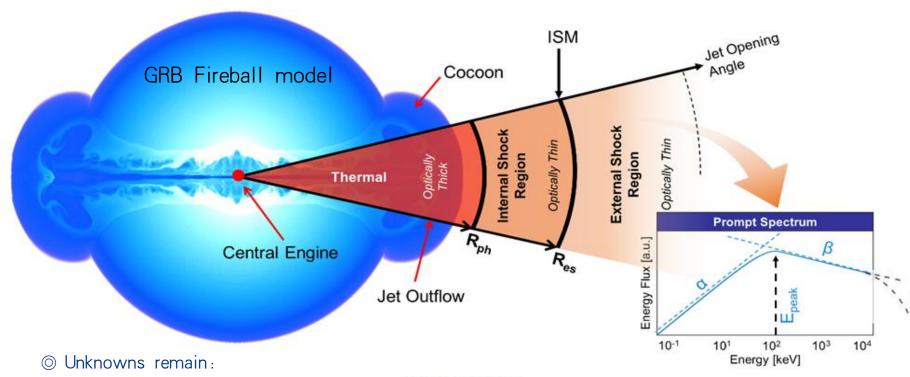
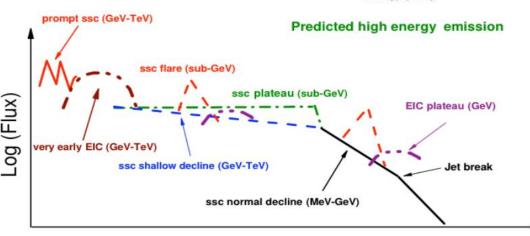

Polarimetry of GRB prompt emission with POLAR and POLAR-2

Hancheng Li (李汉成) on behalf of Later Time

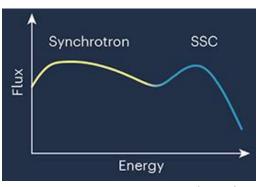
POLAR & POLAR-2 collaborations


14/12/2023, Texas in Shanghai


1. Why polarimetry for GRB High-energy polarimetry GRB polarimetry with POLAR GRB polarimetry with POLAR-2er Time 5. Summary and outlook

▶1. Why polarimetry for GRB

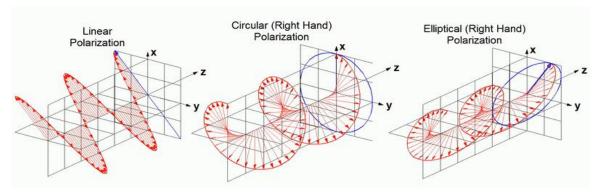
- \bigcirc composition of source: e^{\pm} ? $e^{-}p$?
- emission mechanism: dominant process v.s. time
- O geometry of source:
 - jet structure ? magnetic field ?
- O
- Polarization → a new probe

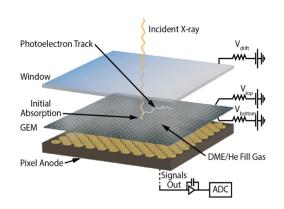

Prompt

o empirical Band function (Band et al. 1993)

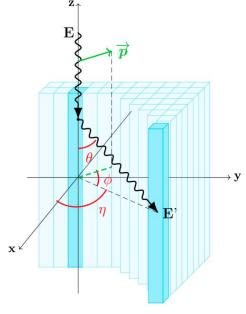
F(E)

$$=A \begin{cases} \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} e^{\left[-\frac{E}{E_0}\right]}, \\ E \leq (\alpha - \beta) E_0, \\ \left(\frac{E}{100 \text{ keV}}\right)^{\beta} e^{(\beta - \alpha)} \left(\frac{(\alpha - \beta) E_0}{100 \text{ keV}}\right)^{\alpha - \beta}, \\ E > (\alpha - \beta) E_0, \end{cases}$$

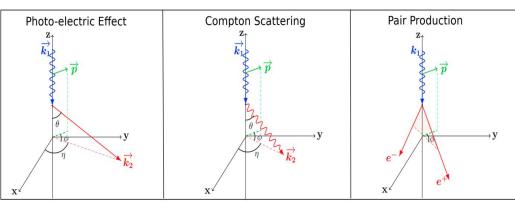

- Multi-wavelength SED:
- synchrotron (mainly electron);
- inverse—Compton: SSC (synchrotron self—Compton) and/or EIC (external inverse—Compton)

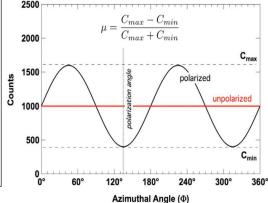

Nature 575, 448-449 (2019)

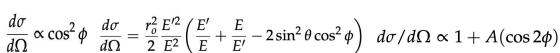
2. High-energy polarimetry: what and how

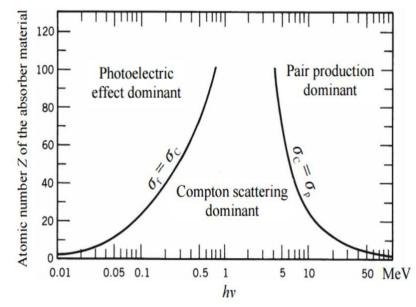


$$\begin{aligned} E_x &= E_{0x} \cos(\omega t - kz + \varphi_x) \\ E_y &= E_{0y} \cos(\omega t - kz + \varphi_y) \end{aligned} \qquad \left(\frac{E_x}{E_{0x}}\right)^2 + \left(\frac{E_y}{E_{0y}}\right)^2 - 2\left(\frac{E_x}{E_{0x}}\right)\left(\frac{E_y}{E_{0y}}\right) \cos\varphi = \sin^2\varphi \end{aligned}$$

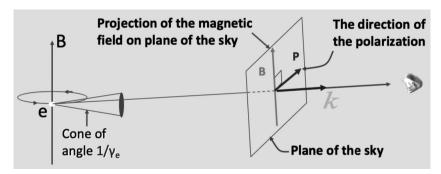

X-ray (2-10 keV)
Photo-electric in a gas chamber


@ IXPE collab.



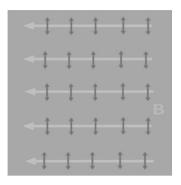

Gamma-ray (50-500 keV)
Compton scattering in plastics
@ POLAR collab

\odot Linear polarization (when $\phi = n \pi$, $n \in \mathbb{Z}_0^+$)


Glenn F. Knoll 2015

3/20

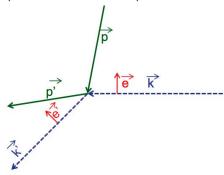
2. High—energy polarimetry: link to physical process


Synchrotron polarization

 \bigcirc resulted $m{e}$ is \perp $m{B}$ projected on sky for a distant observer

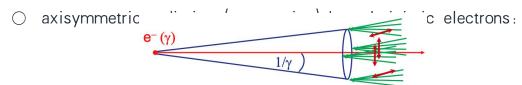
O Rybicki & Lightman 1979:

- -- a power-law spectrum of electro $N_e(\gamma) \propto \gamma^{-p}$
- -- produce a power-law EM spectr $F_{
 u} \propto
 u^{-lpha} \quad lpha = (p-1)/2)$
- -- maximal polarization (ordered B) $\Pi_{\text{powerlaw}} = \frac{p+1}{p+7/3} = \frac{\alpha+1}{\alpha+5/3}$



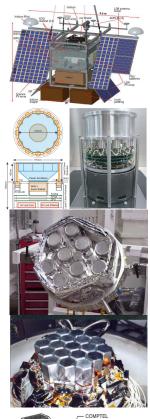
Ordered **B**

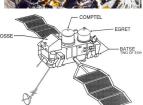
Tangled **B**


Compton polarization

- \bigcirc in a Thomson regime: $\epsilon' \approx \epsilon \Rightarrow \frac{d\sigma}{d\Omega} = 0 \left(at \ \vec{e} \cdot \vec{e'} = 0\right)$
- \bigcirc resulted **e'** is preferred in the plane that \bot original **e**

O an anisotropic radiation by non-relativistic electrons:


-- will introduce a polarization that is \perp the bulk original \mathbf{e}



- -- unpolarized external seds (EC) -> unpolarized output
- -- polarized seds (SSC) -> reduced polarization $^{\sim}1/2$ of the target (synchrotron) photon polarization $^{\sim}1/2$

2. High—energy polarimetry: early measurements on GRBs.

- > Early measurements performed by non-dedicated instruments;
- ➤ A wide range of PD distribution, covering 0-100 %;
- > All suffer from large systematics and/or poor statistics. (M. McConnell et al., 2017)

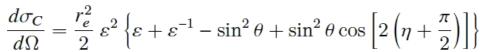
GRB	Instrument/SAT	PD(%)	E-range(keV)	Remarks
160530A	COSI	< 46%	200-5000	Low statistics
110721A	GAP/IKAROS	84 ⁺¹⁶ ₋₂₈	70-300	Constant Pol. Angle
110301A	GAP/IKAROS	70±22	70-300	Constant Pol. Angle
100826A	GAP/IKAROS	27±11	70-300	Multi-peaks, PA changes by ~ 90°
021206	RHESSI	80±20; 41 ⁺⁵⁷ ₋₄₄	150-2000	Large systematic uncertainty
140206A	IBIS/INTEGRAL	>28	200-400	
061122	IBIS/INTEGRAL	>33;	250-800;	
	IBIS/INTEGRAL	<4;	200-800;	
041219A	IBIS/INTEGRAL	43±25;	200-800;	Large systematic uncertainty
	SPI/INTEGRAL	98±33	100-350	
960924	BATSE/CGRO	>50	20-1000	
930131	BATSE/CGRO	>35	20-1000	

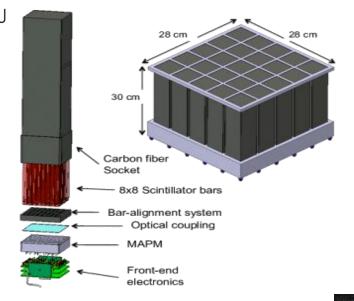
3. GRB Polarimetry with POLAR: the mission

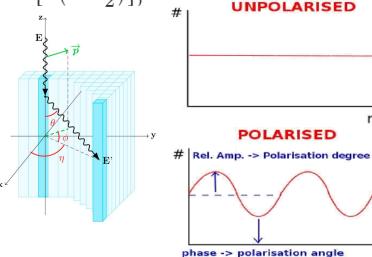
Collaboration

○ China/IHEP, Swiss/UniGE&PSI, Poland/NCBJ

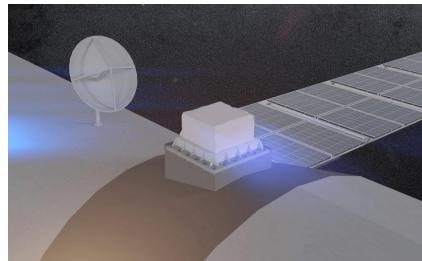
O Development period (~10 years)


- 2005—2010, concept and prototype
- 2011-2013, qualification model
- 2013-2016, flight mode


O Detector characteristics


- O Plastic scintillator array (8*8 x 5*5)
- MA-PMT; E band 50-500 keV
- \bigcirc Eff. area $\sim 300 \text{ cm}^2$, FoV $\sim 2\pi \text{ sr}$

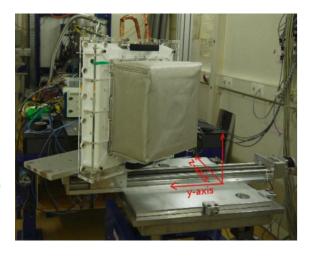
Launch and operation

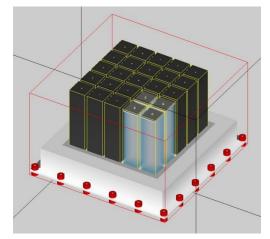

- Tiangong-2 space lab
- Launched on 15/09/2016
- O Scanning sky with the lab's orbit
- 6 months of observation (HV failure)

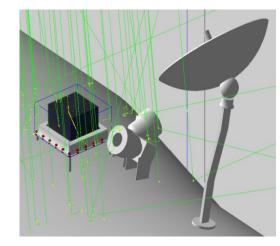
3. GRB Polarimetry with POLAR: on—ground/in—orbit calibrations

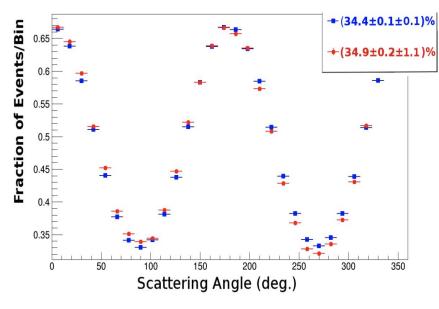
Calibration means validation!

