Ultra-high frequency gravitational waves from inflaton decay

Anna Tokareva

Hangzhou Institute for Advanced Study

Based on PLB 2211.02070 (A. Koshelev, A. Starobinsky, AT) and ongoing work

Realization of inflation and reheating

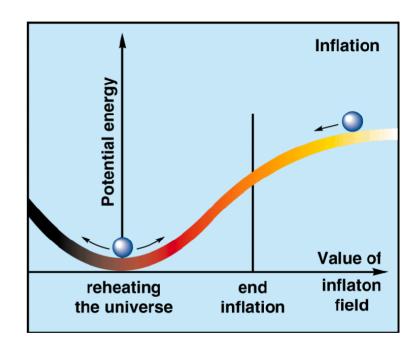
$$p = -\rho. \qquad a(t) = \mathrm{const} \cdot \mathrm{e}^{H_{vac}\,t}$$

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right)$$

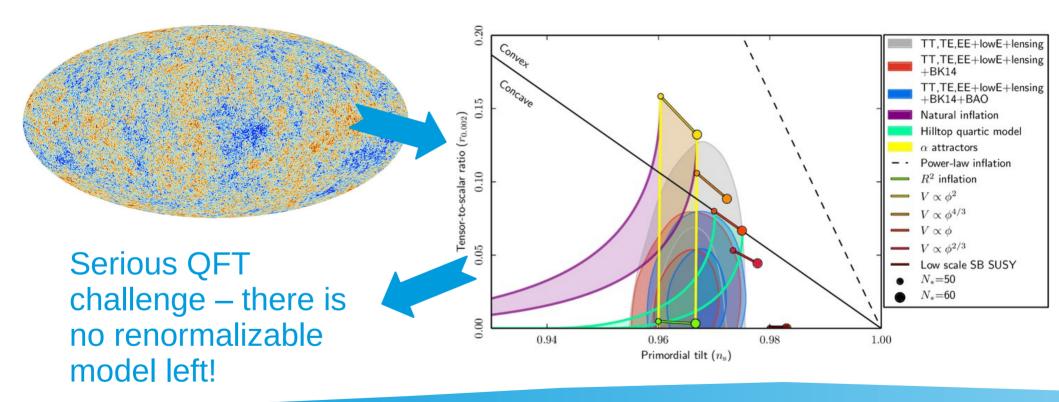
$$\rho = \frac{1}{2} \dot{\phi}^2 + V(\phi), \qquad \text{Slowly rolling scalar field}$$

$$p = \frac{1}{2} \dot{\phi}^2 - V(\phi). \qquad \text{is a solution!}$$

Oscillations after inflation decay to the SM particles \Longrightarrow reheating of the Universe



Planck Constraints on the Potential



Inflation can be described by Effective Field Theory valid until the scale $\Lambda < M_P$ and $\Lambda > H_{inf}$

EFT of inflaton and gravity

Expansion around the flat space:

$$\begin{split} S &= \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) \\ S_{NR} &= \int d^4x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right) \\ S_{int}^{SM} &= \int d^4x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^\dagger H + \frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^\dagger D^\nu H \right) \end{split}$$

Leading contribution to graviton production after inflation?

EFT of inflaton and gravity

Expansion around the flat space:

$$S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) \right) \qquad \text{Decay to gravitons} \qquad \Gamma = \frac{m^7}{32\pi M_p^4 \Lambda_1^2}$$

$$S_{NR} = \int d^4x \sqrt{-g} \left(\frac{\phi}{\Lambda_1} R_{\mu\nu\lambda\rho} R^{\mu\nu\lambda\rho} + \frac{\phi}{\Lambda_2} R_{\mu\nu} R^{\mu\nu} + \frac{\phi}{\Lambda_3} R^2 + \frac{1}{\Lambda_4^2} G_{\mu\nu} \partial^\mu \phi \partial^\nu \phi \right)$$

$$S_{int}^{SM} = \int d^4x \sqrt{-g} \left(-|D_\mu H|^2 + \mu \phi H^\dagger H + \frac{1}{\Lambda_5^2} G_{\mu\nu} D^\mu H^\dagger D^\nu H \right)$$
 reheating bremsstrahlung

