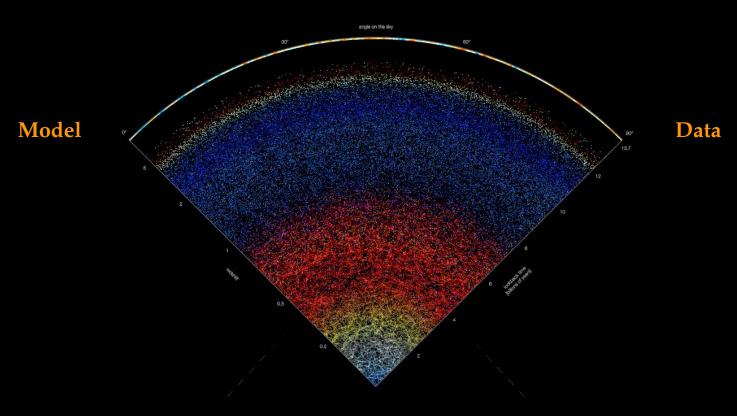
Forward Model the Universe in the Era of Deep Learning

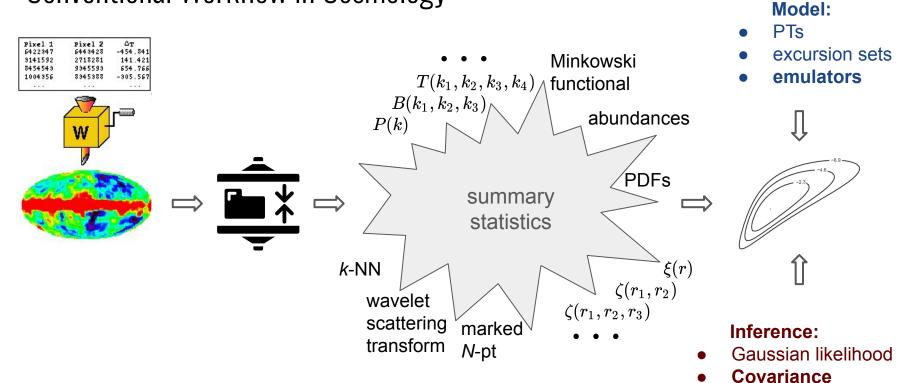
Yin Li (Peng Cheng Laboratory)

