

Energy loss due to defect creation in solid state detectors

Matti Heikinheimo

University of Helsinki, Finland

Based on arXiv:2112.14495, arXiv:2206.06772

With S. Sassi, K. Tuominen, K. Nordlund, N. Mirabolfathi et al

October 18, 2022

Contents

Introduction

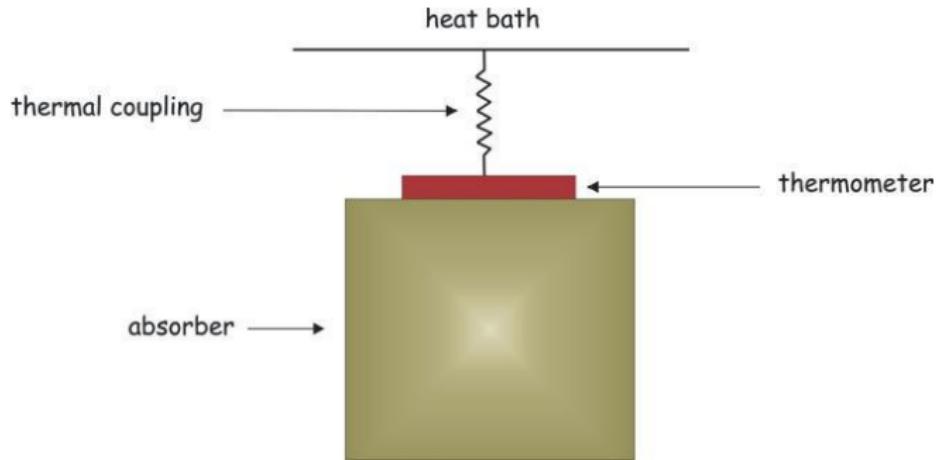
Molecular Dynamics simulations

Effect on the recoil spectrum

Low energy excess

Introduction

- ▶ Cryogenic calorimeters can be used to observe DM recoils down to $\mathcal{O}(10)$ eV recoil energy.
- ▶ This is essential for sensitivity to low mass ($m_{\text{DM}} \lesssim 1$ GeV) DM.
- ▶ The $\mathcal{O}(10) - \mathcal{O}(100)$ eV energy range coincides with the typical threshold energy for creating a lattice defect in solids (threshold displacement energy).



Introduction

- ▶ In a phonon based calorimeter, the observed recoil energy from nuclear recoils can be "quenched" due to formation of lattice defects.
- ▶ The energy stored in the defects will not reach the detector, leading to loss in the observed recoil energy.
- ▶ Close to the threshold displacement energy, the energy loss effect can be highly nonlinear (as a function of recoil energy), affecting not just the overall energy calibration but also the shape of the measured recoil spectrum.
- ▶ For hard materials with simple crystal structure (e.g. diamond) the sudden onset of the energy loss effect at threshold leads to a peak in the recoil spectrum.
- ▶ Low energy electron recoils are not expected to form defects, therefore the peak in the spectrum can be used to identify nuclear recoils.