Other operators are suppressed by higher powers of Λ s

Inflaton decay to gravitons: selected results

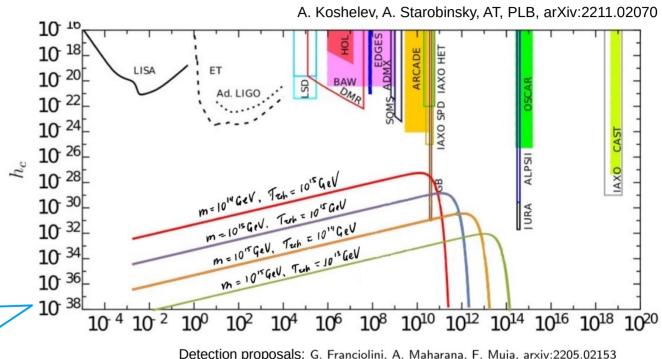
Planck-suppressed operators do matter for low T_{reh}!

$$T_{reh} \lesssim rac{m^{7/2}}{M_P^{3/2}\Lambda_1}$$
 Overproduction of dark radiation

$$m = 10^{13} \text{ GeV}$$
 $T_{reh}^{min} = 1 \text{ GeV}$
 $m = 10^{16} \text{ GeV}$ $T_{reh}^{min} = 10^{10} \text{ GeV}$

Larger inflaton mass more HF GWs

$$\Lambda_1=10^8$$
 GeV



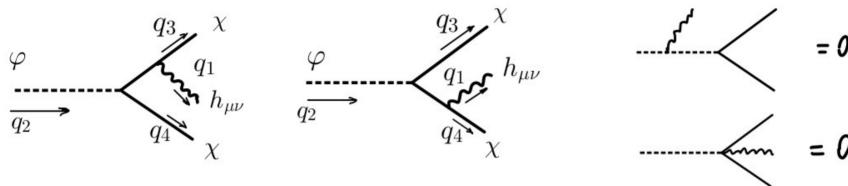
$$\Delta N_{eff} \lesssim 0.2$$

12/14/2023
$$\Delta N_{eff} = 2.85 \frac{\rho_{GW}}{\rho_{SM}} = 2.85 \frac{\Gamma_{GW}}{\Gamma_{H}}$$

$$\frac{d\Omega_{GW}}{d\log E} = \frac{16E^4}{M^4} \frac{\rho_{reh}}{\rho_0} \frac{\Gamma_{GW}}{H_{reh}} \frac{1}{\gamma(E)} e^{-\gamma(E)}$$

$$\gamma(E) = \left(\left(\frac{g_{reh}}{g_0} \right)^{1/3} \frac{T_{reh}}{T_0} \frac{2E}{M} \right)^{3/2}$$

Graviton bremsstrahlung during reheating



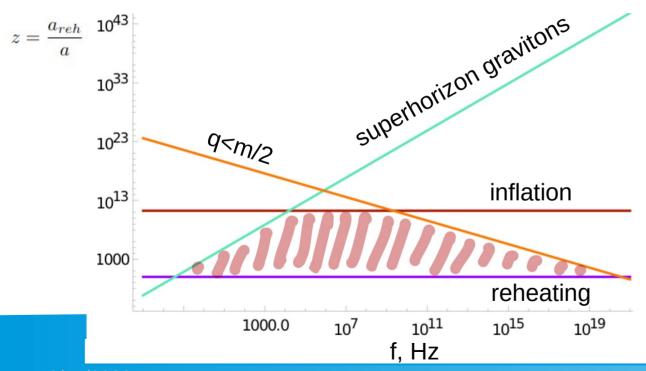
$$G(k) = \frac{\partial \Gamma}{\partial k} = A \frac{(m-2k)^2}{m \, k}, \ A = \frac{1}{64 \pi^3} \frac{\mu^2}{3 M_p^2} \left(1 + \frac{m^4}{\Lambda_5^4} \right)$$