32nd Texas Symposium in Shanghai 2023-12-15

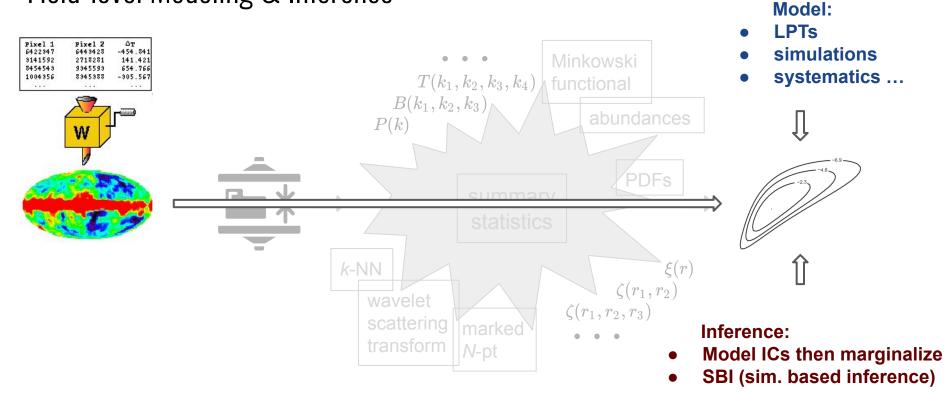


Inference

Conventional Workflow in Cosmology



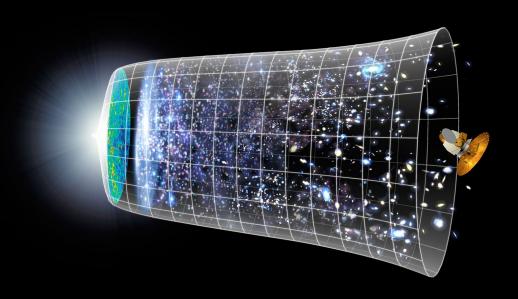
Field-level Modeling & Inference

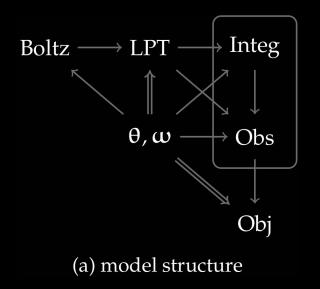


Hardware & Software Breakthroughs can also help Established Research

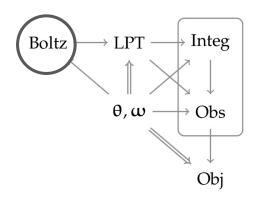
Hardware Software

Cosmological Forward Model





Boltzmann solvers

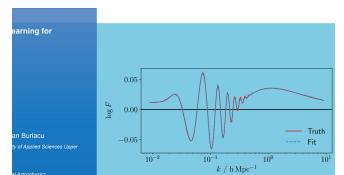


(a) model structure

- Fitting formulae (Eisenstein & Hu) 1e-2~1e-1
- Neural network emulators (CosmoPower, CosmicNet, Arico+, ...), differentiable by construction; 1e-3~1e-2
- Differentiable Boltzmann solvers, 1e-3
 - o DISCO-DJ (Hahn+)
 - Bolt.jl (Z. Li+) only forward
- Symbolic regression (Bartlett+) 1e-3

The terms Eisenstein & Hu Missed

A precise symbolic emulator of the linear matter power spectrum



```
• BORG (Jasche & Wandelt 2013)
```

- ELUCID (Wang et al. 2014, ...)
- FastPM+vmad (Feng et al. 2016 & Seljak et al. 2017, ...)
- BORG-PM (Jasche & Lavaux 2019, ...)
- FlowPM (Modi et al. 2020)
- ...

• BORG (Jasche & Wandelt 2013)

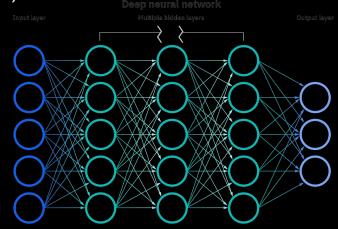
• ELUCID (Wang et al. 2014, ...)

FastPM+vmad (Feng et al. 2016 & Seljak et al. 2017, ...)

BORG-PM (Jasche & Lavaux 2019, ...)

▶ FlowPM (Modi et al. 2020)

• ..



```
BORG (Jasche & Wandelt 2013)
```

● ELUCID (Wang et al. 2014, ...)

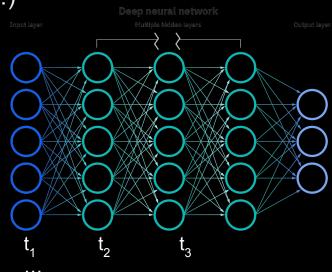
• FastPM+vmad (Feng et al. 2016 & Seljak et al. 2017, ...)

• BORG-PM (Jasche & Lavaux 2019, ...)

▶ FlowPM (Modi et al. 2020)

• ...

Trade-off between spatial and time complexity



```
BORG (Jasche & Wandelt 2013)
ELUCID (Wang et al. 2014, ...)
```

• FastPM+vmad (Feng et al. 2016 & Seljak et al. 2017, ...)

BORG-PM (Jasche & Lavaux 2019, ...)

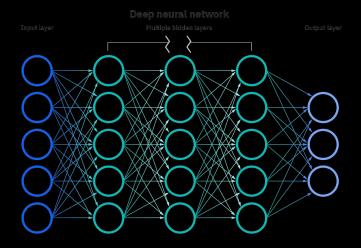
FlowPM (Modi et al. 2020)

• ...

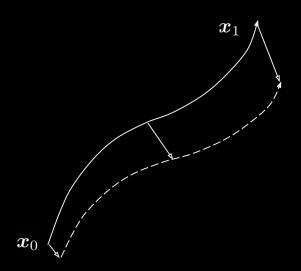
Trade-off between spatial and time complexity

Adjoint method

Lev Pontryagin 1956

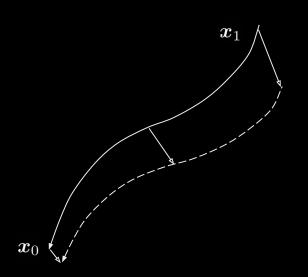


Algorithm Summary: Forward



$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{F}_k(\boldsymbol{x}_k, \boldsymbol{\theta}), \qquad k = 0, \cdots, n-1,$$