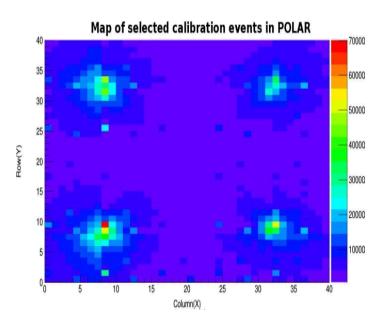
- O To verify the methodology
- O To evaluate systematic effect


On ground: ESRF beam test


- O Polarized (PD 100%, PA H/V)
- Energy (60,80,110,140 keV)
- O Incident angel $(0^{\circ}, 30^{\circ}, 60^{\circ})$
- Geant—4 simulation verification (Kole M., et al, 2017)

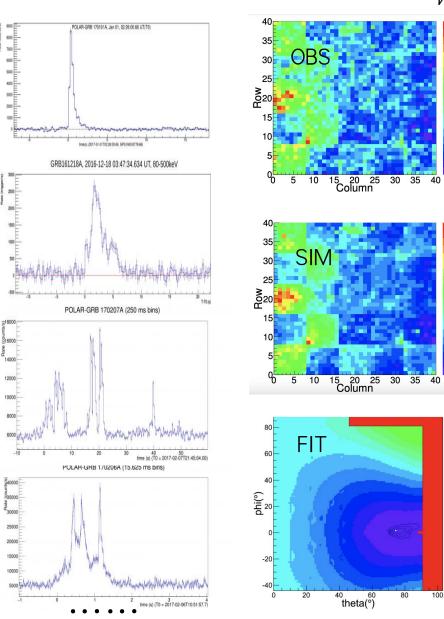

In orbit:


- ²²Na sources: (100 Bq) x 4

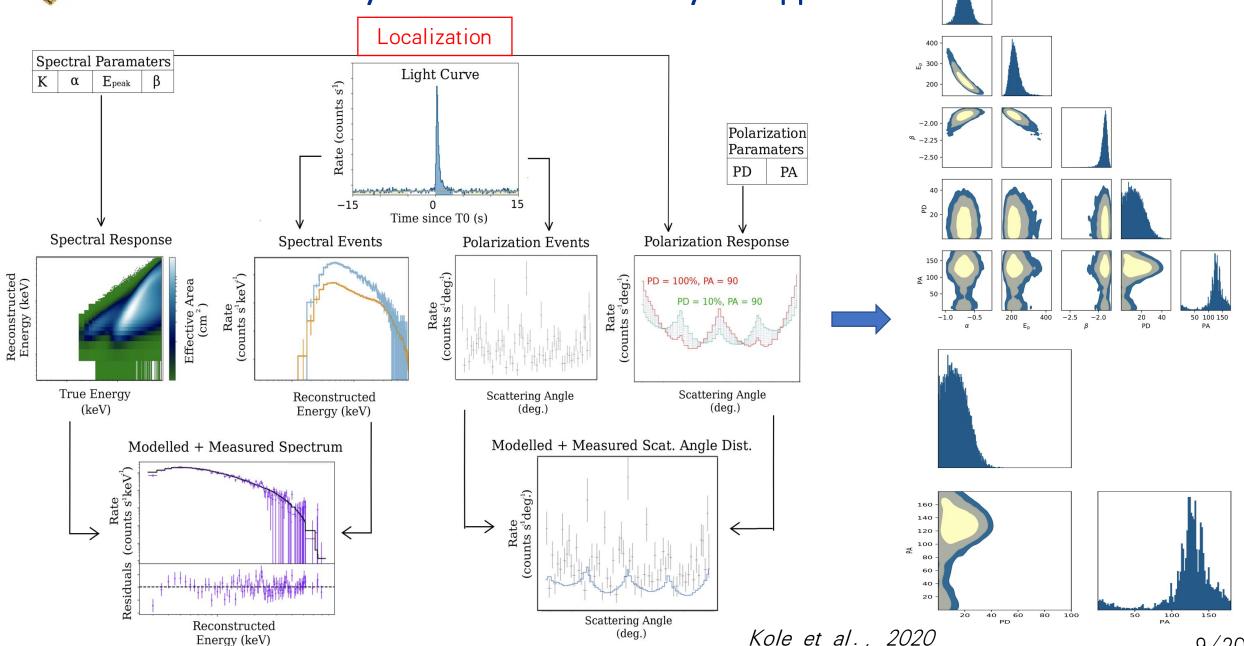

 Multi—parameter calibration
- Geant−4 simulation verification (Li, Z. H., et al, 2018)
- O Crab pulsar

>3. GRB Polarimetry with POLAR: GRB detections

Wang et al., 2021

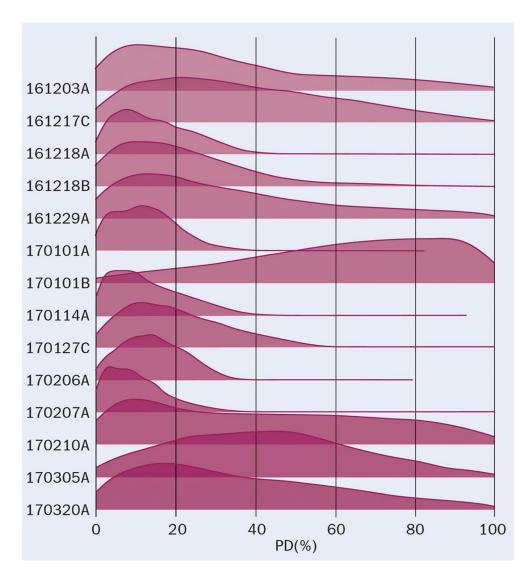

fluence(erg/cm²) 10⁻⁵

fluence(erg/cm²) 10⁻⁵

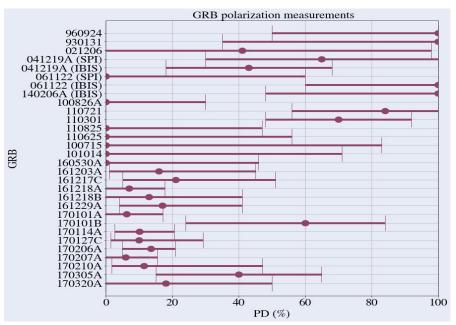

COUNTS

55 joint detections Xiong et al., 2017

Number	GRB Name	Trigger time (UTC)	Joint observation
1	GRB 160924A	2016-09-24T06:04:09.040	Fermi/GBM, SPI-ACS
2	GRB 160928A	2016-09-28T19:48:05.000	Fermi/GBM, SPI-ACS, KW
3	GRB 161009651	2016-10-09T15:38:07.190	Fermi/GBM
4	GRB 161011217	2016-10-11T05:13:44.420	KW
5	GRB 161012989	2016-10-12T23:45:11.380	KW
6	GRB 161013948	2016-10-13T22:44:40.100	Fermi/GBM
7	GRB 161120401	2016-11-20T09:38:33.520	SPI-ACS
8	GRB 161129A	2016-11-29T07:11:40.000	Swift/BAT, Fermi/GBM, AstroSAT
9	GRB 161203A	2016-12-03T18:41:07.750	KW,SPI-ACS, CALET/CGBM, AstroSAT
10	GRB 161205A	2016-12-05T13:27:18.000	Fermi/GBM
11	GRB 161207A	2016-12-07T20:42:55.000	Fermi/GBM, CALET/CGBM
12	GRB 161207B	2016-12-07T05:22:44.000	Fermi/GBM
13	GRB 161210A	2016-12-10T12:33:54.000	Fermi/GBM
14	GRB 161212A	2016-12-12T15:38:59.000	Fermi/GBM
15	GRB 161213A	2016-12-13T07:05:02.000	Fermi/GBM, SPI-ACS
16	GRB 161217B	2016-12-17T03:03:44.000	Fermi/GBM
17	GRB 161217C	2016-12-17T03:53:15.000	KW
18	GRB 161218A	2016-12-18T03:47:34.634	Swift/BAT
19	GRB 161218B	2016-12-18T08:32:41.341	Fermi/GBM
20	GRB 161219B	2016-12-19T18:48:39.000	Swift/BAT
21	GRB 161228A	2016-12-28T09:43:24.000	Fermi/GBM
22	GRB 161228B	2016-12-28T13:15:40.000	Fermi/GBM, SPI-ACS
23	GRB 161228C	2016-12-28T00:46:20.000	Fermi/GBM
24	GRB 161229A	2016-12-29T21:03:49.000	Fermi/GBM
25	GRB 161230A	2016-12-30T12:16:07.000	Fermi/GBM
26	GRB 170101A	2017-01-01T02:26:00.660	Swift/BAT
27	GRB 170101A	2017-01-01T02:20:00:000 2017-01-01T02:47:18.270	Fermi/GBM
28	GRB 170101B	2017-01-01T02:47:18:270 2017-01-02T02:51:18.000	KW
29	GRB 170102A GRB 170105A	2017-01-02102:31:18:000 2017-01-05T06:14:07.000	SPI-ACS, KW
30	GRB 170109A	2017-01-03T00:14:07:000 2017-01-09T03:17:35.000	Fermi/GBM
31	GRB 170112B	2017-01-19103:17:33:000 2017-01-12T23:16:09.000	Fermi/GBM
32	GRB 170112B	2017-01-12123:10:09:000 2017-01-14T22:01:10:000	Fermi/GBM
33	GRB 170114A GRB 170114B	2017-01-14T22:01:10:000 2017-01-14T19:59:12.000	Fermi/GBM, KW
34	GRB 170120A	2017-01-14119:39:12.000 2017-01-20T11:18:30.000	Fermi/GBM
	GRB 170120A GRB 170121A		
35		2017-01-21T01:36:55.200	Fermi/GBM
36	GRB 170124A	2017-01-24T20:58:06.000	Fermi/GBM, KW, CALET/CGBM
37	GRB 170127C	2017-01-27T01:35:49.000	Fermi/GBM, Fermi/LAT, AGILE, AstroSAT
38	GRB 170130A	2017-01-30T07:14:45.000	Fermi/GBM
39	GRB 170131A	2017-01-31T23:14:59.000	Fermi/GBM, Swift, KW
40	GRB 170202B	2017-02-02T07:19:54.000	KW
41	GRB 170206A	2017-02-06T10:51:57.700	Fermi/GBM, Fermi/LAT, SPI-ACS
42	GRB 170206C	2017-02-06T11:40:10.000	SPI-ACS
43	GRB 170207A	2017-02-07T21:45:04.000	Fermi/GBM, IPN, KW
44	GRB 170208C	2017-02-08T13:16:33.000	Fermi/GBM, SPI-ACS
45	GRB 170210A	2017-02-10T02:47:37.000	Fermi/GBM, IPN, KW
46	GRB 170219A	2017-02-19T00:03:07.000	Fermi/GBM, CALET/CGBM, SPI-ACS, KW, IPN
47	GRB 170220A	2017-02-20T18:48:01.000	KW
48	GRB 170228B	2017-02-28T18:32:56.000	Fermi/GBM
49	GRB 170305A	2017-03-05T06:09:06.800	Fermi/GBM, KW, SPI-ACS, Swift/BAT
50	GRB 170306B	2017-03-06T14:07:20.000	Fermi/GBM, Fermi/LAT, SPI-ACS
51	GRB 170309A	2017-03-09T12:26:42.000	CALET/CGBM
52	GRB 170315A	2017-03-15T13:57:53.0 <u>9</u> 0	Fermi/GBM
53	GRB 170317A	2017-03-17T09:45:56.000	Swift/BAT
54	GRB 170320A	2017-03-20T03:42:39.000	SPI-ACS, KW
55	GRB 170325B	2017-03-25T21:50:01.000	KW

