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Introduction

▶ Cryogenic calorimeters can be used to observe DM recoils down to
O(10) eV recoil energy.

▶ This is essential for sensitivity to low mass (mDM ≲ 1 GeV) DM.

▶ The O(10)−O(100) eV energy range coincides with the typical
threshold energy for creating a lattice defect in solids (threshold
displacement energy).



Introduction

▶ In a phonon based calorimeter, the observed recoil energy from
nuclear recoils can be ”quenched” due to formation of lattice
defects.

▶ The energy stored in the defects will not reach the detector, leading
to loss in the observed recoil energy.

▶ Close to the threshold displacement energy, the energy loss effect
can be highly nonlinear (as a function of recoil energy), affecting not
just the overall energy calibration but also the shape of the
measured recoil spectrum.

▶ For hard materials with simple crystal structure (e.g. diamond) the
sudden onset of the energy loss effect at threshold leads to a peak in
the recoil spectrum.

▶ Low energy electron recoils are not expected to form defects,
therefore the peak in the spectrum can be used to identify nuclear
recoils.
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MD simulations

▶ The MD simulations were performed with LAMMPS and PARCAS.

▶ Simulation box containing O(103) atoms with periodic boundary
conditions.

▶ Lattice at 40 mK temperature: The simulation region is divided into
an interior where the recoil happens, and a border region (6 Å)
under temperature control to account for dissipation of energy into
surrounding material.

▶ An atom in the central unit cell is given a recoil energy Er in a
random direction q̂. The system is let to evolve until the energy of
the lattice settles to a constant value. The difference between the
final and initial lattice energy is the Eloss(Er , q̂).

▶ For each direction the process is repeated for increasing recoil
energies (in 1 eV steps) to obtain the Eloss as a function of energy
and direction.

▶ We have simulated sapphire (Al2O3), silicon carbide (SiC), tungsten
carbide (WC), diamond (C), silicon (Si), germanium (Ge) and
tungsten (W).

▶ Results available in https://github.com/sebsassi/elosssim

https://github.com/sebsassi/elosssim


MD simulations setup

Al2O3 SiC WC
Unit cell config. 8× 5× 3 5× 9× 3 10× 6× 10
Atoms per unit cell 60 16 4
Time step (ps) 0.0005 0.0005 0.00025
Simulation time (ps) 4.0 4.0 3.2
Potential Vashishta et al. Gao–Weber Juslin et al.

C Si Ge
Unit cell config. 8× 8× 8 8× 8× 8 8× 8× 8
Atoms per unit cell 8 8 8
Time step (ps) Adaptive Adaptive Adaptive
Simulation time (ps) 20.0 20.0 20.0
Potential Erhart , Stillinger–Weber Modified

Tersoff–Nordlund Stillinger–Weber
W

Unit cell config. 10× 10× 10
Atoms per unit cell 2
Time step (ps) 0.00009
Simulation time (ps) 4.2
Potential Derlet–Björkas



MD simulations: results
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MD simulations: results
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▶ Solid line: average (over recoil direction) Eloss(Er ).

▶ Color scale: Probability density for Eloss(Er ).



MD simulations: results
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▶ Solid line: average (over recoil direction) Eloss(Er ).

▶ Color scale: Probability density for Eloss(Er ).
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Recoil Spectrum

▶ To see the effect of the Eloss on the measured spectrum, we sample
the assumed physical recoil spectrum as a function of recoil energy
Er and direction q̂.

▶ For each sampled recoil event we construct the ”observed” recoil
energy Eobs as

Eobs = Er − Eloss(Er , q̂) + Eσ.

▶ Eloss(Er , q̂) obtained from MD simulations, Eσ from Gaussian
distribution with energy resolution σ.

▶ We then sum over the sampled recoil directions q̂ to obtain the
recoil spectrum.

▶ As an example we present the spectrum for 1 GeV DM under
standard assumptions (SI interaction, standard halo model).

▶ (next slide) Colored line: spectrum after subtracting Eloss,
gray line: spectrum without Eloss.



Recoil Spectrum for 1 GeV DM
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Gain in reach for a diamond detector

▶ To characterize the potential gain in sensitivity to a DM signal in a
diamond detector due to the peak feature, we performed a simplified
analysis assuming a flat electron recoil spectrum, following tritium
background estimate for SuperCDMS1.

▶ Dashed line: 1 kg year experiment, solid line: 100 kg year
experiment.

