李波道研究所 Application of Machine Learning in the TSUNG-DAO LEE INSTITUTE Simulation of the Fermilab Muon g-2 Experiment

Jun Kai Ng, Yimin Wan, yiming Zhu, Xingyun Huang, Kim-Siang Khaw

Muon's Magnetic Anomaly

Phase-Acceptance Systematic Correction

$d\phi$ _	dY_{RMS}	$d\phi$
\overline{dt}	dt	$\overline{dY_{RMS}}$
Time dependent beam effect		
Dependent of phase on decay		
position (Phase-acceptance)		

Fast Simulation of the Muon Storage Ring

- Muon beam & spin dynamics Analytical calculation or Beam Optics Simulations (eg: BMAD, COSY)
- Muon decay to positrons Geant4 MuonDecayWithSpin Class 2.
 - Positron transportation and Model with Machine Learning (this work)

EM Shower Development

3.

Geant4-based simulation is expensive ! High energy positron

Machine Learning Models for Positron Acceptance at Calorimeters

Training Variables

Comparison of Machine Learning Models Performances

MVA Score Distribution Signal and Background Distribution (1/N)dN/d Signal edep > 1.6GeV Background Signal otherwise Background 2500 1000 1500 2000 3000 500 0.2 -0.8 -0.6 -0.4 -0.2 Momentum [Mev] BDT Score

BDT Application