Probing orbits of stellar-mass objects deep in galactic nuclei with quasi-periodic eruptions

Zhen Pan

T.D. Lee Institute \& Department of Astronomy Shanghai Jiao Tong Univerity
with Cong Zhou, Lei Huang, Carol Guo 2023.12.12 @Texas Symposium

quasi-periodic eruptions (QPEs)

- QPEs are fast bright soft X-ray bursts repeating every $\mathrm{O}(1-10)$ hours with peak luminosity $\mathbf{~ 1 0}^{\wedge} 42$ ergs/s.
- 6 QPE sources (e.g., GSN 069 and ERO-QPE1)

quasi-periodic eruptions (QPEs)

- QPEs are fast bright soft X-ray bursts repeating every $\mathrm{O}(1-10)$ hours with peak luminosity ~10^42 ergs/s.
- 6 QPE sources (e.g., GSN 069)

Miniutti+2023

quasi-periodic eruptions (QPEs)

- QPEs are fast bright soft X-ray bursts repeating every few hours with peak luminosity ~10^42 ergs/s.
- 6 QPE sources (e.g., GSN 069)

1. I_strong \& I_weak
2. T_long \& T_short

$$
\begin{aligned}
& (\delta T / T)_{\text {long,short }} \sim 6 \% \\
& (\delta T / T)_{\text {sum }} \sim 0.3 \%
\end{aligned}
$$

3. TDE association (3/6)

quasi-periodic eruptions (QPEs)

- QPEs are fast bright soft X-ray bursts repeating every few hours with peak luminosity $\sim 10 \wedge 42$ ergs/s.
- 6 QPE sources (e.g., ERO-QPE1)

Arcodia+2022

quasi-periodic eruptions (QPEs)

- QPEs are fast bright soft X-ray bursts repeating every few hours with peak luminosity $\sim 10 \wedge 42$ ergs/s.
- 6 QPE sources (e.g., ERO-QPE1)

4. higher-energy peaks come earlier
5. fast rising slow decay
6. light SMBH (6/6) 1e5 -- a few 1e6 Msun

EMRI + TDE disk model

Franchini+2023: stellar mass BH Linial+2023: normal star

EMRI + TDE disk model

Franchini+2023: stellar mass BH Linial+2023: normal star

Zhou+(in prep): light curve + flare timing With M=7e5 Msun, $\mathrm{a}=212 \mathrm{M}, \mathrm{e}=0.047$

Summary and questions

1. EMRI+TDE disk model vs other models ?
e.g., Repeating partial TDEs, disk instabilities
2. If EMRI+TDE disk:

What can we learn from the orbital properties ($a \sim 100 \mathrm{M}, \mathrm{e}<0.1$) ?

- Loss cone channel (no)
- Hills mechanism (?)
- Wet channel (yes)
- Other sources
(?)