▶ For a detailed analysis, a full background simulation is required.
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1R. Agnese et al., Projected Sensitivity of the SuperCDMS SNOLAB experiment,”
Phys. Rev. D, vol. 95, no. 8, p. 082002, 2017, 1610.00006.
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Excess recoil spectrum

▶ For the low energy excess rate we use a parametric fit of the form
(x = Er/eV ):

f (x) = Ae−αx + Bxβ + C

▶ We assume that the exponential part is due to electronic noise, and
the constant part due to electron/gamma recoils, each not affected
by the Eloss effect.

▶ We have checked that this choice does not have large impact on the
analysis.

▶ For the fit we use three data sets: from NUCLEUS,
SuperCDMS-CPD and EDELWEISS.

▶ Best fit parameters for these data sets
(A,B,C in units events/[eV g day]):

A α B β C

Nucleus (9.7 ± 25.7) × 109 0.77 ± 0.13 (1.58 ± 0.40) × 104 −1.44 ± 0.05 0 ± 0.19

SuperCDMS (1.41 ± 0.16) × 108 0.61 ± 0.006 (3.7 ± 4.1) × 104 −2.7 ± 0.3 0.18 ± 0.01

Edelweiss (1.46 ± 0.28) × 105 0.124 ± 0.003 (1.04 ± 0.55) × 105 −2.6 ± 0.1 0.011 ± 0.002



Excess recoil spectrum

0 100 200 300 400 500 600

1

10

100

1000

Erec [eV]

d
R
/d

E
r
[1
/(

e
V

g
d

a
y
)]

Nucleus

0 50 100 150 200 250 300
0.01

0.10

1

10

100

1000

Erec [eV]

d
R
/d

E
r
[1
/(

e
V

g
d

a
y
)]

SuperCDMS-CPD

0 100 200 300 400 500 600

0.01

0.10

1

10

100

Erec [eV]

d
R
/d

E
r
[1
/(

e
V

g
d

a
y
)]

Edelweiss

▶ We use the fit function as the underlying event rate.

▶ We sample this spectrum and apply the energy loss as above,
assuming isotropic distribution of recoils.

▶ We repeat this procedure for four detector materials: sapphire,
germanium, silicon and diamond, and for each set of best-fit
parameters.

▶ The energy loss is only applied to the power-law (blue) component
of the spectrum, as the rest are assumed not to consist of nuclear
recoils.



Excess recoil spectrum
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Solid line: after Eloss, dotted: without Eloss, dashed: exponential (noise)
background.
Blue: Nucleus fit, Purple: Edelweiss fit, Green: SuperCDMS fit.



Identifying the nuclear recoil peak

▶ To estimate the required exposure/number of events for a
statistically significant identification of the Eloss feature in diamond,
we generate simulated data sets containing the feature.

▶ We compute the log-likelihood ratio for fitting the simulated data
with the fit function f after applying the Eloss, or without Eloss.

q0 = 2 log

(
maxL(µloss)

maxL(A, α,B, β,C)

)
,

L({λ}) =
N∏
i=1

e−nexp,i ({λ})

nobs,i !
(nexp,i ({λ}))nobs,i .

Full fit Power law + const Power law only
E [gd] Nevents E [gd] Nevents E [gd] Nevents

Nucleus 0.08 700 0.11 710 0.11 710
SuperCDMS 6.3 7 900 17 2 500 3.8 440
Edelweiss 750 190 000 2.3 1 300 0.75 440

▶ With the Nucleus-parameters, the peak is visible at ∼ 30 eV on top
of the power-law function, therefore the 3σ identification of the
feature requires much less events than with SuperCDMS or
Edelweiss parameters, where the peak is partially masked by the
rising exponential.



Conclusions

▶ Defect creation removes a part of the nuclear recoil energy from
phonon based detection for recoils above O(10) eV.

▶ The amount of Eloss and the sharpness of the threshold depends on
the target material.

▶ Diamond (and Tungsten Carbide) has a sharp threshold, resulting in
a peak in the measured spectrum for nuclear recoils.

▶ The peak is not present for electron recoils, allowing for
identification based on the spectrum.

▶ Using parametric (power law) template for the low energy excess, we
estimate that the identification could be reached with as low as
O(0.1) gram day of exposure (or with ≲ 1000 events) with a
Diamond detector, assuming 1 eV resolution and detection threshold
at or below 20 eV.

▶ Detector technology is reaching O(1) eV resolution currently with
O(10) g detector mass.

▶ Low energy neutron beam calibration with time of flight
measurement could be used to observe/verify this effect.
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