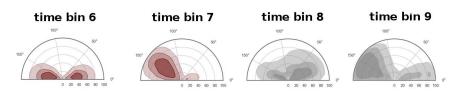


3. GRB Polarimetry with POLAR: analysis approach



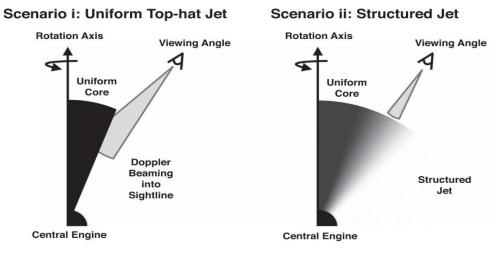
9/20

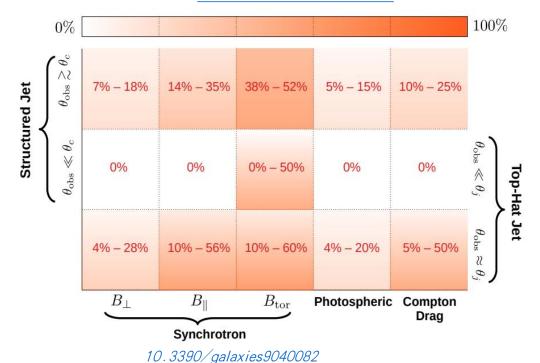
3. GRB Polarimetry with POLAR: time integrated/resolved results

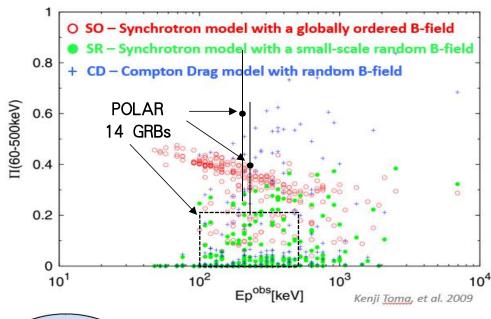


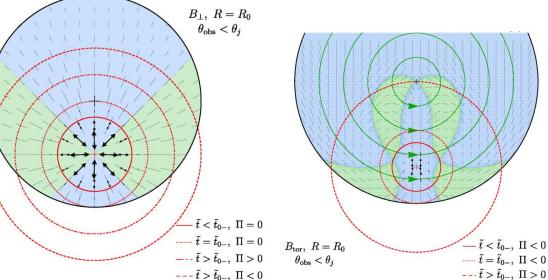
Kole et al., 2020, 14 GRBs, best fitted mostly at ~10%

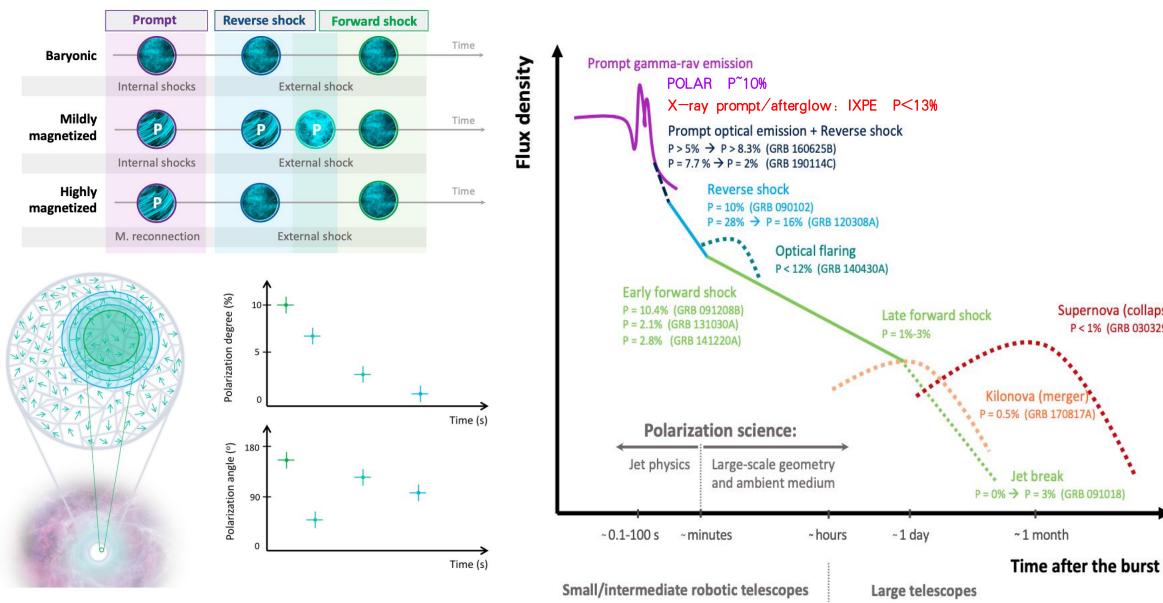
Measured PD distributions




Zhang et al., 2019, Burgess et al. 2019 GRB 170114A -> a hit of PA evolution


3. GRB Polarimetry with POLAR: comparing with models



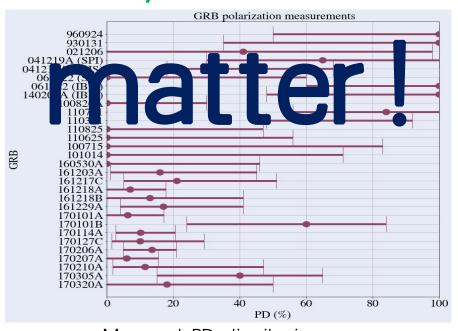

Top-Hat Jet, Gill, R. & Granot, J., 2021 allow 90°

changes

3. GRB Polarimetry with POLAR: multi-wavelength results

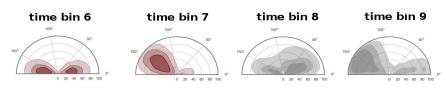

Non-symmetric: patchy-shell

Supernova (collapsar)


P < 1% (GRB 030329)

3. GRB Polarimetry with POLAR: time integrated/resolved results Systematics understood

Methodology established



Kole et al., 2020, 14 GRBs, best fitted mostly at ~10%

Measured PD distributions

Zhang et al., 2019, Burgess et al. 2019 GRB 170114A \rightarrow a hit of PA evolution

4. GRB Polarimetry with POLAR—2

- ➤ The successor of POLAR with some upgrades
- Officially selected by CSS through UN/OOSA in 2019, aims to launch

arou And n2020 ncement of selection Jun./2019

United Nations/China Cooperation on the Utilization of the China Space Station (CSS)
联合国/中国围绕中国空间站应用开展合作

Selected Experiment Projects to be executed on board the CSS for the 1st Cycle

Announced on the occasion of the 62nd Session of the Committee on the Peaceful Uses of Outer Space
12 June 2019 Vienna, Austria

第一轮合作入选项目

2019年6月12日在奥地利维也纳举行的第62届和平利用外空委员会大会期间发布

I. Fully accepted experiment projects:

完全入选项目

No.1: POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station

Building on the previous investigation on China's TG-2 space lab, this project aims to answer the most important open questions in astrophysics regarding the nature of Gamma-Ray Bursts (GRBs) by using the most promising investigation approach of polarization measurements allowing to observe even the weakest gamma-ray transients, such as those connected to gravitational waves.

It is an experiment project in astronomy in space. It was applied and will be implemented by four institutions from four countries, which are: The University of Geneva from Switzerland, the National Center for Nuclear Research of Poland, the Max Plank Institute for Extra-terrestrial Physics of Germany, and the Institute of High Energy Physics of Chinese Academy of Sciences.

第 1 个项目: POLAR-2: 中国空间站上的伽玛暴偏振探测仪

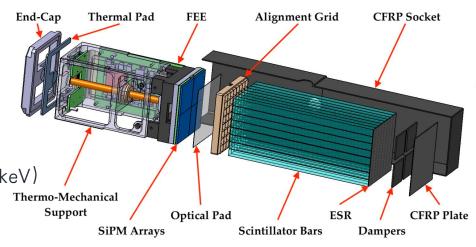
Xin Wu

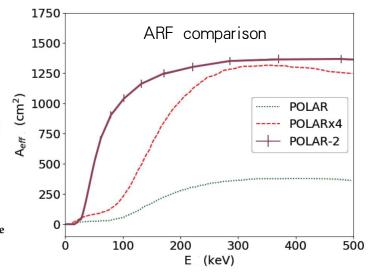
Shuang-Nan Zhang

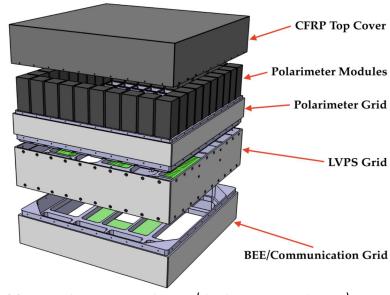
Agnieszka Pollo

Jochen Greiner

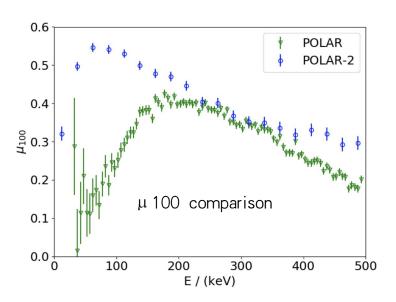
nature > news > article

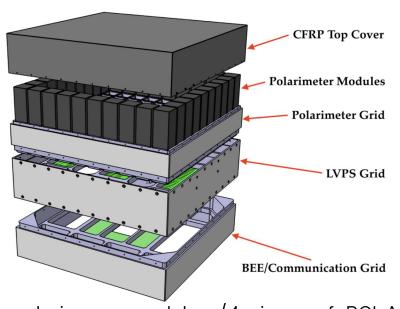

NEWS - 17 JUNE 2019

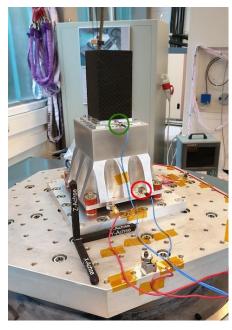

China reveals scientific experiments for its next space station

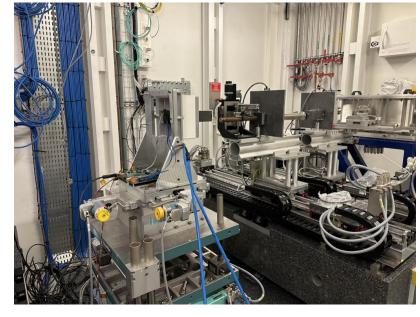

Other winners include a detector called POLAR-2, a more powerful follow-up to a sensor launched on Tiangong-2 to study the polarization of energetic γ -ray bursts from distant cosmic phenomena. POLAR-2, which will be built by an international collaboration, could even allow astronomers to observe the weak radiation associated with sources of gravitational waves.

