Effective field theory approach to $0\nu\beta\beta$ decay with light sterile neutrinos

Gang Li (李刚)

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai

GL, Michael J. Ramsey-Musolf, Juan Carlos Vasquez, 2009.01257 (PRL) Jordy de Vries, GL, Michael J. Ramsey-Musolf, Juan Carlos Vasquez, 2209.03031 (JHEP)

The 2022 Shanghai Particle Physics and Cosmology Symposium:

Neutrino and Dark Matter Physics (SPCS 2022)

Neutrinos: what we know

Neutrinos in the SM are massless

$$L_i \to \left(\begin{array}{c} \nu_i \\ \ell_i \end{array}\right) \qquad m_{\nu} = 0$$

Neutrino mixing

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrino oscillations require massive neutrinos

$$P(\nu_i \to \nu_j) \propto \Delta m_{ij}^2$$
 $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2$ $|\Delta m_{31}^2| \approx 2.5 \times 10^{-3} \text{ eV}^2$

Normal vs inverted hierarchy

Neutrinos: what we do not know

- Mass origin and Majorana nature:
 - How do neutrinos get their masses?
 - Are they Dirac or Majorana fermions?

Dirac mass:

$$\mathcal{L}_D = -(Y^{\nu} \bar{L} H \nu_R + \text{h.c.})$$

very small coupling

Majorana mass:

"Weinberg operator"

$$\mathcal{L}_M = \frac{C_5}{\Lambda} (\bar{L}^c \tilde{H}^*) (\tilde{H}^{\dagger} L) + \text{h.c.}$$

S. Weinberg 1979

(very) large scale

a la eg. type-I, II, III seesaw

Neutrinos and lepton number violation

How can we test if neutrinos are Dirac or Majorana fermions?

Dirac mass:

$$\mathcal{L}_D = -(Y^{\nu} \bar{L} H \nu_R + \text{h.c.})$$

$$-1 + 1$$

Majorana mass:

$$\mathcal{L}_M = \frac{C_5}{\Lambda} (\bar{L}^c \tilde{H}^*) (\tilde{H}^{\dagger} L) + \text{h.c.}$$
+1 +1

Lepton number is violated by two units $\Delta L=2$ if there exists Majorana neutrino mass

• Why search for $0\nu\beta\beta$ decay?

If neutrino is Majorana fermion, $0\nu\beta\beta$ decay process is induced

• Why search for $0\nu\beta\beta$ decay?

An observation of $0\nu\beta\beta$ decay implies LNV $\Delta L=2$ and Majorana neutrino mass

 $0\nu\beta\beta$ decay:

Majorana mass:

"Black box theorem"

Schechter, Valle, Phys.Rev. D25 (1982) 774

Experimental searches for $0\nu\beta\beta$ decay in nuclei ¹³⁶Xe, ⁷⁶Ge, et al,

$$(A,Z) \to (A,Z+2) + e^- + e^-$$

 $_{7}^{A}X$

A: mass number, # of p, n

Z: atomic number, # of p

summed energy of electrons

 $Q_{\beta\beta} \sim 2 \text{ MeV}$

Status of experiments

KamLAND-Zen: $^{136}\mathrm{Xe} \rightarrow ^{136}\mathrm{Ba} + e^- + e^-$

$$T_{1/2}^{0\nu}({\rm Xe}) > 1.07 \times 10^{26}~{\rm year}$$

GERDA: ${}^{76}\text{Ge} \rightarrow {}^{76}\text{Se} + e^- + e^-$

$$T_{1/2}^{0\nu}({
m Ge}) > 1.8 \times 10^{26} \ {
m year}$$

PandaX, CDEX, JUNO, ...

	Experiment	Isotope	Mass	Technique	Present Status	Location
	CANDLES-III	⁴⁸ Ca	300 kg	CaF ₂ scint. crystals	Prototype	Kamioka
	GERDA	⁷⁶ Ge	≈35 kg	enr Ge semicond. det.	Operating	LNGS
	MAJORANA	⁷⁶ Ge	26 kg	enr Ge semicond. det.	Operating	SURF
	CDEX-1T	⁷⁶ Ge	1 ton	enr Ge semicond. det.	Prototype	CJPL
	LEGEND-200	⁷⁶ Ge	200 kg	enr Ge semicond. det.	Construction	LNGS
	LEGEND-1000	⁷⁶ Ge	ton	enr Ge semicond. det.	Proposal	
	CUPID-0	⁸² Se	5 kg	Zn ^{enr} Se scintillating bolometers	Prototype	LNGS
	SuperNEMO-Dem	82Se	7 kg	enrSe foils/tracking	Construction - 2019	Modane
	SuperNEMO	⁸² Se	100 kg	enrSe foils/tracking	Proposal	Modane
	CMOS Imaging	82Se		enrSe, CMOS	Development	
tonne-scale experiments $T_{1/2}^{0\nu} \gtrsim 10^{28} \ {\rm year}$						
conne seule expe	· · · · · · · · · · · · · · · · · · ·	L J .	- 1/2	\sim 10 $^{\circ}$ $^{\circ}$	nent	LNGS, LSM