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

Low energy excess

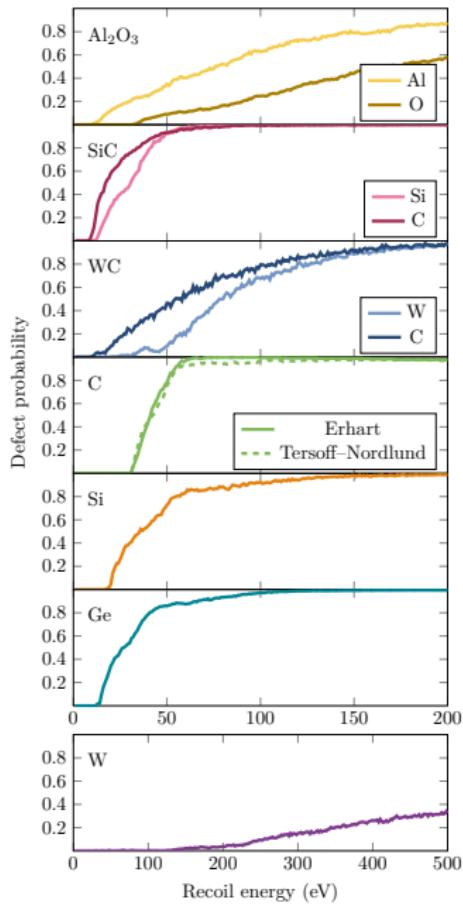
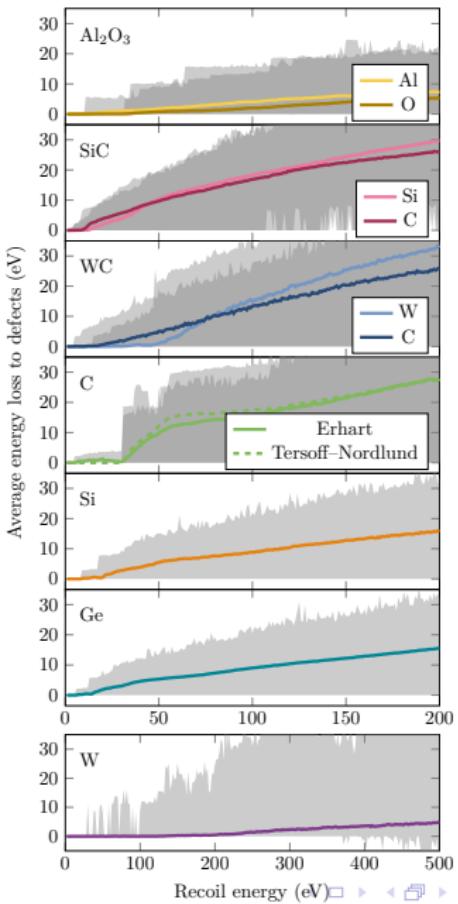
MD simulations

- ▶ The MD simulations were performed with LAMMPS and PARCAS.
- ▶ Simulation box containing $\mathcal{O}(10^3)$ atoms with periodic boundary conditions.
- ▶ Lattice at 40 mK temperature: The simulation region is divided into an interior where the recoil happens, and a border region (6 Å) under temperature control to account for dissipation of energy into surrounding material.
- ▶ An atom in the central unit cell is given a recoil energy E_r in a random direction \hat{q} . The system is let to evolve until the energy of the lattice settles to a constant value. The difference between the final and initial lattice energy is the $E_{\text{loss}}(E_r, \hat{q})$.
- ▶ For each direction the process is repeated for increasing recoil energies (in 1 eV steps) to obtain the E_{loss} as a function of energy and direction.
- ▶ We have simulated sapphire (Al_2O_3), silicon carbide (SiC), tungsten carbide (WC), diamond (C), silicon (Si), germanium (Ge) and tungsten (W).
- ▶ Results available in <https://github.com/sebsassi/elosssim>

