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The nature of

Dark Matter

Planck 18 (CMB only): Q.h? =0.1200+0.0012 (1000)
Planck 18+BAO: Q.h? =0.11933+0.00091 (1310)
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Merger rate distribution

Density Perturbation

The merger rate distribution, in

unit of Gpcyr—1
pc "y 1. Decouple from the expansion of

R (1) = Ri; A2 the background
) AN 3 2. Torques by all other PBHs and
Ri; ~ 3.9-10° x 0 <t0> fAfP 4 oeg) ™™ density perturbations provides
[ P(m;) P(m;) P(m;)  P(m,) an initial angular momentum
e my | my 3. Coalescence due to GW
s 36 radiations

Chen & QGH, ApJ (2018)
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Assume that all of 10 GW events from coalescences -
of binary black holes detected by LIGO are PBHSs.
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PBHs in the center of galaxies




Matter distribution in the center of galaxies
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Massive Black Hole Population
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SGWB from PBHs in the galactic massive BHs
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Enhancement due to GW dissipation
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The projected constraints on PBH abundance in DM
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Scalar induced GWs (SIGW)

Primordial Black Hole

Density perturbation

ds? = a” {—(1 + 2¢)dn? + [(1 — 2¢0)0;; + %] dxidazj}
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Current constraints from NANOGrav
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Characteristic Strain
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slope
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GW spectral energy density spectral density

Qow(f) =




Power spectrum of scalar curvature perturbation is enhanced at small scales.

Dimensionless width parameter

k, — k_
ks

A =

For a narrow power spectrum

Akl

P (k)
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—— numerical result
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The postulation of
Primordial Black Hole Dark Matter

IS testable
for
the next generation GW detectors.
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