Algorithm Summary: Backward



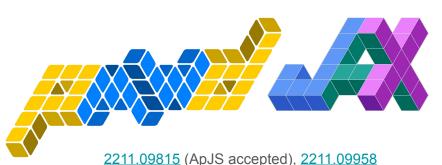
$$x_{k+1} = x_k + F_k(x_k, \theta), \qquad k = 0, \dots, n-1,$$

$$oldsymbol{\lambda}_{k-1} = oldsymbol{\lambda}_k + oldsymbol{\lambda}_k \cdot rac{\partial oldsymbol{F}_{k-1}}{\partial oldsymbol{x}_{k-1}}, \qquad oldsymbol{\lambda}_n = -rac{\partial \mathcal{J}}{\partial oldsymbol{x}_n},$$

$$\frac{\mathrm{d}\mathcal{J}}{\mathrm{d}\boldsymbol{\theta}} = \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial\mathcal{J}}{\partial\boldsymbol{\theta}} - \boldsymbol{\lambda}_0 \cdot \frac{\partial \boldsymbol{x}_0}{\partial\boldsymbol{\theta}} - \sum_{k=1}^n \boldsymbol{\lambda}_k \cdot \frac{\partial \boldsymbol{F}_{k-1}}{\partial\boldsymbol{\theta}}.$$

pmwd (particle mesh with derivatives)

- A differentiable particle-mesh library based on JAX
 - ✓ fast sim on GPU
 - ✓ 2x memory & 3~4x runtime with derivatives
 - ✓ open sourced at <u>github.com/eelregit/pmwd</u>



code	OSS	gradient	mem efficient	hardware
ELUCID		analytic		CPU
BORG-PM		analytic		CPU
FastPM-vmad	\checkmark	AD		CPU
FlowPM	\checkmark	AD		GPU/CPU
ртшд	\checkmark	adjoint	\checkmark	GPU/CPU

Memory efficient: on 1 GPU (say A100)

- FlowPM: 128³ particles for 10 time steps
- pmwd: 512³ particles for any # of steps

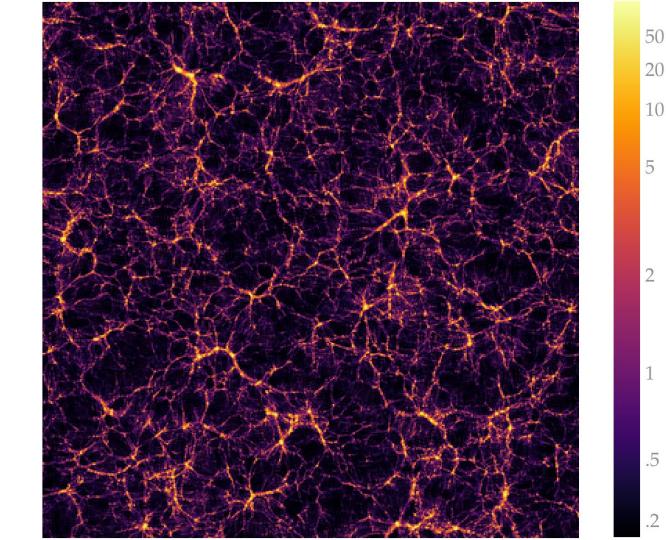
13s to run this:

512³ particles

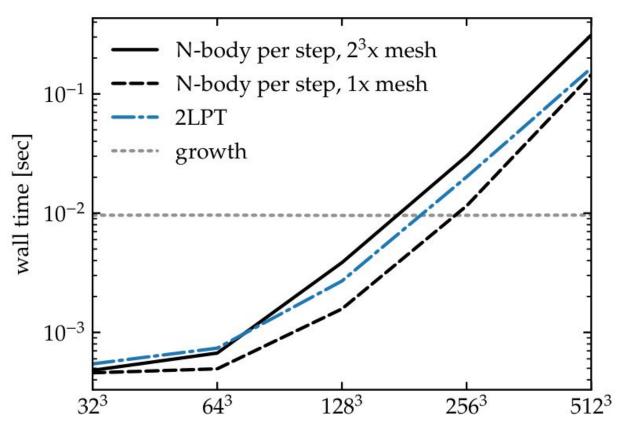
1024³ mesh

63 time steps

1 H100 PCIe GPU



Performance



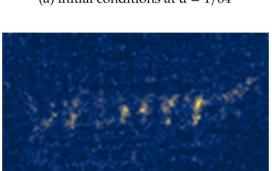
Computation efficient: 256³ particles per step

- FastPM on 1 CPU: 40s
- FastPM on 32 CPU: 3s
- FlowPM on 1 GPU: 1s
- FlowPM on 32 GPU: 0.4s
- pmwd on 1 GPU: 0.01s
- pmwd on n GPU: in dev.