4. GRB Polarimetry with POLAR-2

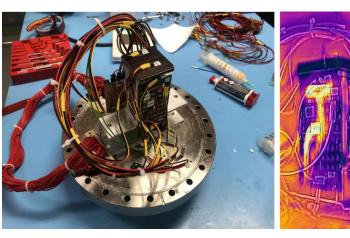

- Sigger
- 100 polarimeter modules
- More than bigger
- Optimized bar length (less BKG)
- Bar + Vikuiti (LY 0.3 to 1.3 p.e./keV)
- Optical pad (CT 15% to 2.5%)
- SiPM: lower threshold (<10 keV)
- \bigcirc Cooling & annealing (against degradation)
- © Effective Area (ARF)
- \bigcirc ARF $\sim 1300 \text{ cm}^2$ (300 for POLAR)
- \odot Modulation factor (μ_{100})
- $\mu_{100} > 50\%$ for 40-150 keV (<30% for POLAR)





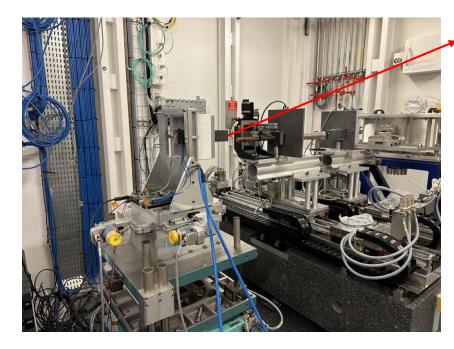

4. GRB Polarimetry with POLAR—2

100 polarimeter modules (4 times of POLAR)

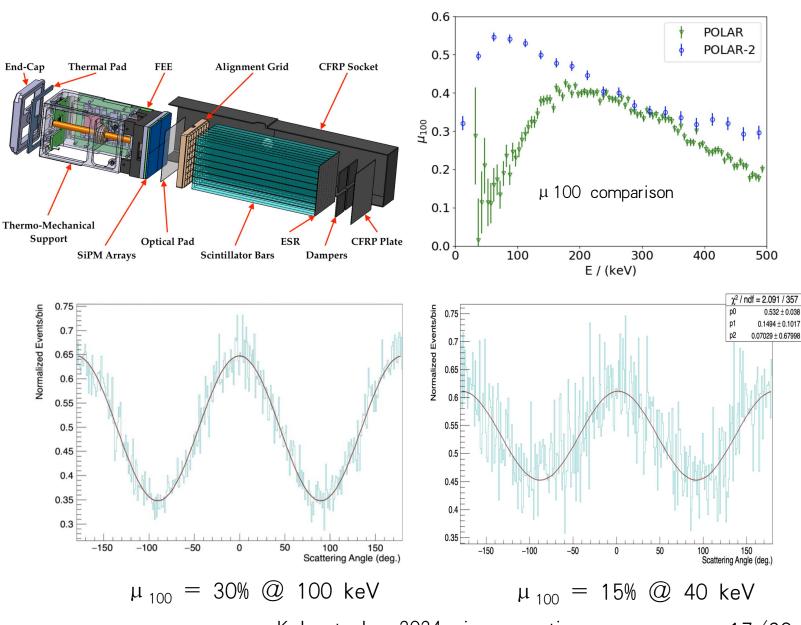

Vibration test

ESRF polarized source calibration

Compact SiPM readout unit


Thermal-Vacuum

test



Proton irradiation

4. GRB Polarimetry with POLAR—2

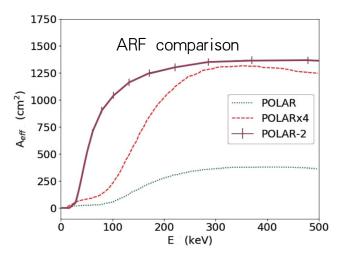
ESRF polarized source calibration Single module!

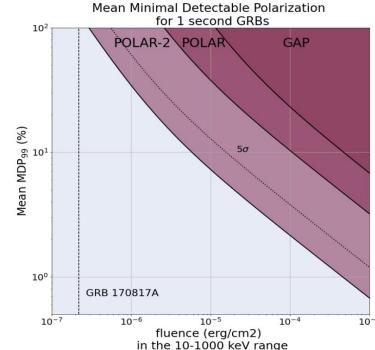
Kole et al., 2024, in preparation

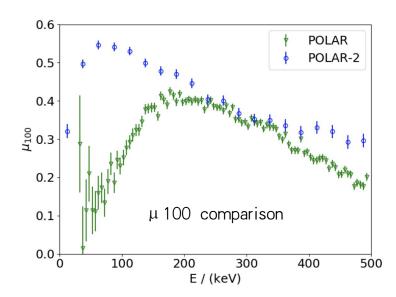
17/20

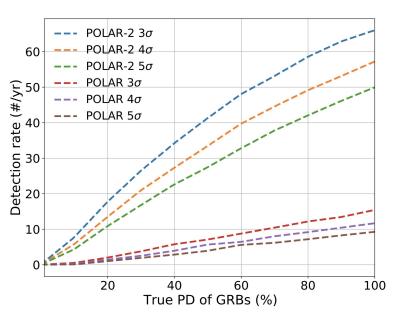
4. GRB Polarimetry with POLAR-2: performances

Sensitivity improvement

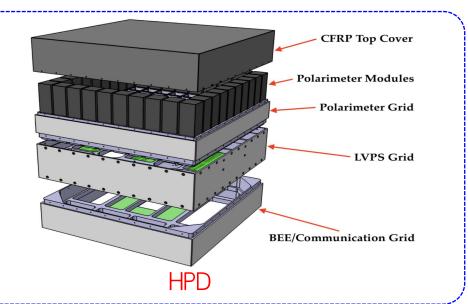

- 4 times larger ARF
- Optimized bar length (less BKG)
- SiPM: lower threshold (<10 keV)
- 10 times more sensitive

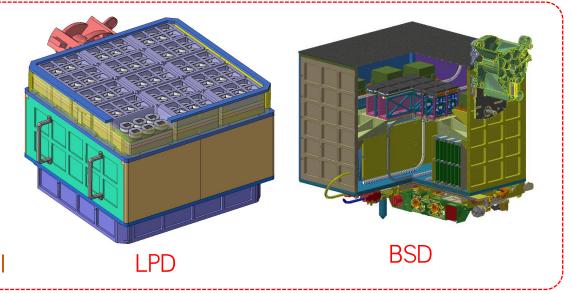

Performance anticipation


- \bigcirc Eff. area $\sim 1300 \text{ cm}^2$
- \odot For a GRB with fluence 10^{-5} erg/cm², 5σ measurement when PD_{true} ~10%


Significant measurements (#/yr)

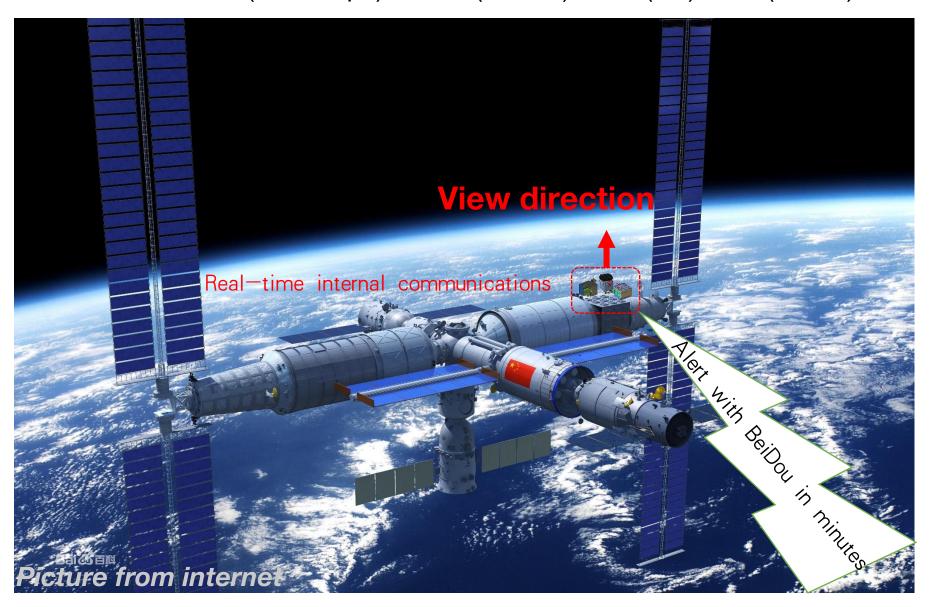
- \bigcirc If PD_{true} ~10%, #10 (3 σ), #5 (5 σ)
- \bigcirc If PD_{true} ~20%, #20 (3 σ), #10 (5 σ)





4. GRB Polarimetry with POLAR-2: enhanced by two more payloads

- ➤ High—energy Polarization Detector: HPD
- ~30-800 keV for gamma-ray polarimetry
- 100 modules, 6400 plastic scintillator bars
- Effective area: $^{2000cm^2}$, $> 1200cm^2$ for Pol.
- FoV: ~50% sky
- Collaborations: UNIGE/IHEP/MPE/NCBJ
- > Status of HPD: approved and design finalized



- Low-energy Polarization Detector: LPD, GXU
- ~2-10 keV for X-ray polarimetry
- ➤ Broad energy—band Spectrum Detector: BSD, IHEP/CAS, China
- ~10-2000 keV for spectroscopy
- Accurate GRB localization: < 1 °
- > Status of LPD & BSD: under review for approval

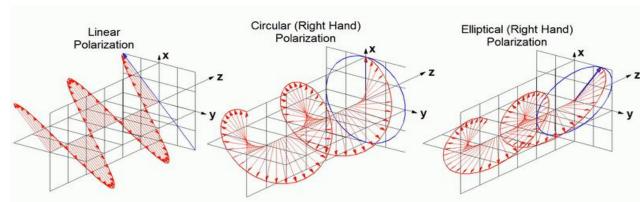
◆ 4. GRB Polarimetry with POLAR-2: synergies among the three

 \triangleright Joint detection and alert (follow-ups): HPD (>2 π sr), LPD (~ π), BSD(~1.3 π)

◆ 5. Summary and outlook

- Polarimetry helps understanding GRBs
- O Probing magnetic field configuration
- O Diagnosing radiation mechanism
- O Determining emission geometry

Stay tuned! Thanks for your attention.

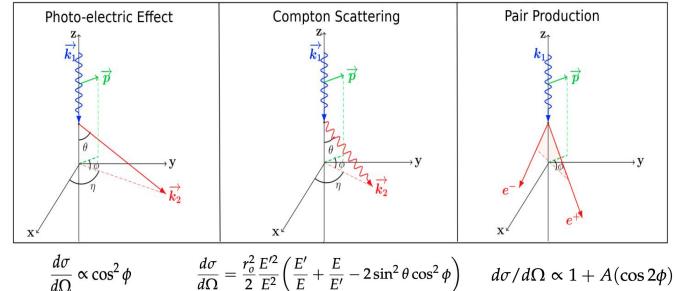

- POLAR (2016—2017)
- GRBs: moderate PD (~10%) + hint of PA evolution
- O Currently are still not able to discriminate plenty of models (limited by statistics)
- O Future orientation: time—/energy—resolved polarimetry & large sample studies

Later IIm

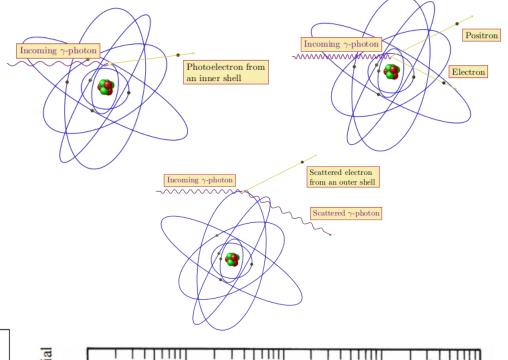
- POLAR-2 (2026-20XX)
- O 4 times bigger and 10 times more sensitive than POLAR
- O HPD, LPD, BSD joint detections: fixed spectral & location dependences; energy-resolved by default
- \odot Will enlarge the sample of GRB polarimetry with better precision (some >5 sigma)
- Alert system hopefully triggers multi-wavelength/-messenger campaigns