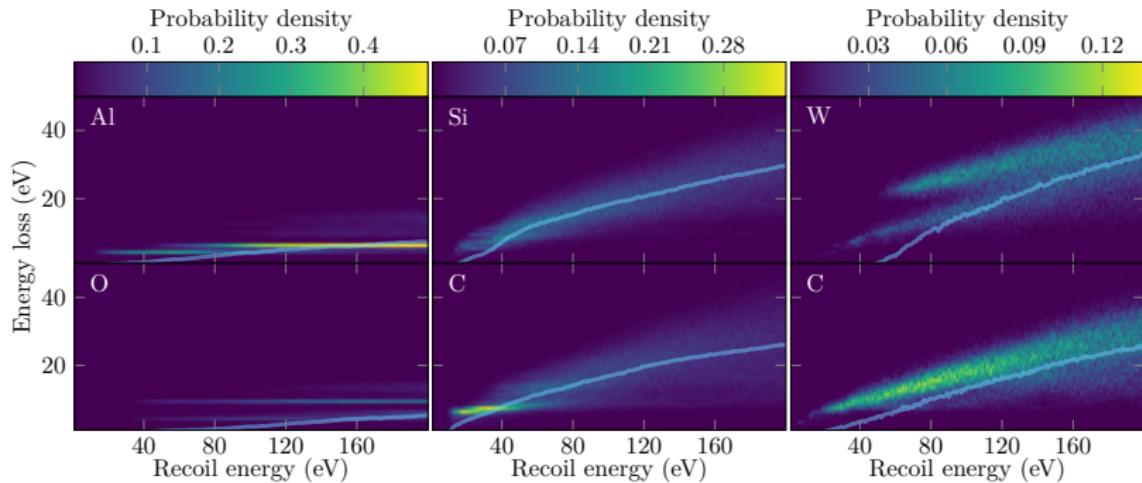
MD simulations setup

	Al ₂ O ₃	SiC	WC
Unit cell config.	$8 \times 5 \times 3$	$5 \times 9 \times 3$	$10 \times 6 \times 10$
Atoms per unit cell	60	16	4
Time step (ps)	0.0005	0.0005	0.00025
Simulation time (ps)	4.0	4.0	3.2
Potential	Vashishta et al.	Gao–Weber	Juslin et al.
	C	Si	Ge
Unit cell config.	$8 \times 8 \times 8$	$8 \times 8 \times 8$	$8 \times 8 \times 8$
Atoms per unit cell	8	8	8
Time step (ps)	Adaptive	Adaptive	Adaptive
Simulation time (ps)	20.0	20.0	20.0
Potential	Erhart , Tersoff–Nordlund	Stillinger–Weber	Modified Stillinger–Weber
	W		
Unit cell config.	$10 \times 10 \times 10$		
Atoms per unit cell	2		
Time step (ps)	0.00009		
Simulation time (ps)	4.2		
Potential	Derlet–Björkas		

MD simulations: results

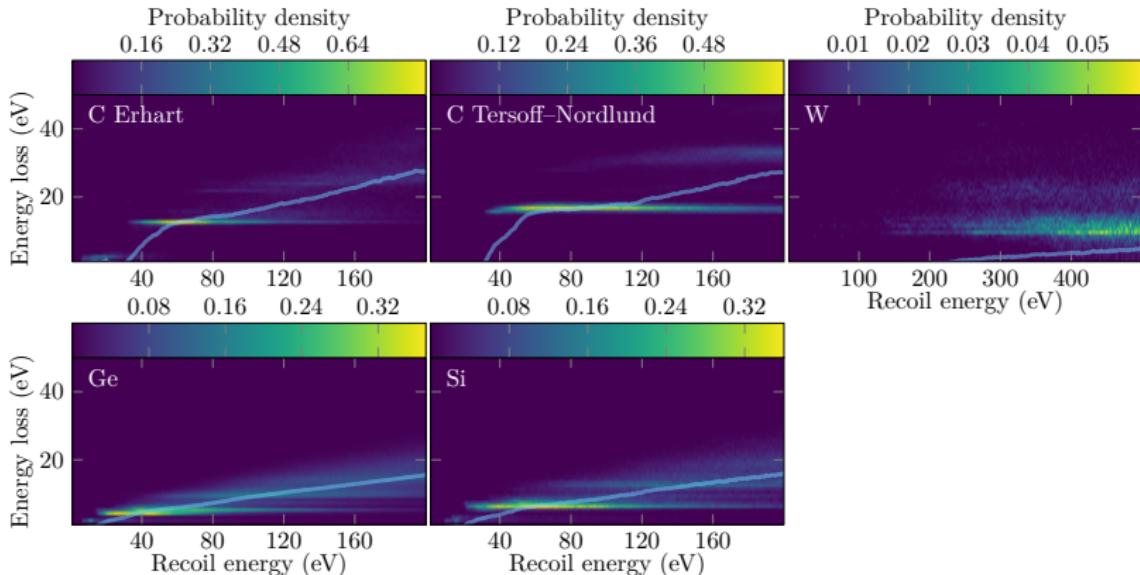


MD simulations: results



- ▶ Solid line: average (over recoil direction) $E_{\text{loss}}(E_r)$.
- ▶ Color scale: Probability density for $E_{\text{loss}}(E_r)$.

MD simulations: results



- ▶ Solid line: average (over recoil direction) $E_{\text{loss}}(E_r)$.
- ▶ Color scale: Probability density for $E_{\text{loss}}(E_r)$.