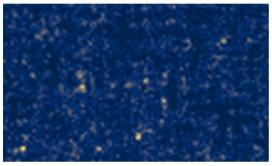
A Toy Optimization Problem



(a) initial conditions at a = 1/64

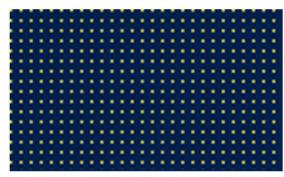


(d) optimization for 10 iterations at $\alpha=1$



(b) final snapshot at a = 1

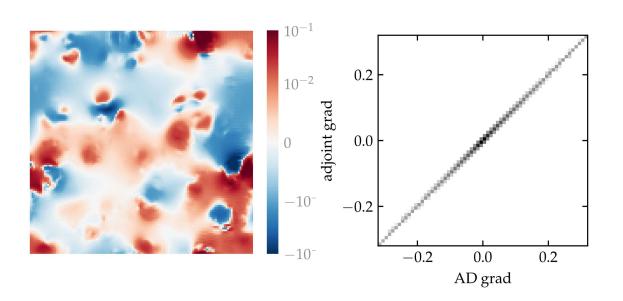
(e) optimization for 100 iterations at a = 1

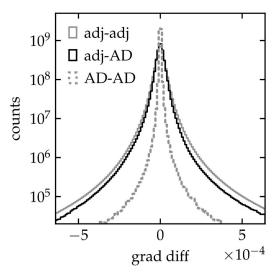


(c) reverse evolution back to a = 1/64

(f) optimization for 1000 iterations at a = 1

Accuracy of the Gradients: Comparison with Automatic Differentiation





Optimize spatial resolution (at the same computational cost)

"Sharpen" the PM Poisson solver kernel, taking symmetry and dimensional analysis into account:

$$\frac{ik_i}{k^2} \to \frac{ik_i}{k^2} f(k_i; \vartheta) g(k_1, k_2, k_3; \vartheta),$$

the most general form due to symmetry, with f being a neural network, and g being an permutation equivariant neural network; both f and g are even functions

$$f(k_i; \vartheta) = f(k_i/k_P, kR_{TH}, \dots; D, f, \dots).$$

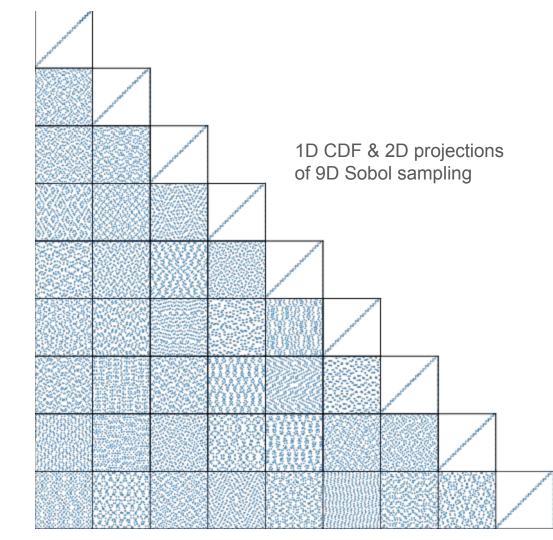
k and R are characteristic scales (eg the nonlinear scales);

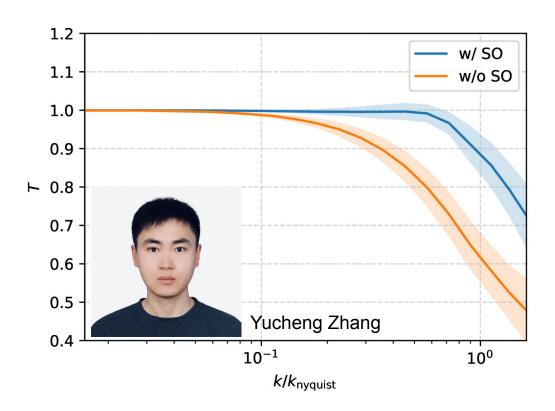
D, ..., stand for dimensionless parameters;

Therefore, f and g networks are nonlinear functions of dimensionless combinations (Buckingham's Pi theorem)

Training Data

- 512 simulations (128³ particles)
- 9D parameter space uniformly sampled with Sobol sequence (quasi-Monte Carlo)