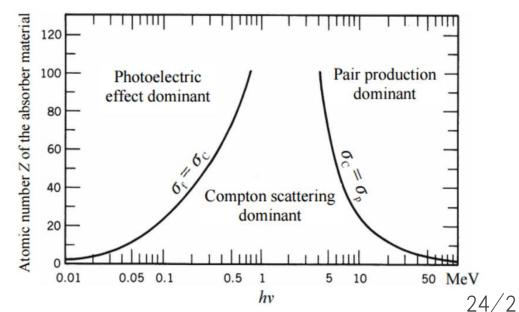
Backup slides

1. Polarimetry and POLAR: first principles



$$E_x = E_{0x} \cos(\omega t - kz + \varphi_x)$$


$$E_y = E_{0y} \cos(\omega t - kz + \varphi_y)$$


$$\left(\frac{E_x}{E_{0x}}\right)^2 + \left(\frac{E_y}{E_{0y}}\right)^2 - 2\left(\frac{E_x}{E_{0x}}\right)\left(\frac{E_y}{E_{0y}}\right) \cos \varphi = \sin^2 \varphi$$

\odot Linear polarization (when $\phi = n \pi$, $n \in \mathbb{Z}_0^+$)

10.3390/galaxies9040082

1. Polarimetry and POLAR: measuring techniques

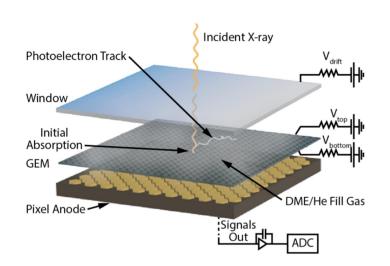
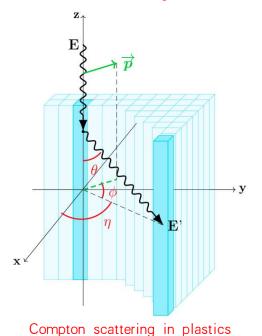



Photo-electric in a gas chamber

Stokes parameters:

$$S_0 = I = \langle E_x^2 + E_y^2 \rangle,$$

$$S_1 = Q = \langle E_x^2 - E_y^2 \rangle,$$

$$S_2 = U = \langle 2E_x E_y \cos \delta \rangle,$$

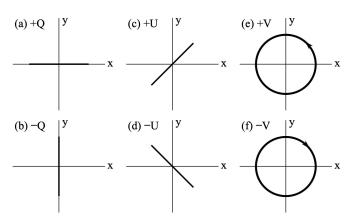
$$S_3 = V = \langle 2E_x E_y \sin \delta \rangle$$

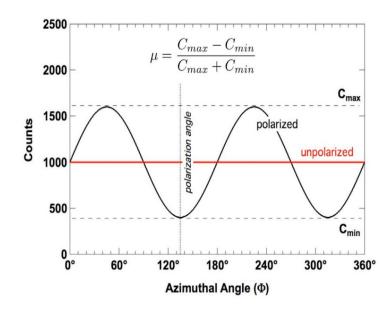
$$Q = \cos 2\psi$$

$$U = \sin 2\psi$$

$$I = \sqrt{Q^2 + U^2}$$

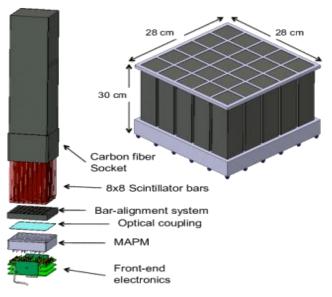
$$p_{
m l}=rac{\sqrt{Q^2+U^2}}{I} \hspace{0.5cm} an 2\psi=rac{U}{Q}$$



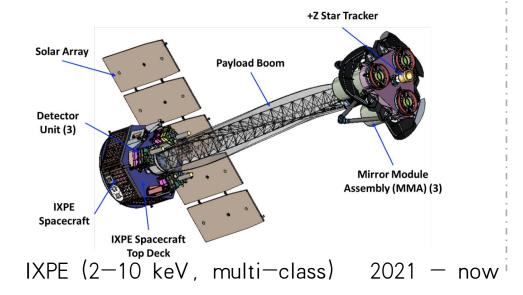

Figure 1: Polarization for different values of the Stokes parameters. (a) Q>0, U=0, V=0; (b) Q<0, U=0, V=0; (c) U>0, Q=0, V=0; (d) U<0, Q=0, V=0; (e) V>0, Q=0, U=0; (f) V<0, Q=0, U=0.

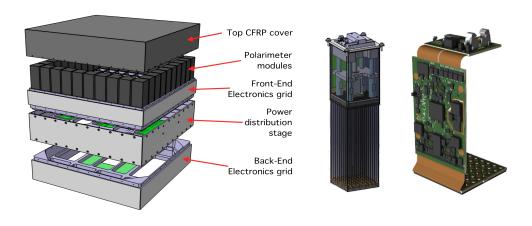
Kislat et al. 2015

Fitting modulation curves:


$$C(\eta, \Phi) = A \times \cos \left[2\left(\eta - \Phi + \frac{\pi}{2}\right)\right] + B.$$

$$\mu = \frac{A}{B} = \frac{C_{\max} - C_{\min}}{C_{\max} - C_{\min}}, \quad \Pi = \frac{\mu}{\mu_{100}}.$$




<u>e.g. Li et al. 2022</u>

1. Polarimetry and POLAR: state—of—art polarimeters.

POLAR (50-500 keV, GRB/Pulsar) 2016 - 2017

POLAR-2 (10-800 keV, GRB/Pulsar/SFL) 2025

eXTP (2-10 keV multi-class)

2027

1. Polarimetry and POLAR: collaboration and the mission

Collaboration

- China (IHEP)
- Switzerland (UNIGE, PSI, ISDC)
- O Poland (NCBJ)

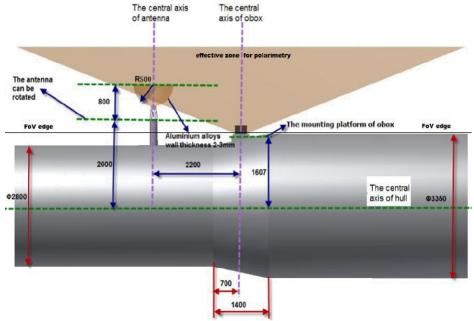
Development phases

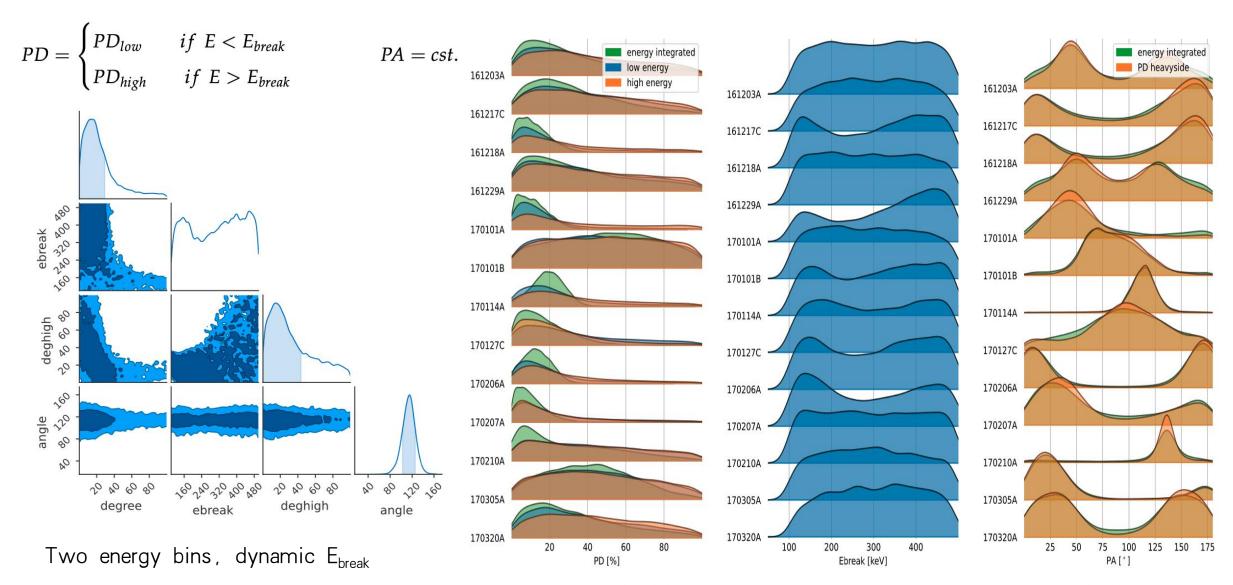
- 2005—2010, concept and prototype
- 2011-2013, qualification model
- 2013-2016, flight model

Launch and operation

- Tiangong-2 space lab
- Column Launched on 15/09/2016
- O Pointing to the sky always
- Scanning / periodic orbit
- Six months of observation (HV failure)

OBOX Sensitive detector


IBOX
Electronics & interfaces

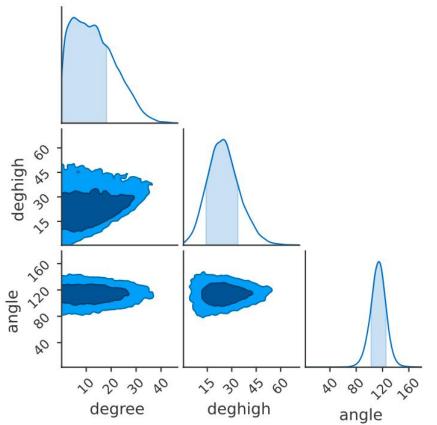


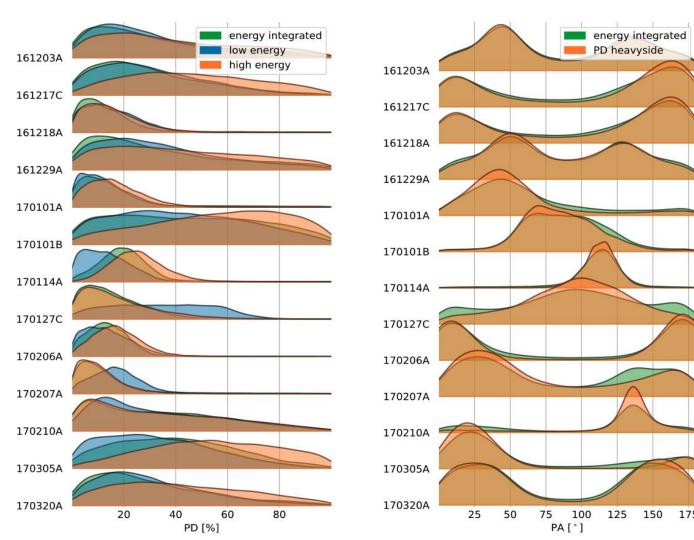
Credit: South China Morning Post

1. GRB observations with POLAR: energy—resolved results

Ongoing with other E-dependent models

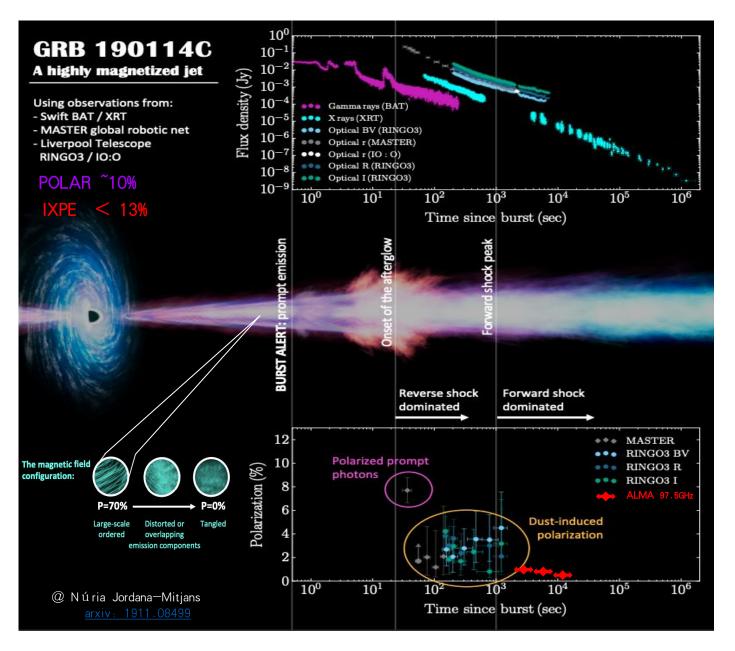
No significant energy dependence, need better statistics


De-Angelis et al., 2023


1. GRB observations with POLAR: energy—resolved results

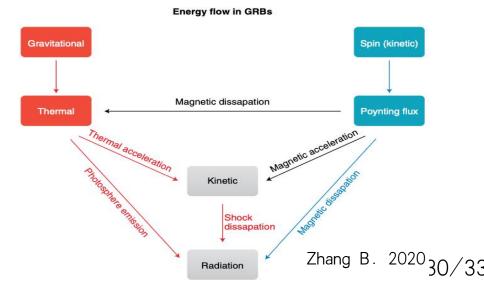
$$PD = egin{cases} PD_{low} & if \ E < 150 \ keV \ PD_{high} & if \ E > 150 \ keV \end{cases}$$

PA = cst.