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

Low energy excess

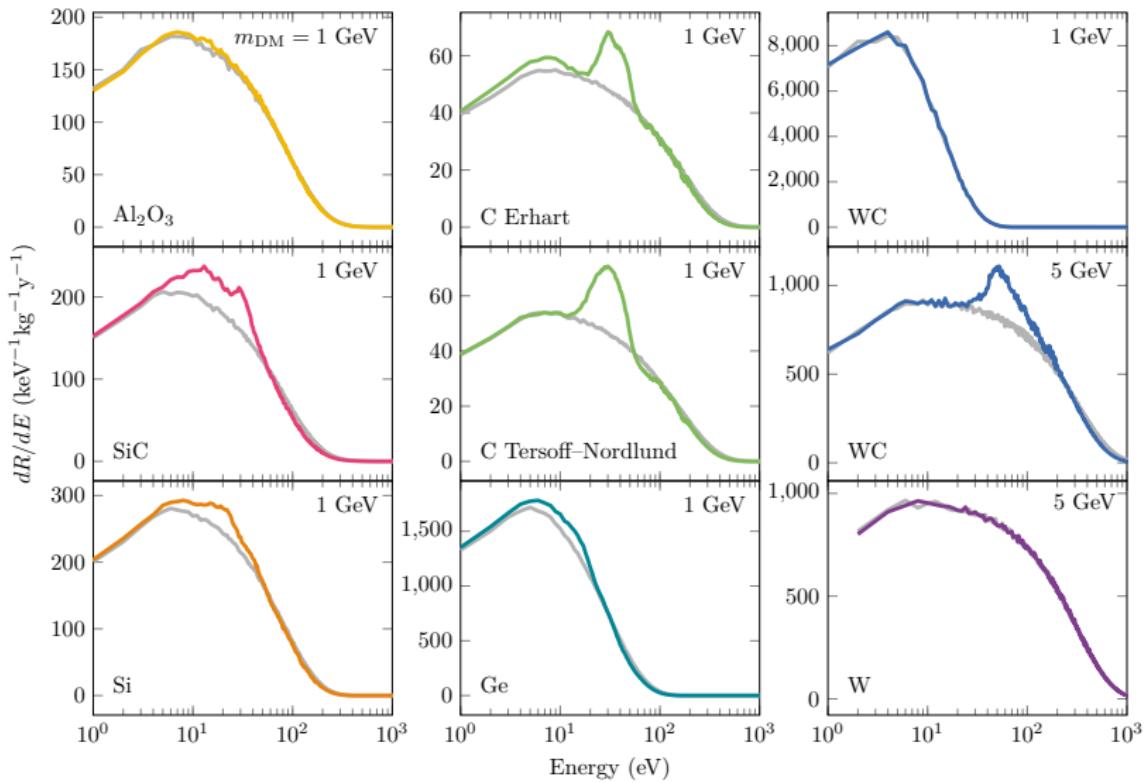
Recoil Spectrum

- ▶ To see the effect of the E_{loss} on the measured spectrum, we sample the assumed physical recoil spectrum as a function of recoil energy E_r and direction \hat{q} .
- ▶ For each sampled recoil event we construct the "observed" recoil energy E_{obs} as

$$E_{\text{obs}} = E_r - E_{\text{loss}}(E_r, \hat{q}) + E_{\sigma}.$$

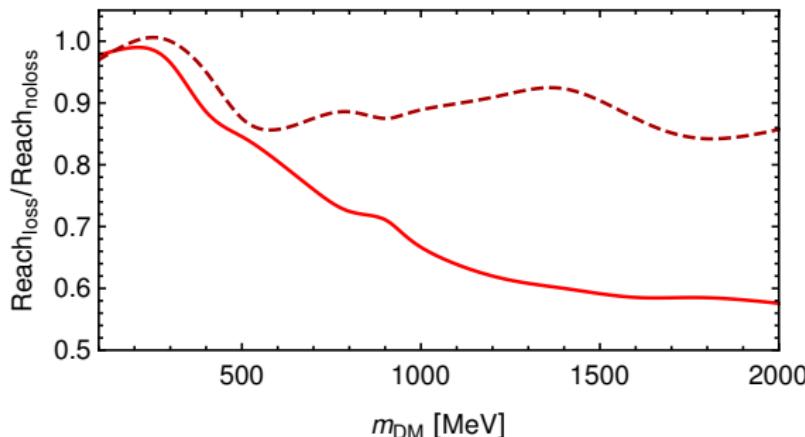
- ▶ $E_{\text{loss}}(E_r, \hat{q})$ obtained from MD simulations, E_{σ} from Gaussian distribution with energy resolution σ .
- ▶ We then sum over the sampled recoil directions \hat{q} to obtain the recoil spectrum.
- ▶ As an example we present the spectrum for 1 GeV DM under standard assumptions (SI interaction, standard halo model).
- ▶ (next slide) Colored line: spectrum after subtracting E_{loss} , gray line: spectrum without E_{loss} .