		- /	$2\sim$ - $^{\circ}$	nent	LNGS, LSM
		-/	-	nent	LNGS
				ion	LNGS
Tin.Tin	124Sn	1 kg	Tin bolometers	Development	INO
CALDER	¹³⁰ Te		TeO ₂ bolometers with Cerenkov Light	Development	LNGS
CUORE	¹³⁰ Te	1 ton	TeO ₂ bolometers	Operating	LNGS
SNO+	$^{130}\mathrm{Te}$	1.3 t	0.5% enr Te loaded liq. scint.	Construction - 2020	SNOLab
nEXO	¹³⁶ Xe	5 t	Liq. enr Xe TPC/scint.	Proposal	
NEXT-100	¹³⁶ Xe	100 kg	gas TPC	Prototype	Canfranc
AXEL	¹³⁶ Xe		gas TPC	Prototype	
KamLAND-Zen	¹³⁶ Xe	800 kg	enr Xe disolved in liq. scint.	Operating	Kamioka
LZ	¹³⁶ Xe		Dual phase Xe TPC	Construction - 2020	SURF
PANDAX-III	¹³⁶ Xe	1 ton	Dual phase Xe TPC	Construction - 2019	CJPL
XENON1T	¹³⁶ Xe	1 ton	Dual phase Xe TPC	Operating	LNGS
DARWIN	136 Xe	50 ton	Dual phase Xe TPC	Proposal	LNGS
NuDot	Various		Cherenkov and scint. detection in liq. scint.	Development	
FLARES	Various		Scint. crystals with Si photodetectors	Development	

May 28, 2020 Elliott, BB Theory Workshop

The theoretical inverse half-life is expressed as

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} M_{0\nu}^2 \langle m_{\beta\beta} \rangle^2$$

 $G_{0\nu}$: phase space factor (atomic physics)

 $M_{0\nu}$: nuclear matrix element (nuclear physics)

 $\langle m_{\beta\beta} \rangle$: effective Majorana mass (particle physics)

- Uncertainty in $G_{0\nu}$ is about 10%
- Accurate calculation of $M_{0\nu}$ is promising

How about $\langle m_{\beta\beta} \rangle$?

J.M. Yao 2111.15543 (PPNP); R. Wirth, J.M. Yao, H. Hergert, 2105.05415 (PRL)

Standard mechanism

 $0\nu\beta\beta$ decay is induced by the exchange of light Majorana neutrinos

$$\langle m_{etaeta}
angle = |\sum_i m_i U_{ei}^2|$$
 PMNS matrix absolute neutrino masses

From neutrino oscillation $\Delta m^2_{21}, |\Delta m^2_{31}|, \, \theta_{ij}, \, \delta$

The **lightest** neutrino mass, mass **hierarchy**, and **Majorana phases** are unknown

Standard mechanism

 $\langle m_{\beta\beta} \rangle$ as a function of m_{lightest} for NH and IH

Opportunities:

• establish the mass hierarchy in $0\nu\beta\beta$ decay experiments

Challenges:

 nightmare region for a positive signal confronted with future cosmological surveys

Non-standard mechanisms

Standard mechanism:

Non-standard mechanisms:

$$\frac{c/\Lambda^5}{G_F^2 m_{\nu}^{ee}/p^2} = c(\frac{3.3 \text{ TeV}}{\Lambda})^5 \frac{0.1 \text{ eV}}{m_{\nu}^{ee}}$$

C: new coupling Λ : heavy particle mass

It is interesting to investigate it in more details in well-motivated neutrino mass models