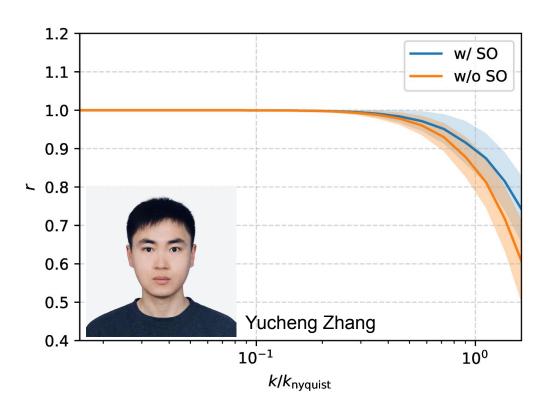
quantify accuracy by:

$$\mathsf{T}(\mathbf{k})\triangleq\sqrt{\frac{|\hat{\delta}(\mathbf{k})|^2}{|\delta(\mathbf{k})|^2}},\quad \mathsf{r}(\mathbf{k})\triangleq\frac{\Re\left[\hat{\delta}(\mathbf{k})\delta^*(\mathbf{k})\right]}{\sqrt{|\hat{\delta}(\mathbf{k})|^2|\delta(\mathbf{k})|^2}}.$$

2000 CPU-hours vs O(0.1) of GPU-sec

$$\frac{ik_i}{k^2} \to \frac{ik_i}{k^2} f(k_i; \vartheta) g(k_1, k_2, k_3; \vartheta),$$

Symbolic regression of the trained networks



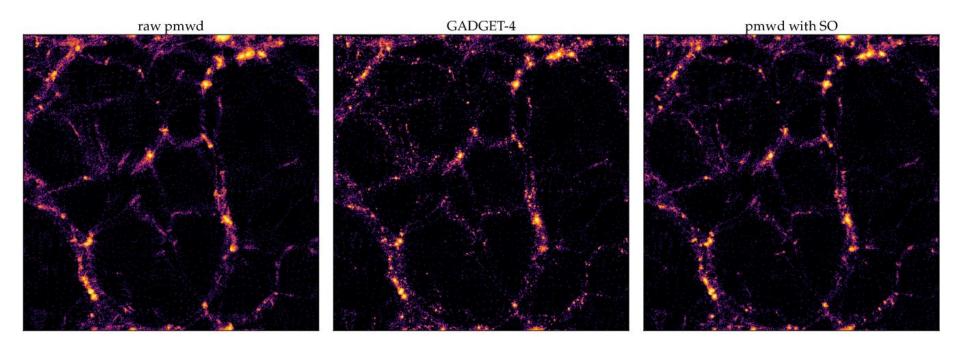
quantify accuracy by:

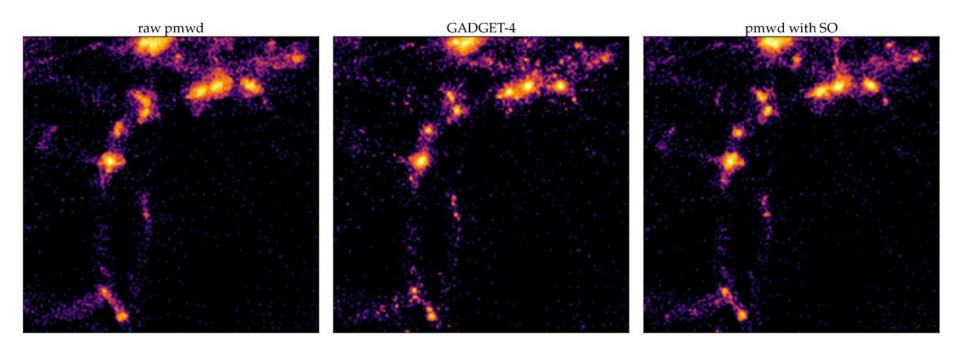
$$\mathsf{T}(\mathbf{k})\triangleq\sqrt{\frac{|\hat{\delta}(\mathbf{k})|^2}{|\delta(\mathbf{k})|^2}},\quad \mathsf{r}(\mathbf{k})\triangleq\frac{\Re\left[\hat{\delta}(\mathbf{k})\delta^*(\mathbf{k})\right]}{\sqrt{|\hat{\delta}(\mathbf{k})|^2|\delta(\mathbf{k})|^2}}.$$

