
Primordial Black Hole Dark Matter

PPTA 
IPTA 
FAST 
SKA

LISA 
Taiji 

TianQin

LIGO 
Virgo 

KAGRAQing-Guo Huang

Institute of theoretical physics, CAS

Based on Phys.Rev.Lett. 120(2018)191102 done with S. Wang, Y.F. Wang and T. Li

Phys.Rev.D 101(2020)063019 done with Y.F. Wang, T. Li and S. Liao


ApJ 864(2018)61 and arXiv:1904.02396 done with Z.C. Chen

ApJ 871(2019)97 done with Z.C. Chen and F. Huang


Phys.Rev.D 100(2019)081301(R) & 1011(2020)043019 & arXiv:1910.12239 done with Z.C. Chen and C. Yuan



Planck	18	(CMB	only):	Ωch2 =0.1200±0.0012	(100σ)
Planck	18+BAO:	Ωch2 =0.11933±0.00091	(131σ)

The nature of 

Dark Matter

Primordial Black Hole
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Density Perturbation

The merger rate distribution, in 
unit of Gpc−3yr−1

1. Decouple from the expansion of 
the background


2. Torques by all other PBHs and 
density perturbations provides 
an initial angular momentum


3. Coalescence due to GW 
radiations
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Merger rate distribution

Chen & QGH, ApJ (2018)
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LIGO O1

Chen, Huang & QGH, ApJ (2019)





Kepler

HSC

Chen & QGH, arXiv:1904.02396



LIGO O1+O2
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Assume that all of 10 GW events from coalescences 
of binary black holes detected by LIGO are PBHs.


The mass function of PBHs 

Chen & QGH, arXiv:1904.02396



Astro-BH

PBH
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Primordial-Black-Hole	
binaries

Astrophysical-Black-Hole
binaries
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PBHs in the center of galaxies



Matter distribution in the center of galaxies
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Massive Black Hole Population



SGWB from PBHs in the galactic massive BHs

(mPBH = 1M⊙, fPBH = 10−8)

Y.F. Wang, QGH, T. Li and S. Liao, Phys.Rev.D (2020)



Enhancement due to GW dissipation



The projected constraints on PBH abundance in DM



Scalar induced GWs (SIGW)
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Primordial Black Hole

Quadrupole

Gravitational Waves

Density perturbation



S = S(2)(�2) + S(3)(�3) + S(4)(�4)

⌦GW =
1

⇢c
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d ln f
⇠ hS(2)S(2)i+ hS(3)S(3)i+ hS(2)S(4)i

Yuan, Chen & QGH, Phys.Rev.D (R) (2019)



2nd

2nd+3rd

2k* 3k*
Yuan, Chen & QGH, Phys.Rev.D (R) (2019)



Yuan, Chen & QGH, Phys.Rev.D (R) (2019)



Current constraints from NANOGrav

Pϕ(k) = Af*δ( f − f*)
mpbh

M⊙
≃ 2.3 × 1018 ( H0

f* )
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Chen, Yuan & QGH, arXiv:1910.12239



fpbh ≃ 1.9 × 107 (ζ2
c /A − 1) e− ζ2c

2A (
mpbh

M⊙ )
−1/2

Chen, Yuan & QGH, arXiv:1910.12239



The superposition of GWs from various 
sources in the Universe forms a 

stochastic GW background.



ΩGW( f ) =
1
ρc

d log ρGW
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Primordial Gravitational WavesCompact Binary Coalescences

Scale-invariant Energy

GW spectral energy density spectral density

slope

……



P�(k) vanishes when k < k-

P�(k) vanishes

when k > k+

k+ - k- denotes the width of P�(k)

k- k+k*
k

P�(k)

Δ =
k+ − k−

k*

Power spectrum of scalar curvature perturbation is enhanced at small scales.

Dimensionless width parameter

For a narrow power spectrum

Δ ≪ 1
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In the infrared limit,

ΩGW(k → 0) ∝ k3

wide power spectrum 
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Yuan, Chen & QGH, Phys.Rev.D (2020)



ΩGW( f ) =
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Primordial Gravitational WavesCompact Binary Coalescences

Scale-invariant Energy

GW spectral energy density spectral density

slope

nGW = 3 or 2 − 2/ln( fc/f )

Scalar induced GWs 

inevitably accompanying the 

formation of PBHs

Yuan, Chen & QGH, Phys.Rev.D (2020)



nGW=3

numerical result
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The postulation of 


Primordial Black Hole Dark Matter 


is testable

for


the next generation GW detectors.
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Thank You!