Minimal left-right symmetric model

Gauge group: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Doublets:

$$q_L = \binom{u}{d}_L$$

$$L_L = \begin{pmatrix}
u \\
l \end{pmatrix}_L$$

$$q_R = \binom{u}{d}_R$$

$$L_R = {N \choose l}_R$$

Mohapatra and Senjanovic, Phys.Rev.Lett. 44 (1980) 912, Phys.Rev.D 23 (1981) 165

Bidoublet:

$$\Phi = \left(egin{array}{c} \phi_1^0 \ \phi_1^- \end{array}
ight.$$

$$\phi_2^+$$
 ϕ_2^0 ,

$$\langle \Phi \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ v_2 e^{i\alpha} \end{pmatrix}$$

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \ \phi_1^- & \phi_2^0 \end{pmatrix}$$
 \Longrightarrow $\langle \Phi \rangle = \begin{pmatrix} v_1 & 0 \ 0 & v_2 e^{ilpha} \end{pmatrix}$ $an eta = rac{v_2}{v_1}$

Triplets:
$$\Delta_{L,R} = \begin{pmatrix} \delta_{L,R}^+/\sqrt{2} & \delta_{L,R}^{++} \\ \delta_{L,R}^0 & -\delta_{L,R}^+/\sqrt{2} \end{pmatrix}$$

$$\left(egin{array}{c} \delta_{L,R}^{++} \ -\delta_{L,R}^{+}/\sqrt{2} \end{array}
ight)$$

$$\langle \Delta_R
angle = \left(egin{array}{cc} 0 & & 0 \ v_R & & 0 \end{array}
ight)$$

$$\langle \Delta_R
angle = \left(egin{array}{cc} 0 & 0 \ v_R & 0 \end{array}
ight), \qquad \langle \Delta_L
angle = \left(egin{array}{cc} 0 & 0 \ v_L e^{i heta_L} & 0 \end{array}
ight)$$

Minimal left-right symmetric model

It provides natural origin of neutrino masses

It is the most studied BSM model for $0\nu\beta\beta$ decay

Mohapatra and Senjanovic, Phys.Rev.Lett. 44 (1980) 912, Phys.Rev.D 23 (1981) 165 Doi et al., Prog.Theor.Phys. 66 (1981) 1739 Tello et al., Phys.Rev.Lett. 106 (2011) 151801; S.-F. Ge, M. Lindner, S. Patra, 1508.07286 (JHEP); Bhupal Dev, Goswami, Mitra Phys.Rev.D 91 (2015) 113004 and many others

14

Minimal left-right symmetric model

It provides natural origin of neutrino masses

$$M_L = Y_\Delta \frac{\mu v^2}{M_\Delta^2}$$
$$= \frac{v_L}{v_R} M_N$$

It is the most studied BSM model for $0\nu\beta\beta$ decay

left-right mixing

$$\tan \zeta = \frac{M_W^2}{M_{W_R}^2} \sin(2\beta)$$

GL, M. J. Ramsey-Musolf, J. C. Vasquez, 2009.01257 (PRL)

New leading contribution

Chiral enhancement comes from the left-right mixing

mass correlation:

$$m_N = \frac{m_1}{m_3} m_{N_{\text{max}}} \quad \text{(NH)}$$

$$m_N \simeq 100 \text{ GeV} \cdot \frac{m_1}{0.01 \text{ eV}} \cdot \frac{m_{N_{\text{max}}}}{500 \text{ GeV}}$$

turning point at $m_{\nu_{\rm min}} \sim 0.01~{\rm eV}$

- R: standard mechanism
- L: non-std. mechanism

Right-handed neutrinos $m_N \lesssim 100~{\rm GeV}$ are also motivated by solving strong CP problem

Brief review of strong CP problem in the SM:

$$\mathcal{L}_{QCD} = -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \theta \frac{g_s^2}{32\pi^2}G_{\mu\nu}\tilde{G}^{\mu\nu} + \bar{q}(i\gamma^{\mu}D_{\mu} - m_q e^{i\theta_q \gamma^5})q$$

The physical parameter

Weinberg, 1975; 't Hooft, 1976

$$\bar{\theta} = \theta + \theta_q$$

With multiple flavors of quarks

$$\bar{\theta} = \theta + \arg \det M_Q$$

Severe constraint from neutron EDM measurements

$$\bar{\theta} < 10^{-10}$$

It is unnaturally small since CP violation in weak interactions $\sim \mathcal{O}(1)$