Recoil Spectrum for 1 GeV DM



Gain in reach for a diamond detector

- ▶ To characterize the potential gain in sensitivity to a DM signal in a diamond detector due to the peak feature, we performed a simplified analysis assuming a flat electron recoil spectrum, following tritium background estimate for SuperCDMS¹.
- ▶ Dashed line: 1 kg year experiment, solid line: 100 kg year experiment.
- ▶ For a detailed analysis, a full background simulation is required.



¹R. Agnese et al., Projected Sensitivity of the SuperCDMS SNOLAB experiment," Phys. Rev. D, vol. 95, no. 8, p. 082002, 2017, 1610.00006.

Contents

Introduction

Molecular Dynamics simulations

Effect on the recoil spectrum

Low energy excess

Excess recoil spectrum

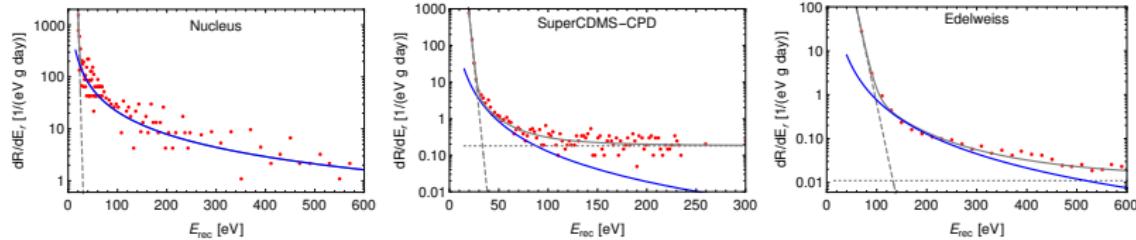
- ▶ For the low energy excess rate we use a parametric fit of the form ($x = E_r/\text{eV}$):

$$f(x) = Ae^{-\alpha x} + Bx^{\beta} + C$$

- ▶ We assume that the exponential part is due to electronic noise, and the constant part due to electron/gamma recoils, each not affected by the E_{loss} effect.
- ▶ We have checked that this choice does not have large impact on the analysis.
- ▶ For the fit we use three data sets: from NUCLEUS, SuperCDMS-CPD and EDELWEISS.
- ▶ Best fit parameters for these data sets (A, B, C in units events/[eV g day]):

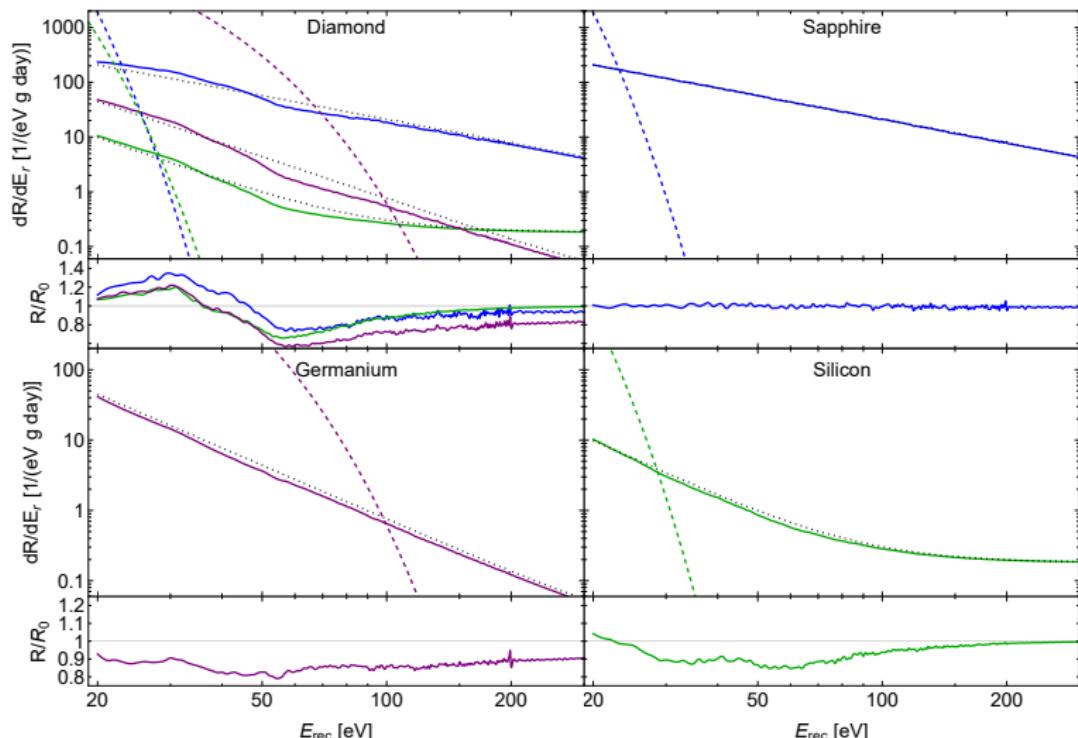
	A	α	B	β	C
Nucleus	$(9.7 \pm 25.7) \times 10^9$	0.77 ± 0.13	$(1.58 \pm 0.40) \times 10^4$	-1.44 ± 0.05	0 ± 0.19
SuperCDMS	$(1.41 \pm 0.16) \times 10^8$	0.61 ± 0.006	$(3.7 \pm 4.1) \times 10^4$	-2.7 ± 0.3	0.18 ± 0.01
Edelweiss	$(1.46 \pm 0.28) \times 10^5$	0.124 ± 0.003	$(1.04 \pm 0.55) \times 10^5$	-2.6 ± 0.1	0.011 ± 0.002