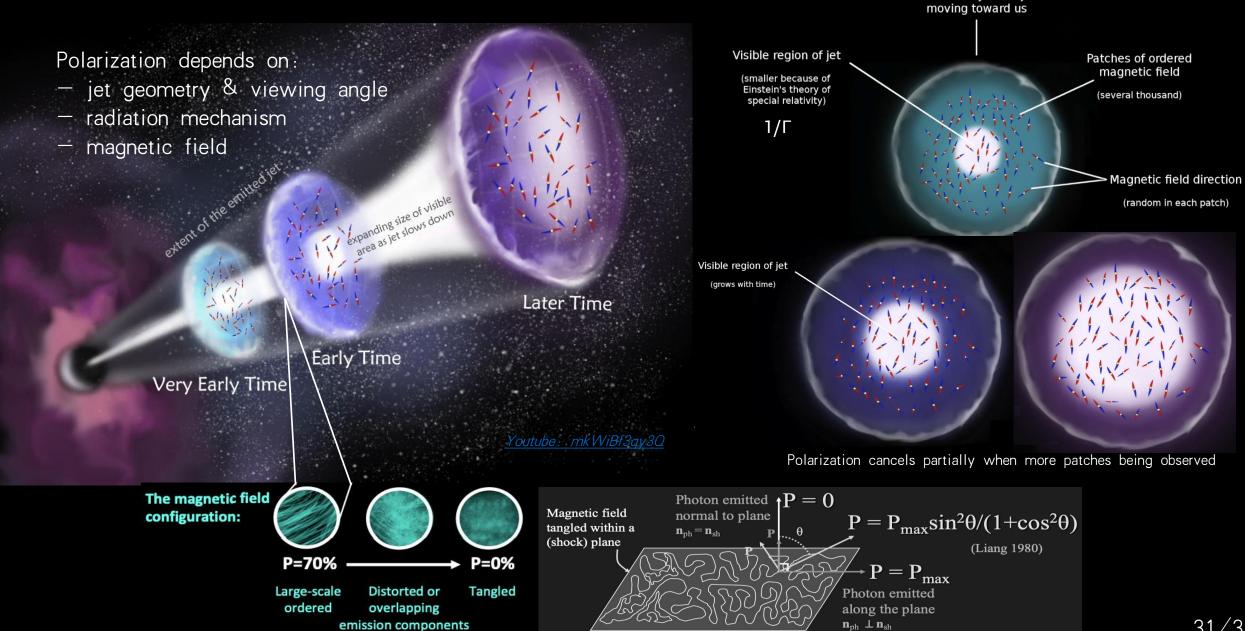

Two energy bins, E_{break} fixed at 150 keV Ongoing with other E-dependent models

No significant energy dependence, need better statistics

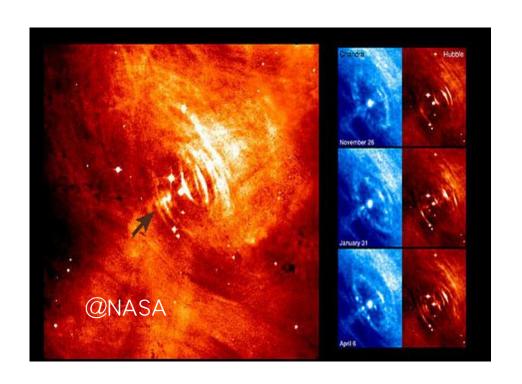
De-Angelis et al., 2023

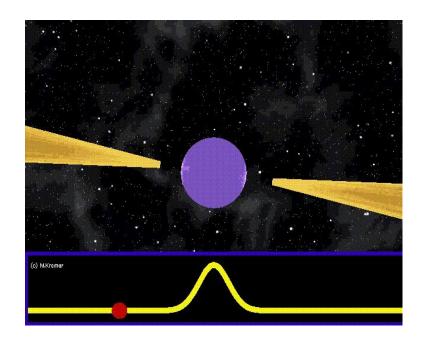

2. GRB observations with POLAR

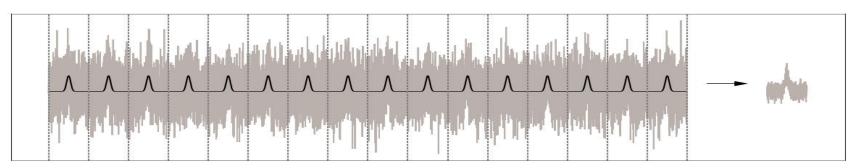
- © GRB 190114C: optical polarization probe the magnetic field
- \bigcirc prompt PD \sim 7.7% -> large-scaled ordered magnetic field
- afterglow PD ~ 2% (PA not changing) in ambient medium
- \bigcirc radio (97.5Hz) afterglow PD decrease from 0.87% to 0.60%
- jet was launched highly magnetized, and advected to prompt phase, then distorted on timescales prior to reverse shock
- support magnetic dissipation mechanisms (e.g., reconnection)
- O forward shock SSC is favored for explaining sub-TeV and low PD


\bigcirc X/ γ ray polarimetry (multi-wavelength and time evolution)

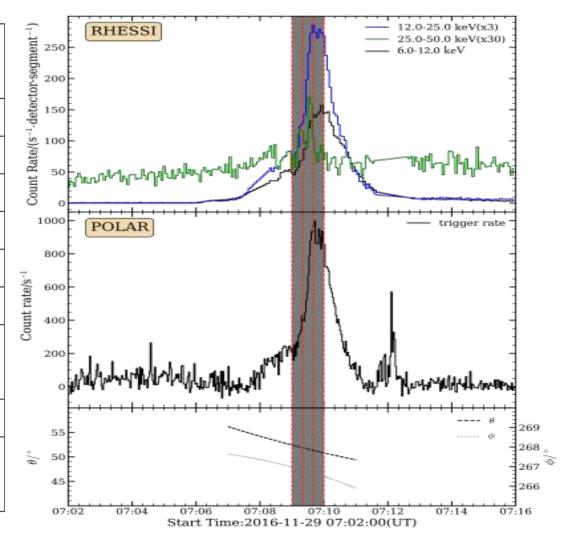
- \bigcirc POLAR (50–500 keV): 14 GRBs PD ~10%; a hint of PA evolution
-) IXPE (2-8 keV): afterglow PD < 13% for GRB 221009A, which has 5000 VHE photons (up to 18 TeV) detected by LHASSO
- LC + SED + polarization (SSC frame) -> jet geometry and models


2. GRB observations with POLAR

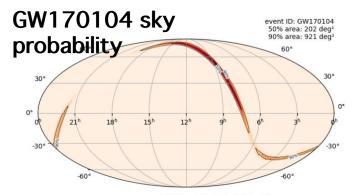


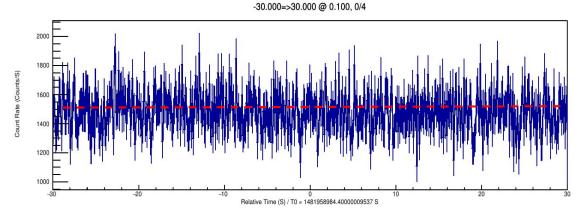

Gamma-ray burst jet

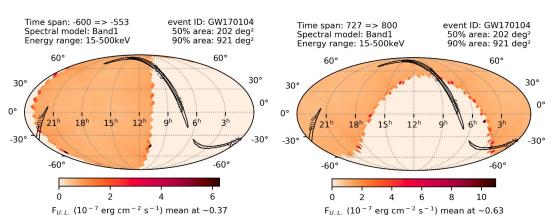
3. Pulsar observations with POLAR: stacking the periodic signal



4. Other observations: solar flares

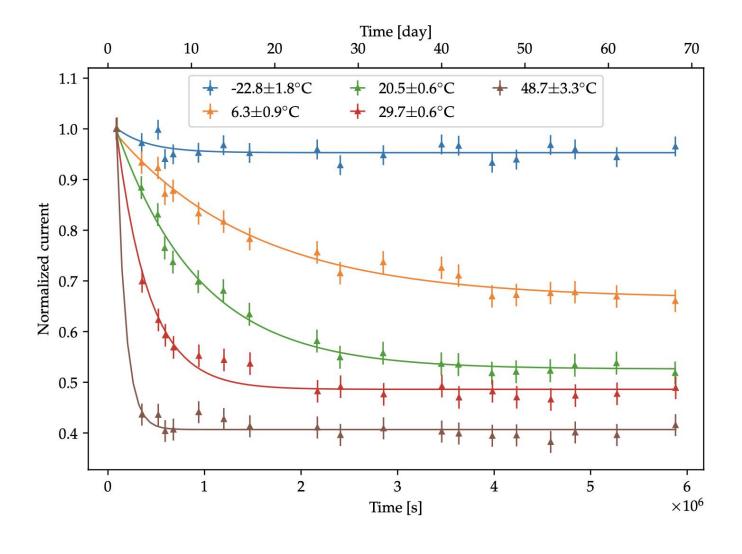

No.	编号	峰值时间	持续时间	总光子数	入射角 (°)	运行模式	备注
No.)	(UTC)	(seconds)	(counts)	$(heta,\phi)$	色们疾入	田仁
1	SFL161012498	2016-10-12T11:53:58	67	5561	(41, 228)	DM	-
2	SFL161128330	2016-11-28T07:59:55	135	8463	(71, 268)	DM	-
3	SFL161129299	2016-11-29T07:09:42	161	72038	(51, 267)	DM	-
4	SFL161130056	2016-11-30T01:19:21	229	77519	(86, 269)	DM	-
5	SFL161130645	2016-11-30T15:24:35	64	5644	(43, 267)	DM	-
6	SFL170209293	2017-02-09T07:01:43	120	23377	(56, 62)	SM	-
7	SFL170327764	2017-03-27T18:18:09	119	6447	(42, 258)	DM	单模块
,	SI:L170327704	2017-03-27110.10.09	117	0447	(42, 230)	DIVI	触发
8	SFL170328139	2017-03-28T03:23:04	164	12601	(54, 259)	DM	-
9	SFL170328205	L170328205 2017-03-28T04:54:06	375	10902	0902 (55, 259)	DM	单模块
	51 11 10320203	2017-03-2010300	313	10/02	(33, 237)	DIVI	触发




