π介子质量.
- 不同组态之间L与a各有差异,可以以此为依据进行离散化效应与有限体积 效应造成的误差.
- 在组态的产生过程中,我们分别进行了 28k~71k 次计算.

π 介子 β 衰变的数据分析

- - 1. 在低动量情形一致;
 - 2. 在高动量情形有较大差异.
- 2. 不同微扰论计算结果:
 - 1. 在低动量情形有较大差异;
 - 2. 在高动量情形一致.
- 3. Type (A) only 估计高扭度效应:
 - 1. 在高动量情形高扭度效应被明显压低;
 - 2. 微扰论保留到主导扭度阶在高动量下是合理的.

from PhysRevLett.124.192002.

推广到中子衰变道面临的问题

- 重子的缩并结构相比介子而言更加复杂, 涉及的拓扑也有所增加.
 忽略非连通图:
 - 与介子衰变相关四点函数的只涉及2张图;
 而与重子衰变相关的四点函数涉及8张图.
 就单张图而言,重子关联函数的缩并结构也更加复杂.
- 2. 重子的关联函数相比介子而言有更大的信 噪比问题.
 - 若噪声是同量级的,重子态的信号将更快地衰减,从 而更早地达到信噪比的边界.
- 3. 对于中子衰变道,目前只计算了24D单个组态的数据.

ensemble	M _π /MeV	L ³ ×T	a/fm	L∙a/fm	N _{conf}
24D	141.2(4)	24 ³ ×64	0.1944	4.665	111

中子β衰变的初步结果展示

- 1. smear source的结果相较point的结果而言行为一致,且具有更小的不确定度.
- 在时间方向截断|T|≤4的范围内,强子函数未发现明显的平台行为, 尤其是对于积分敏感的Q²≤1GeV²的区域.

中子β衰变的初步结果展示

- 1. 为避免选取时间方向的截断带来系统误差,可以采用无穷体积重构方案(Infinite Volume Reconstruction, IVR)[*].
- 2. 以截断±T处的格点数据为输入,在基态主导的假设下,估计|t|>T的格点数据.
- 3. 随着截断的延后, 激发态效应逐渐降低, IVR的结果之间的差距逐渐减小.

*: X. Feng and L. Jin, PRD 100, 094509

总结与展望

- 1. β 衰变辐射修正的更新为CKM第一行幺正性检验提供新的信号.
- 2. 中子 β 衰变实验精度的提高为其作为CKM幺正检验的输入提供可能性.
- 3. π介子道的计算结果证明了格点方案在计算辐射修正中的可行性.
- 4. 将此方案推广到中子衰变中,会面临更大的信噪比问题.
- 5. 中子β衰变道的计算结果在时间方向的收敛性较差,尤其是积分敏感的在低动量区域.
- 6. 为避免截断带来的系统误差,我们采用了无穷体积重构方案.

Thank you for listening!