Widening the $U(1)_{L_{\mu}-L_{\tau}} Z'$ mass range for resolving the muon g-2 anomaly

Yu Cheng¹, Xiao-Gang He^{1,2} and Jin Sun¹

¹ Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 201210, China. (019072910096@sjtu.edu.cn)

 2 NCTS and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.

1. Research logic	2. Research problem
U(1) Z' gauge model for muon g-2?	The Z' gauge boson of the model only interacts with leptons in the weak interaction basis
	$-\tilde{g}(\bar{\mu}\gamma^{\mu}\mu-\bar{\tau}\gamma^{\mu}\tau+\bar{\nu}_{\mu}\gamma^{\mu}L\nu_{\mu}-\bar{\nu}_{\tau}\gamma^{\mu}L\nu_{\tau})Z'_{\mu},$
Neutrino trident constrain $m_{Z'} < 300 MeV$	The interaction can contribute $(g-2)_{\mu}$ at one loop level, and also modify the cross section for the muon neutrino trident (MNT) process compared with the SM prediction,
U(1) with $m_{Z'} > 300$ MeV is ruled out?	10°
New mechanism to widen Z' mass	$\nu_{}N \to \nu_{}N\mu^{+}\mu^{-}$ $\frac{\sigma(\nu_{\mu} \to \nu_{\mu}\mu^{+}\mu^{-})^{exp}}{= 0.82 \pm 0.28}$

Analyze the relevant phenomenology

3. Model building

The flavor conserving interaction can be converted into the flavor changing one by imposing a unbroken exchange symmetry $Z' \rightarrow -Z'$, $H_1 \leftrightarrow H_1$ and $H_2 \leftrightarrow H_3$ with $v_2 = v_3 = v$. The totally off-diagonal Z'-lepton interactions in the mass eigen-states

 $-\tilde{g}(\bar{\mu}\gamma^{\mu}\tau + \bar{\tau}\gamma^{\mu}\mu + \bar{\nu}_{\mu}\gamma^{\mu}L\nu_{\tau} + \bar{\nu}_{\tau}\gamma^{\mu}L\nu_{\mu})Z'_{\mu}.$

This does not contribute to MNT, $\tau \to \mu \gamma$, 3μ . However, the Z' interaction will induce $\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau} + \mu \bar{\nu}_{\tau} \nu_{\mu}$, which provides a very stringent constraint to exclude this model. To staisfy the constraint, we propose a mechanism by introducing type-II seesaw mechanism triplet scalar Δ , which results in the Yukawa coupling

To evade the MNT constraints, we need to analyze the interaction structure.

Reduce MNT $\implies \mu - \tau$ mixing $\implies \tau \rightarrow \mu\gamma, 3\mu$ Excluded Forbid both diagonal and off-diagonal interactions Fully off-diagonal interactions $\implies \tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$ New interaction to reduce the constraints

Therefore, it is crucial to have a mechanism to widen the Z' mass range with larger than 300 MeV by forbidding flavor changing processes and to open a new window of searching for Z' physics.

4. Phenomenology

In our flavor changing U(1) model with triplet scalar, the contribution to $(g-2)_{\mu}$ and total amplitude $M_{total}(\tau \to \mu \nu \bar{\nu})$ are

$$\begin{split} \Delta a_{\mu} &= \frac{\tilde{g}^2 m_{\mu}^2}{12\pi^2 m_{Z'}^2} \left(\frac{\mathbf{3}\mathbf{m}_{\tau}}{\mathbf{m}_{\mu}} - \mathbf{2} \right) - \frac{\mathbf{m}_{\mu}^2}{\mathbf{16}\pi^2} \left[\left(\frac{|\mathbf{Y}_{22}^{\nu}|^2}{\mathbf{m}_{\Delta_2}^2} + \frac{|\mathbf{Y}_{22}^{\nu}|^2}{\mathbf{m}_{\Delta_3}^2} \right) + \frac{|\mathbf{Y}_{23}^{\nu}|^2}{\mathbf{m}_{\Delta_1}^2} \right], \\ M_{total} &= \left(\frac{\rho_{\tau\mu}}{2} - \frac{g^2}{4m_W^2} - \frac{\tilde{g}^2}{m_{Z'}^2} \right) \bar{\mu} \gamma_{\mu} \tau \bar{\nu}_{\tau} \gamma^{\mu} L \nu_{\mu} - \left(\frac{\rho_{\tau\mu}}{2} - \frac{g^2}{4m_W^2} \right) \bar{\mu} \gamma_{\mu} \gamma_5 \tau \bar{\nu}_{\tau} \gamma^{\mu} L \nu_{\mu} + \left[\left(\frac{\rho_{\mu\tau}}{2} - \frac{\tilde{g}^2}{m_{Z'}^2} \right) \bar{\mu} \gamma_{\mu} \tau - \left(\frac{\rho_{\mu\tau}}{2} \right) \bar{\mu} \gamma_{\mu} \gamma_5 \tau \right] \bar{\nu}_{\mu} \gamma^{\mu} L \nu_{\tau} , \\ &\text{with} \quad \rho_{\tau\mu} = \left(|Y_{22}^{\nu}|^2 / m_{\Delta_2}^2 \mp |Y_{22}^{\nu}|^2 / m_{\Delta_3}^2 \right) / 4 , \quad \rho_{\mu\tau} = \rho_{\tau\mu} - |Y_{23}^{\nu}|^2 / m_{\Delta_1}^2 . \end{split}$$