A list of 9 solar flares

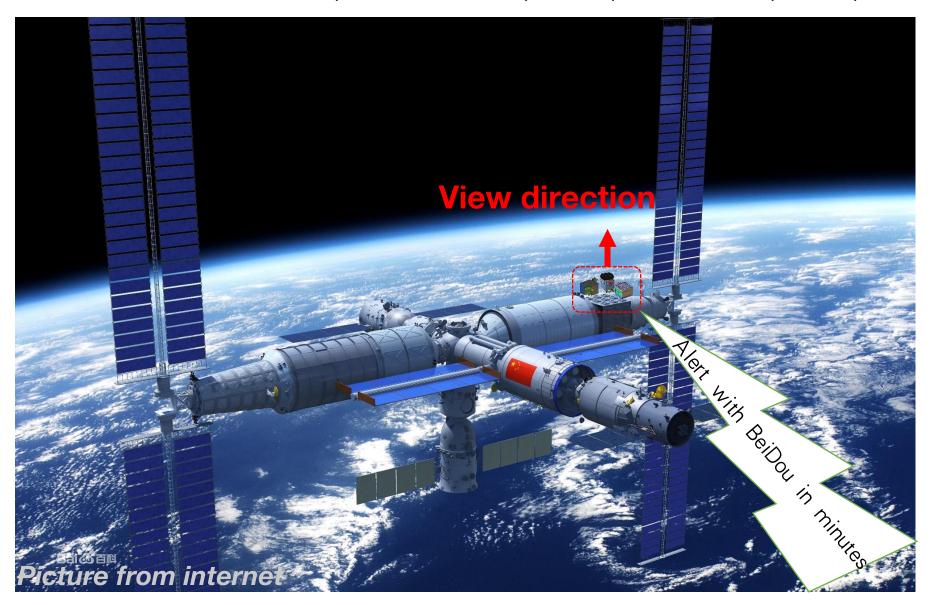
(Zhang, P., et al, 2020)

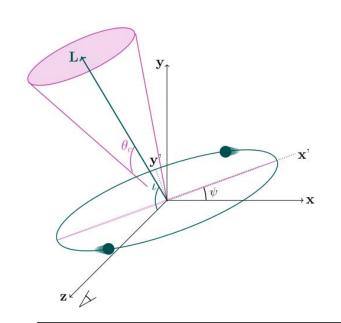
4. Other observations: GW follow-up observations

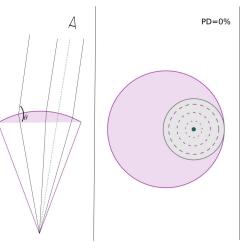

UID	$UTC-T_0$	T _{start} (s)	T _{end} (s)	Band1	Band2	Band3
170104	2017-01-04T10:11:58.6	-600	-553	3.7E-8	2.8E-8	2.1E-8
170104	2017-01-04T10:11:58.6	+727	+800	6.3E-8	4.7E-8	3.5E-8
161202	2016-12-02T03:53:44.9	-826	-816	7.3E-8	5.5E-8	4.1E-8
161202	2016-12-02T03:53:44.9	+555	+600	3.9E-8	2.9E-8	2.2E-8
161217	2016-12-17T07:16:24.4	-30	+30	7.3E-9	8.5E-9	1.1E-8
170208	2017-02-08T10:39:25.8	-712	-703	3.1E-8	3.6E-8	4.8E-8
170208	2017-02-08T10:39:25.8	+619	+700	1.5E-8	1.8E-8	2.4E-8
170219	2017-02-19T14:04:09.0	-30	+30	1.4E-8	1.7E-8	2.2E-8

instrument	particle	energy	$F_{ m U\cdot L\cdot}$ erg cm $^{-2}$ s $^{-1}$
Fermi/GBM	photon	$10 \sim 1000 \; \mathrm{keV}$	5.2E-7 ~ 9.4E-7
Fermi/LAT	photon	0.11 GeV	0.2E-9 ~ 90E-9
INTEGRAL	photon	$75~{\rm keV}\sim 2~{\rm MeV}$	1.9E-7 ~ 1E-6
AGILE/MCAL	photon	$50~{ m MeV}\sim 10~{ m GeV}$	2.9E-8 ~ 1.1E-6
Antares	neutrino	$3.2~{ m TeV}\sim 3.6~{ m PeV}$	1.2E+55 erg
Antares	neutino	$5\% \sim 95\%$ quantiles	1.2L+33 elg

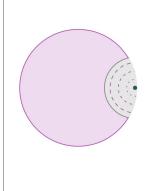
SiPM annealing



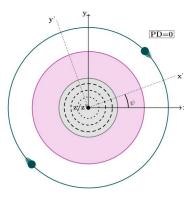


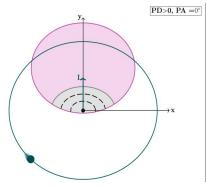

5. POLAR-2: performances (see Merlin's talk)

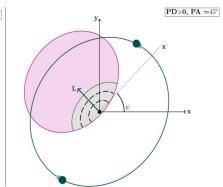
> Joint detection and alert: HPD (~180 ° × 180 °), LPD (~90 ° × 90 °), BSD(~120 ° × 120 °)



♦ 4. POLAR-2






Photosphere model

PD>0%

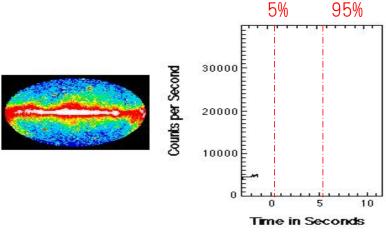
Parameter	Description	Units	Prior range
m_1	detector–frame primary mass	${ m M}_{\odot}$	$(0, +\infty)$
m_2	detector–frame secondary mass	${ m M}_{\odot}$	$[0, m_1]$
d_L \parallel	luminosity distance	Gpc	$(0, +\infty)$
$\theta, \phi \parallel$	polar and azimutal sky angles	$_{ m rad}$	$[0, \pi], [0, 2\pi]$
ι	inclination angle w.r.t. orbital angular momentum	rad	$[0,\pi]$
ψ \parallel	polarization angle	$_{ m rad}$	$[0,\pi]$
t_c \parallel	time of coalescence GMST	$_{ m day}$	[0, 1]
$ \Phi_c $	phase at coalescence	rad	$[0,2\pi]$
$\chi_{i,z}$	spin component of object $i = \{1, 2\}$ along axis z	_	[-1,1]
$oxed{egin{array}{c c} \Lambda_i & & & \\ \hline \end{array}}$	adimensional tidal deformability of object $i = \{1, 2\}$	_	$[0, +\infty)$

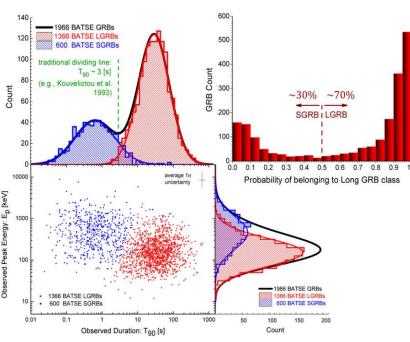
	Emission model predictions						
Model	$\parallel { m PD} \; (\iota < heta_c)$	$\mid \text{PD} \ (\iota > \theta_c)$	PA $(\iota < \theta_c)$	$\mid \text{PA} \ (\iota > \theta_c) \mid$			
Photosphere Compton Drag Synch. Rand. Synch. Tor. Synch. B_{\parallel}	$ \begin{array}{c c} & 0 & \\ & 0 & \\ & 0 & \\ & & \text{High } (\sim 50\%) \\ & 0 & \end{array} $	Low (< 20%) Medium (< 40%) Medium (< 40%) 0 High (> 50%)	$egin{bmatrix} -\ -\ -\ \psi + \pi/2\ -\ \end{matrix}$	$\left egin{array}{c} \psi \ \psi \ \psi + \pi/2 \ - \ \mathrm{random} \end{array} \right $			

	Number of GW detections						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
LVKI O5 LVKI Voyager ET ET+2CE	2 74 1573 4680	$ \begin{array}{r} 7 \\ 148 \\ 3774 \\ 12035 \end{array} $	$\begin{array}{r r} & 3 \\ & 100 \\ & 1561 \\ & 16973 \end{array}$	$ \begin{array}{ c c c } 5 \\ 78 \\ 4007 \\ 21423 \end{array} $	0 8 26 59	$egin{array}{c} 0 \\ 26 \\ 63 \\ 172 \\ \end{array}$	$egin{array}{c c} 0 & 1 & 54 & 144 & \end{array}$

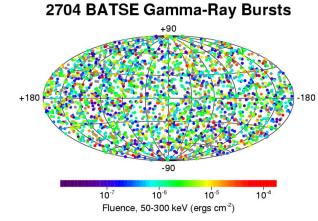
▶1. Polarization and GRB polarimetry: what are GRBs

- (One of) the most energetic explosions in the universe;
- Irregular light curves ;
- Asymmetric pulses;

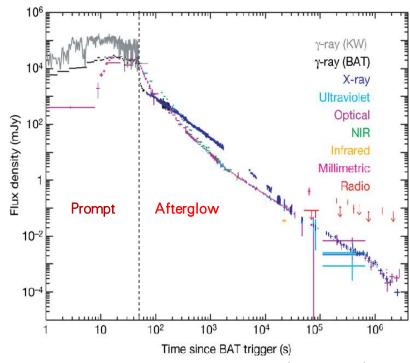

- O Total fluence from 5% to 95 %;
- Long/Short GRB dividing line:3s:
- Reference of Prompt/Afterglow ;


Afterglow flux decay


- \bigcirc Power-law: $F(t) \propto t^{\beta}$;
- It has flares sometimes.


O Cosmic origin:

 \bigcirc BATSE catalog -> uniform distribution

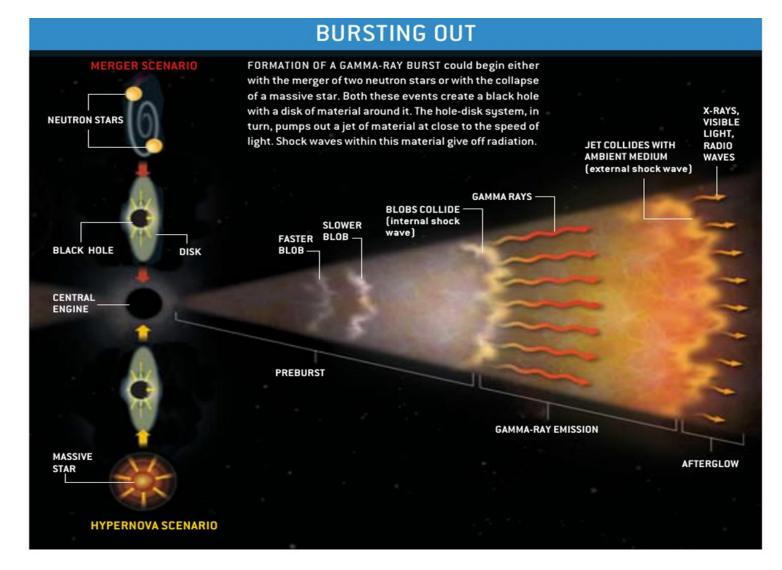


G. Fishman et al., BATSE, CGRO

Multiwavelength OBS, Racusin+(Nature 455)

1. Polarization and GRB polarimetry: what GRBs are

- \bigcirc Short GRB -> NS-NS(NS-BH);
- Long GRB → Hypernova ;


© Emission origin

- Prompt → internal shock ;
- Afterglow-> external shock ;

Radiative processes

- Synchrotron (mainly electron);
- Inverse—Compton ;
- O Photo-pion:

$$p\gamma \to (\Delta^+ \to) \begin{cases} n\pi^+ \to n\mu^+\nu_\mu \to ne^+\nu_e\bar{\nu}_\mu\nu_\mu, \text{ fraction } 1/3 \\ p\pi^0 \to p\gamma\gamma, & \text{fraction } 2/3. \end{cases}$$

www.sciam.com SCIENTIFIC AMERICAN 89
COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.