- Several solutions to address the strong CP problem, eg.
 - Peccei-Quinn symmetry and the axion: promote $\overline{\theta}$ to be a dynamic field Peccei, Quinn, 1977
 - Parity solution: the strong CP (P) problem can be solved in P-symmetric theories
 Mohapatra, Senjanovic, 1978
- In the minimal left-right symmetric model,

$$Q_L \leftrightarrow Q_R \qquad \Phi \leftrightarrow \Phi^{\dagger}$$

The Yukawa interaction $ar{Q}_L Y_Q \Phi Q_R$, so that

$$Y_Q \leftrightarrow Y_Q^{\dagger}$$

But, the quark mass matrix

$$M_Q = Y_Q \langle \Phi \rangle$$

credit by K. S. Babu

The scalar potential

$$V \supset \alpha_2 \left[\text{Tr}(\tilde{\Phi}\Phi^{\dagger}) \text{Tr}(\Delta_L \Delta_L^{\dagger}) + \text{Tr}(\tilde{\Phi}\Phi^{\dagger}) \text{Tr}(\Delta_R \Delta_R^{\dagger}) \right] + \text{h.c.}$$

P. Duka, J. Gluza, M. Zralek, Annals Phys. 280 (2000) 336

$$lpha_2$$
 is generally complex \Rightarrow $\langle \Phi \rangle$ is complex $\langle \Phi \rangle = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 e^{i lpha} \end{pmatrix}$ \Rightarrow $lpha$ is non-zero

At tree level:
$$\bar{\theta}_{\text{tree}} = \frac{m_t}{2m_b} \tan(2\beta) \sin \alpha$$

But even if $\alpha = 0$, α_2 becomes complex due to loop corrections

R. Kuchimanchi, 1408.6382 (PRD)

The scalar potential

$$V \supset \alpha_2 \left[\text{Tr}(\tilde{\Phi}\Phi^{\dagger}) \text{Tr}(\Delta_L \Delta_L^{\dagger}) + \text{Tr}(\tilde{\Phi}\Phi^{\dagger}) \text{Tr}(\Delta_R \Delta_R^{\dagger}) \right] + \text{h.c.}$$

P. Duka, J. Gluza, M. Zralek, Annals Phys. 280 (2000) 336

$$lpha_2$$
 is generally complex \Rightarrow $\langle \Phi \rangle$ is complex $\langle \Phi \rangle = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 e^{i lpha} \end{pmatrix}$ \Rightarrow $lpha$ is non-zero

At tree level:
$$\bar{\theta}_{\text{tree}} = \frac{m_t}{2m_b} \tan(2\beta) \sin \alpha$$

But even if $\alpha = 0$, α_2 becomes complex due to loop corrections

(neutrino mixing matrices are not included)

Sterile neutrinos

From the flavor basis to the mass basis

$$N_m = \begin{pmatrix} \nu_L' \\ \nu_R'^c \end{pmatrix} = U^{\dagger} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \qquad U = \begin{pmatrix} U_{\text{PMNS}} & S \\ T & U_R \end{pmatrix}$$

Majorana states: $\nu = (\nu_1, \cdots, \nu_6)^T \equiv N_m + N_m^c$

active:
$$\nu_a \equiv \nu_L' + \nu_L'^c = \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
 sterile: $\nu_s \equiv \nu_R' + \nu_R'^c = \begin{pmatrix} \nu_4 \\ \nu_5 \\ \nu_6 \end{pmatrix}$

 ν_s are sterile since they interact with W boson feebly, proportional to

•
$$S_{ei}~(i=1,2,3)$$
 for $\nu_4,~\nu_5,~\nu_6$, respectively $S=RU_R$ $R=M_DM_R^{-1}$

• the left-right mixing parameter
$$\tan\zeta = \frac{M_W^2}{M_{W_R}^2}\sin(2\beta)$$

Sterile neutrinos

How does the $0\nu\beta\beta$ decay half-life or $m_{\beta\beta}$ depend on the sterile neutrino mass m_i (i=4,5,6)?

 $0\nu\beta\beta$ decay amplitude

the mass dependence:

$$P_R \frac{q + m_i}{q^2 - m_i^2} P_R = P_R \frac{m_i}{q^2 - m_i^2} P_R$$

$$m_i^2 \ll -q^2 / \qquad \qquad m_i^2 \gg -q^2$$

$$P_R \frac{m_i}{q^2} P_R \qquad \qquad -P_R \frac{1}{m_i} P_R$$

It is more involved for $m_i^2 \sim -q^2$, difficulties come from

- low-energy constants (LECs): hadronic level
- nuclear matrix elements (NMEs): nuclear level

EFT approach to $0\nu\beta\beta$ decay

Describe contributions to $0\nu\beta\beta$ decay systematically and consistently

SMEFT, LEFT, ν SMEFT, ν LEFT, ... which EFT?

