Deep Learning Based Tracking Reconstruction and Magnetic ID. 42 **Field Measurement Research in the Muon g-2 Experiment** 之江实验室 Bingzhi Li, Zhejiang Lab ZHEJIANG LAB Shuotian Lü, Shanghai Jiao Tong University

SHANGHAI JIAO TONG UNIVERSITY

Solving a Long Pursuing Mystery

Muon g-2 Experiment

	Fermilab	J-PARC g-2/EDM	HIAF(Prospect)
POT per pulse	~10 ¹²	~10 ¹⁵	~10 ¹⁴
Pulse width	120ns	100ns	~200-300ns
Frequency	12Hz	25Hz	>5Hz
Proton beam momentum	8GeV/c	3GeV/c	~10GeV/c
Muon Momentum	3.094GeV/c	300MeV/c	~3.5GeV
Number of detected e ⁺	$1.6 \times 10^{11} (1x)$	$5.7 \times 10^{11} (3.5x)$	$\sim 49 \times 10^{11} (30 \mathrm{x})$
Statistical uncertainty	100ppb	450ppb	~18ppb
Systematic uncertainty	100ppb	<70ppb	<70ppb

Magnetic Field Measurement

 \succ Muon g-2 experiment requires precision **B** field measurement > Pulsed NMR probes measure the **B** field ($\omega_p = \frac{2\mu_p}{\kappa} |\mathbf{B}|$)

 $|B| \approx B_y = A_0 + \sum_{n=1}^{\infty} \left(\frac{r}{r_0}\right)^n [A_n \cos(n\theta) + B_n \sin(n\theta)]$

- > Trolley probes map the field / Fixed probes track the field drift
- The calibration between trolley/fixed measurements are not constant
- > Imperfect field tracking lead a sync-offset between field mapping

- - Higher intensity experiment producing more data, challenging in processing data with high speed and efficiency
 - Machine learning (ML) techniques can be of big help, need to fully explore more and further

Tracking Reconstruction

 \geq 2 tracker stations \times 8 modules \times 2 planes \times 2 layers \times 32 straw tube (FNAL) 40 radial modules \times 16 sensors \times 2 blocks \times 512 strips (from J-PARC TDR)

Time (h)

Scientific Reports volume 12, Article number: 12858 (2022)

$$\operatorname{Loss}_{\nabla \cdot B} := \frac{1}{N_f} \sum_{\substack{i=1\\N_f}} |\nabla \cdot B(r_d^i)|^2$$
$$\operatorname{Loss}_{\nabla \times B} := \frac{1}{N_f} \sum_{i=1}^{i} \|\nabla \times B(r_d^i)\|^2$$

- PINN (physics informed neural network): data + physical laws
- Embed the Maxwell's equation into the loss via automatic differentiation $\nabla \cdot B = 0$ $\nabla \times B = 0$
- \succ First repeat the prediction model in simulation data:
 - Using 8 coils (radius=1) to generate the magnetic field
 - Predict the field in a box $(2 \times 2 \times 2)$ region using the surface samples

$$\begin{cases} B_x = C \frac{xz}{2\alpha^2 \rho^2 \beta} \left[(a^2 + r^2) E(k^2) - \alpha^2 K(k^2) \right] \\ B_y = \frac{y}{x} B_x \qquad \qquad k^2 = \frac{4ar \sin \theta}{a^2 + r^2 + 2ar \sin \theta} \\ B_z = C \frac{1}{2\alpha^2 \beta} \left[(a^2 - r^2) E(k^2) + \alpha^2 K(k^2) \right] \end{cases}$$

Field at (x, y, z) generated by a current loop with radius *a*

 \succ K, E are the elliptic integrals

 $ho^2 \equiv x^2 + y^2$, $lpha^2 \equiv a^2 + r^2 - 2a
ho$ $\beta^2 \equiv a^2 + r^2 + 2a\rho$ $z = r\cos\theta$ $r \equiv \sqrt{x^2 + y^2 + z^2}$

- 2.50

- 1.75

Fermilab Muon g-2 tracking reconstruction workflow

- *FNAL Muon g-2 internal note:266
- Tracking is >50% of total recon time
- Low efficiency after quality cut (8% in Run1, ~28% Run2/3)*

- Preliminary study using deep learning techniques (RNN+LTSM) were tried and tested with Fermilab g-2 experiment setup [2]
- Test in pseudo-data and synthetic datasets, and the results were promising

Mean	6.5×10-4	4.7×10-4	1.7 ×	10-2					1.
ΔD	contor								
	center	1unit shift	2units	shift		H		4	
-1.0	0-0.75-0.50-0.25 0.00 x	0.25 0.50 0.75 1.00		-1.00-0.7	5-0.50-0	.25 0.00 0. x	.25 0.5	50 0.1	75
-1.00 +			- 1.00 - 1.0	o					
-0.75 -			- 1.75 –0.7	5 -					
			-0.5	0 -					
-0.50 -									

Summary & Further Plan (Magnetic Field):

- The PINN-based model predicts the magnetic field with a small data size
- The model shows enormous potential in field tracking problems
- \triangleright Next to set the coils the same geometry as muon g-2 experiment
- \blacktriangleright Need comparison with the multipole moment fitting method

[1] The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking [2] https://github.com/ManolisKar/ML_tracking

Summary & Further Plan (Tracking):

- > The LSTM-based model shows an enormous potential in tracks finding
- The RNN architecture cannot handle the data parallelly and still limited by speed
- Plan to develop GNN-based architecture and expect >10 times faster
- \triangleright Plan to explore the model application/
 - in J-PARC muon g-2 experiment