2. Pulsar observations with POLAR: two pulsars detected

- Observation mode: single bar event
- O Double Mode (DM): pre-scale (1%)
- Single Mode (SM): no pre-scale, >1 month



O Correction on time of arrival: SSB clock

$$T_{\text{SSB}} = T_{\text{obs}} + T_{\text{clk}} + \Delta_R + \Delta_S + \Delta_E + \Delta_P + \Delta_B + \dots,$$

O Periodic parameters and phase folding

$$\phi_i = f_0(t_i - t_0) + \frac{1}{2}f_1(t_i - t_0)^2 + \frac{1}{6}f_2(t_i - t_0)^3 + \frac{1}{24}f_3(t_i - t_0)^4 + \cdots,$$

- Oconfirmed Pulsars: to be continued
- Crab Pulsar
- O PSR B1509-58

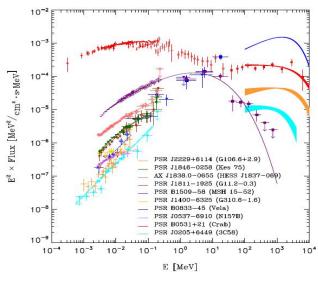
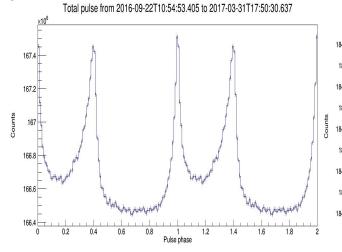
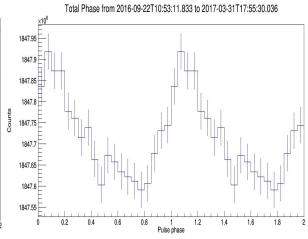
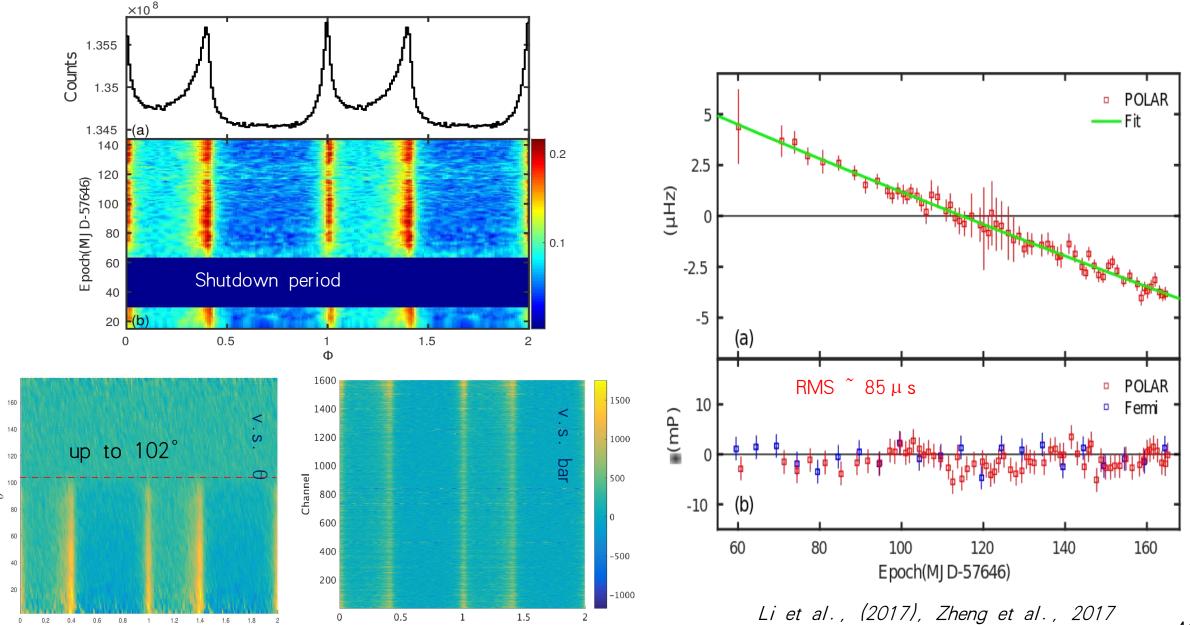
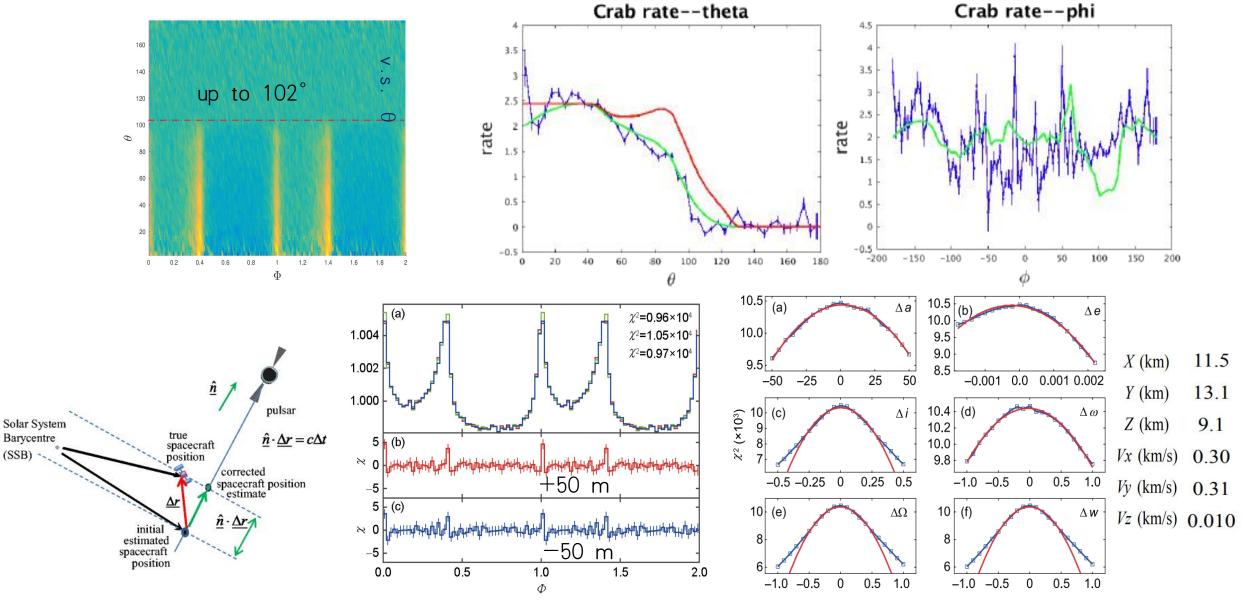




表 2.1 Crab 脉冲星和 B1509-58 的最佳自转参数

Parameters	Crab pulsar	B1509-58
t ₀ (MJD)	57697.040344079745	55336.0
f_0 (Hz)	29.6484272934(4)	6.59709206418
$f_1 (\text{Hz s}^{-1})$	-3.689865(1)E-10	-6.6531338E-11
f_2 (Hz s ⁻²)	1.16(1)E-20	1.8948E-21
$f_3 ({\rm Hz} {\rm s}^{-3})$	3.4(3)E-28	0.0


10.1051/0004-6361:20011256

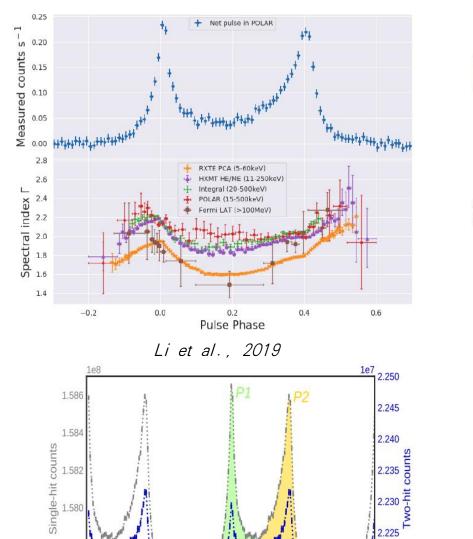


2. Pulsar observations with POLAR: Crab timing

Phase

2. Pulsar observations with POLAR: Crab navigation (highlight)

Zheng et al., 2017



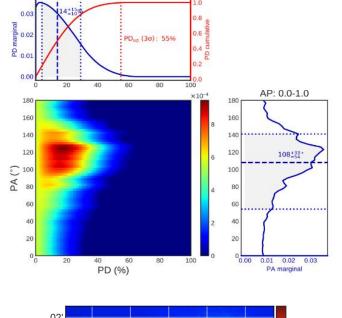
1.578

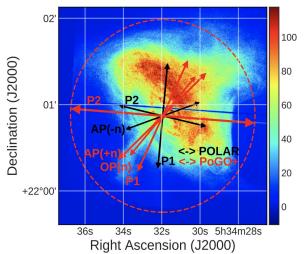
1.576

0.2 0.4

2. Pulsar observations with POLAR: Crab spectra & polarization

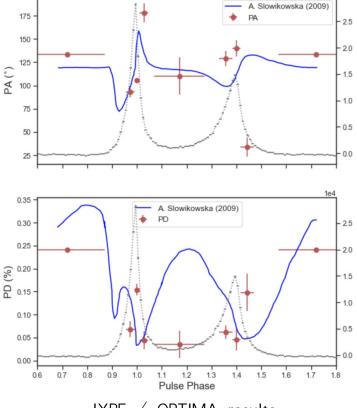
1.2

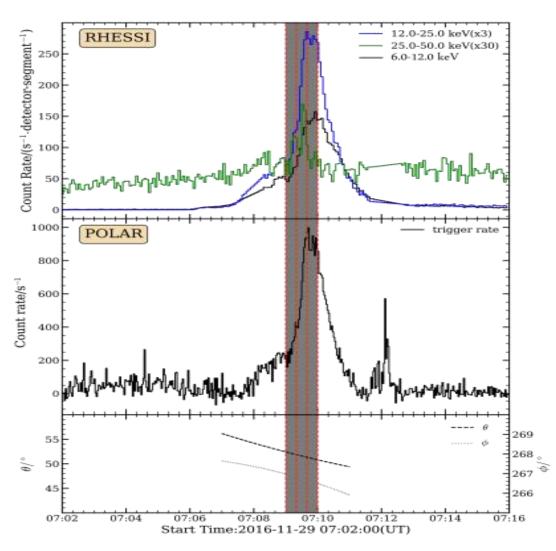

1.0


Pulse phase

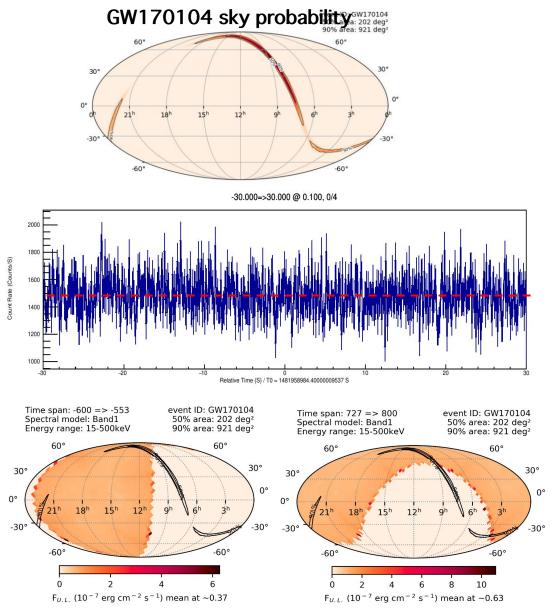
1.4

1.6


2.230


Li et al., 2022

Phase range	PA (°)	PD(%)	3σ PD _{up} (%)
AP (0.0-1.0)	108^{+33}_{-54}	14^{+15}_{-10}	55
P1 (0.2-0.6)	174^{+39}_{-36}	17^{+18}_{-12}	66
P2 (0.8-1.2)	78^{+39}_{-30}	16 ⁺¹⁶ ₋₁₁	57



IXPE / OPTIMA results Arxiv: 0901.4559, 2207.05573

3. Other observations: solar flares & GW follow-up

Zhang et al, 2020, 1 of the 9 events

Thanks for your attention.

POLAR collab. meeting in 2017

POLAR-2 collab. meeting in 2019