EFT approach to $0\nu\beta\beta$ decay

Describe contributions to $0\nu\beta\beta$ decay systematically and consistently

We always **keep** ν_s , and deal with RGE, LECs and NMEs

EFT approach to $0\nu\beta\beta$ decay

We construct the effective Lagrangian in the mass basis

$$\mathcal{L}_{6,\nu\text{LEFT}} = \frac{2G_F}{\sqrt{2}} \left\{ \bar{u}_L \gamma_\mu d_L \left[\bar{e}_L \gamma^\mu C_{\text{VLL}}^{(6)} \nu + \bar{e}_R \gamma^\mu C_{\text{VLR}}^{(6)} \nu \right] + \bar{u}_R \gamma_\mu d_R \, \bar{e}_R \gamma^\mu C_{\text{VRR}}^{(6)} \nu \right\}$$

$$C_{\text{VLL}}^{(6)}(m_W) = -2V_{ud} \, PU \,,$$

$$C_{\text{VLR}}^{(6)}(m_W) = V_{ud} \left(v^2 C_L^{(6)}(m_{W_R}) \right) \, P_s U^* \,,$$

$$C_L^{(6)}(m_{W_R}) = 2 \frac{\xi e^{-i\alpha}}{1 + \xi^2} \frac{C_R^{(6)}}{V_{ud}^R} \,,$$

$$C_{\text{VRR}}^{(6)}(m_W) = \left(v^2 C_R^{(6)}(m_{W_R}) \right) \, P_s U^* \,.$$

$$C_R^{(6)}(m_{W_R}) = -\frac{1}{v_R^2} V_{ud}^R \,.$$

$$P_s U^* = (T^*, U_R^*)$$

Interestingly, all contributions to $0\nu\beta\beta$ decay in the mLRSM can be described by these three Wilson coefficients

J. de Vries, GL, M. J. Ramsey-Musolf, J. C. Vasquez, 2209.03031 (JHEP)

Diagrams

Type-II:

(a):
$$P_L \frac{\not q + m_i}{g^2 - m_i^2} P_L = P_L \frac{m_i}{g^2 - m_i^2} P_L$$

(a):
$$P_L \frac{\not q + m_i}{q^2 - m_i^2} P_L = P_L \frac{m_i}{q^2 - m_i^2} P_L$$
 (b)(c)(d): $P_R \frac{\not q + m_i}{q^2 - m_i^2} P_R = P_R \frac{m_i}{q^2 - m_i^2} P_R$

Diagrams

Type-I:

(a):
$$P_L \frac{\not q + m_i}{g^2 - m_i^2} P_L = P_L \frac{m_i}{g^2 - m_i^2} P_L$$

(a):
$$P_L \frac{\not q + m_i}{q^2 - m_i^2} P_L = P_L \frac{m_i}{q^2 - m_i^2} P_L$$
 (b)(c)(d): $P_R \frac{\not q + m_i}{q^2 - m_i^2} P_R = P_R \frac{m_i}{q^2 - m_i^2} P_R$

Diagrams

Type-I: λ and η diagrams (Doi et al., 1983)

A complete EFT approach to $0\nu\beta\beta$ decay half-life of the mLRSM for any sterile neutrino mass

J. de Vries, GL, M. J. Ramsey-Musolf, J. C. Vasquez, 2209.03031 (JHEP)

Results

Type-II: sterile neutrino and active neutrino masses are related

Results

Type-I: sterile neutrino masses are varied within [10 MeV, 1 TeV]

broder parameter space compared to type-II: cancellation between two lighter sterile neutrinos

Summary

- $0\nu\beta\beta$ decay in the mLRSM is considered with particluar attention to light sterile neutrinos, which are motivated by the strong CP problem
- A general EFT approach is developed, where all contributions to $0\nu\beta\beta$ decay are described by a few Wilson coefficients
- This formalism is suitable for $0\nu\beta\beta$ decay experimental benchmarks and can be easily extended to other neutrino mass models

work in progress

Sterile neutrinos

Current constraints:

Bolton, Deppisch, Bhupal Dev, 1912.03058 (JHEP)

The coupling of ν_s to W boson is proportional to $S_{ei}~(i=1,\!2,\!3)$ for $\nu_4,\,\nu_5,\,\nu_6$, respectively

$$S = RU_R$$
 $\parallel R \parallel \lesssim \sqrt{0.1 \text{ eV}/10 \text{ MeV}} = 10^{-4}$