Not sensitive to inflatongraviton coupling

$$\frac{d\rho_{GW}}{dk} = \int \frac{kdN}{a_0^3} = \int dt \frac{kn_\phi(t)a(t)^3}{a_0^3} G(k\frac{a_0}{a(t)}) \qquad \qquad n_\phi = \frac{\rho_{reh}}{M} \left(\frac{a_{reh}}{a}\right)^3 e^{-\Gamma_{tot}t}$$

Limits on GW frequencies

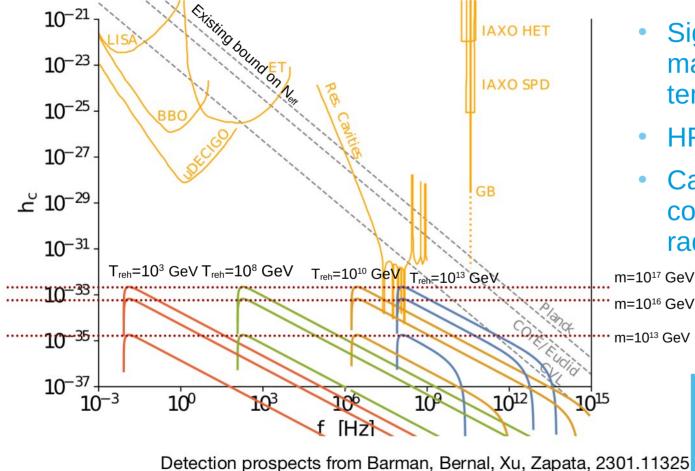
$$\frac{d\Omega_{GW}}{d\log k} = \frac{k^2}{M\,H_{reh}} \frac{a_{reh}^2}{a_0^2} \frac{\rho_{reh}}{\rho_0} \int_{z_{min}}^{z_{max}} dz \, G(kz \frac{a_0}{a_{reh}}) z^{-3/2} e^{-2z^{-3/2}/3}$$



Kinematic bound – comoving momentum is less than m/2

- Causality requirement no superhorizon gravitons!
- Gravitons were emitted between inflation and reheating

Gravitational waves from bremsstrahlung: ∧₅=M_P

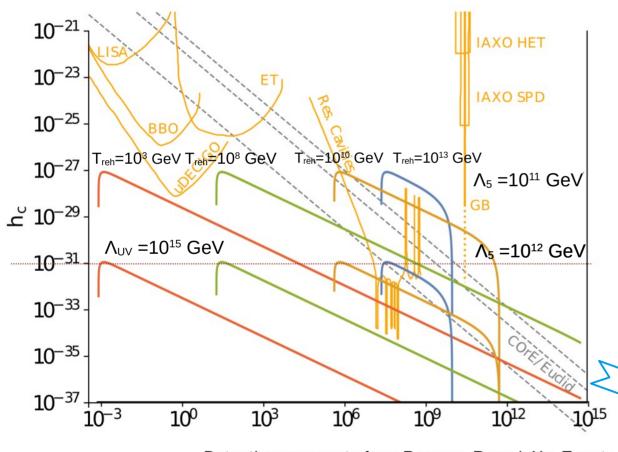


- Signals for different inflaton masses and reheating temperatures
- HF GW domain
- Can be also probed as contribution to the dark radiation

$$h_c(f) = \sqrt{\frac{3H_0^2}{\pi f^2}} \frac{d\Omega_{GW}}{df}.$$

Results coincide with 2301.11325, except the IR cutoff

What if the quantum gravity scale is lower?



- GW signals for inflaton mass m=10¹³ GeV
- The shape does not change, the amplitude is becoming higher
- The unitarity breaking scale is $\Lambda_{UV} = (\Lambda_5 M_P)^{1/2} > m$
- From $\Lambda_{UV}=10^{15}$ GeV tension with N_{eff} bound

Reheating-dependend bounds on quantum gravity scale!

Conclusions

- High frequency gravitational waves can be sensitive to the quantum gravity effects
- Perturbative decay of inflation to gravitons can be non-negligible for low reheating temperatures → high frequency GWs
- Graviton bremsstrahlung during reheating can provide a sizable HF GW signal → constraints on EFT
- Reheating-dependent constraints on quantum gravity scale from gravitational waves!

Thank you!