Excess recoil spectrum



- ▶ We use the fit function as the underlying event rate.
- ▶ We sample this spectrum and apply the energy loss as above, assuming isotropic distribution of recoils.
- ▶ We repeat this procedure for four detector materials: sapphire, germanium, silicon and diamond, and for each set of best-fit parameters.
- ▶ The energy loss is only applied to the power-law (blue) component of the spectrum, as the rest are assumed not to consist of nuclear recoils.

Excess recoil spectrum



Solid line: after E_{loss} , dotted: without E_{loss} , dashed: exponential (noise) background.

Blue: Nucleus fit, Purple: Edelweiss fit, Green: SuperCDMS fit.

Identifying the nuclear recoil peak

- ▶ To estimate the required exposure/number of events for a statistically significant identification of the E_{loss} feature in diamond, we generate simulated data sets containing the feature.
- ▶ We compute the log-likelihood ratio for fitting the simulated data with the fit function f after applying the E_{loss} , or without E_{loss} .

$$q_0 = 2 \log \left(\frac{\max \mathcal{L}(\mu_{\text{loss}})}{\max \mathcal{L}(A, \alpha, B, \beta, C)} \right),$$

$$\mathcal{L}(\{\lambda\}) = \prod_{i=1}^N \frac{e^{-n_{\text{exp},i}(\{\lambda\})}}{n_{\text{obs},i}!} (n_{\text{exp},i}(\{\lambda\}))^{n_{\text{obs},i}}.$$

	Full fit		Power law + const		Power law only	
	\mathcal{E} [gd]	N_{events}	\mathcal{E} [gd]	N_{events}	\mathcal{E} [gd]	N_{events}
Nucleus	0.08	700	0.11	710	0.11	710
SuperCDMS	6.3	7 900	17	2 500	3.8	440
Edelweiss	750	190 000	2.3	1 300	0.75	440

- ▶ With the Nucleus-parameters, the peak is visible at ~ 30 eV on top of the power-law function, therefore the 3σ identification of the feature requires much less events than with SuperCDMS or Edelweiss parameters, where the peak is partially masked by the rising exponential.

Conclusions

- ▶ Defect creation removes a part of the nuclear recoil energy from phonon based detection for recoils above $\mathcal{O}(10)$ eV.
- ▶ The amount of E_{loss} and the sharpness of the threshold depends on the target material.
- ▶ Diamond (and Tungsten Carbide) has a sharp threshold, resulting in a peak in the measured spectrum for nuclear recoils.
- ▶ The peak is not present for electron recoils, allowing for identification based on the spectrum.
- ▶ Using parametric (power law) template for the low energy excess, we estimate that the identification could be reached with as low as $\mathcal{O}(0.1)$ gram day of exposure (or with $\lesssim 1000$ events) with a Diamond detector, assuming 1 eV resolution and detection threshold at or below 20 eV.
- ▶ Detector technology is reaching $\mathcal{O}(1)$ eV resolution currently with $\mathcal{O}(10)$ g detector mass.
- ▶ Low energy neutron beam calibration with time of flight measurement could be used to observe/verify this effect.