Widening the $U(1)_{L_{\mu}-L_{\tau}} Z^{\prime}$ mass range for resolving the muon $g-2$ anomaly

Yu Cheng ${ }^{1}$, Xiao-Gang He ${ }^{1,2}$ and Jin Sun ${ }^{1}$
Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China. (019072910096@sjtu.edu.cn)
${ }^{2}$ NCTS and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.

2. Research problem

The Z^{\prime} gauge boson of the model only interacts with leptons in the weak interaction basis

$$
-\tilde{g}\left(\bar{\mu} \gamma^{\mu} \mu-\bar{\tau} \gamma^{\mu} \tau+\bar{\nu}_{\mu} \gamma^{\mu} L \nu_{\mu}-\bar{\nu}_{\tau} \gamma^{\mu} L \nu_{\tau}\right) Z_{\mu}^{\prime}
$$

The interaction can contribute $(g-2)_{\mu}$ at one loop level, and also modify the cross section for the muon neutrino trident (MNT) process compared with the SM prediction,

To evade the MNT constraints, we need to analyze the interaction structure.

Therefore, it is crucial to have a mechanism to widen the Z^{\prime} mass range with larger than 300 MeV by forbidding flavor changing processes and to open a new window of searching for Z^{\prime} physics.

4. Phenomenology

In our flavor changing $U(1)$ model with triplet scalar, the contribution to $(g-2)_{\mu}$ and total amplitude $M_{\text {total }}(\tau \rightarrow \mu \nu \bar{\nu})$ are

$$
\begin{aligned}
\Delta a_{\mu}= & \frac{\tilde{g}^{2} m_{\mu}^{2}}{12 \pi^{2} m_{Z^{\prime}}^{2}}\left(\frac{\mathbf{3} \mathbf{m}_{\tau}}{\mathbf{m}_{\mu}}-\mathbf{2}\right)-\frac{\mathbf{m}_{\mu}^{2}}{\mathbf{1 6} \pi^{2}}\left[\left(\frac{\left|\mathbf{Y}_{22}^{\nu}\right|^{2}}{\mathbf{m}_{\Delta_{2}}^{2}}+\frac{\left|\mathbf{Y}_{22}^{\nu}\right|^{2}}{\mathbf{m}_{\Delta_{3}}^{2}}\right)+\frac{\left|\mathbf{Y}_{23}^{\nu}\right|^{2}}{\mathbf{m}_{\Delta_{1}}^{2}}\right], \\
M_{\text {total }}= & \left(\frac{\rho_{\tau \mu}}{2}-\frac{g^{2}}{4 m_{W}^{2}}-\frac{\tilde{g}^{2}}{m_{Z^{\prime}}^{2}}\right) \bar{\mu} \gamma_{\mu} \tau \bar{\nu}_{\tau} \gamma^{\mu} L \nu_{\mu}-\left(\frac{\rho_{\tau \mu}}{2}-\frac{g^{2}}{4 m_{W}^{2}}\right) \bar{\mu} \gamma_{\mu} \gamma_{5} \tau \bar{\nu}_{\tau} \gamma^{\mu} L \nu_{\mu}+\left[\left(\frac{\rho_{\mu \tau}}{2}-\frac{\tilde{g}^{2}}{m_{Z^{\prime}}^{2}}\right) \bar{\mu} \gamma_{\mu} \tau-\left(\frac{\rho_{\mu \tau}}{2}\right) \bar{\mu} \gamma_{\mu} \gamma_{5} \tau\right] \bar{\nu}_{\mu} \gamma^{\mu} L \nu_{\tau}, \\
& \text { with } \quad \rho_{\tau \mu}=\left(\left|Y_{22}^{\nu}\right|^{2} / m_{\Delta_{2}}^{2} \mp\left|Y_{22}^{\nu}\right|^{2} / m_{\Delta_{3}}^{2}\right) / 4, \quad \rho_{\mu \tau}=\rho_{\tau \mu}-\left|Y_{23}^{\nu}\right|^{2} / m_{\Delta_{1}}^{2} .
\end{aligned}
$$