2000 CPU-hours vs O(0.1) of GPU-sec

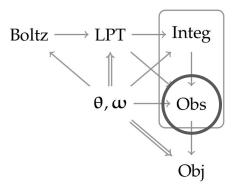
$$\frac{ik_i}{k^2} \to \frac{ik_i}{k^2} f(k_i; \vartheta) g(k_1, k_2, k_3; \vartheta),$$

Symbolic regression of the trained networks



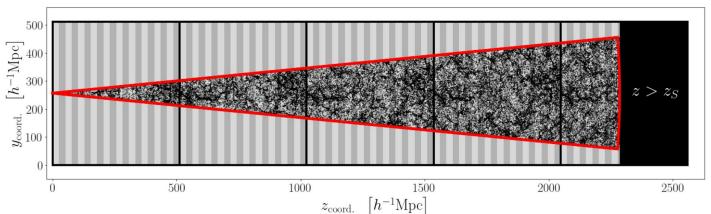


Simulating observables on-the-fly with post-Born ray tracing

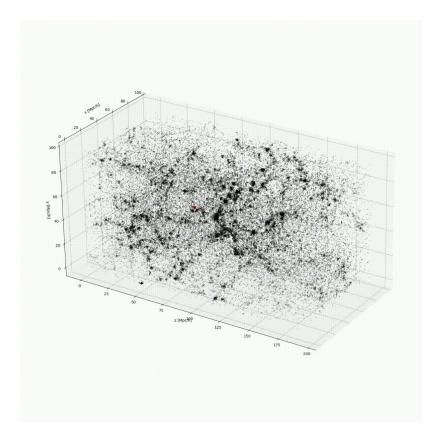


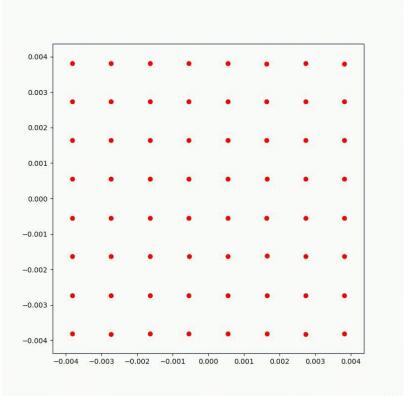
(a) model structure

Junzhe (Alan) Zhou



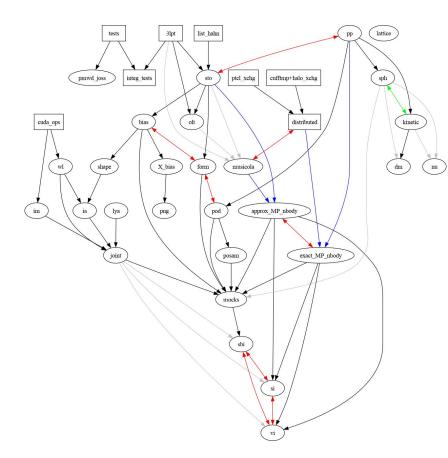
Simulating observables on-the-fly with post-Born ray tracing



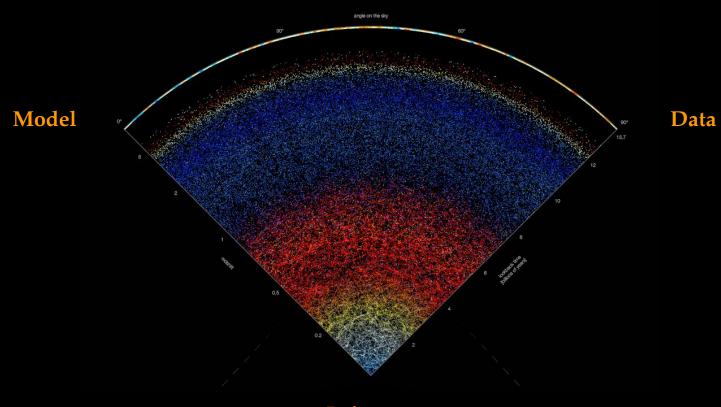


Unified Framework for Cosmology

- Unified model for all observables:
 - weak lensing
 - galaxies, number density & intrinsic alignment
 - Lya skewers
 - intensity mapping
 - foregrounds & systematics
- Baseline model for new physics extensions:
 - neutrinos
 - o early Universe lattice simulation
 - other dark matter interactions
- Performance
 - small scales: short range force (PP or ML correction)
 - o large scales: approx or exact parallelization



pmwd Universe



Inference

Reversibility

precision	cell/ptcl	ptcl mass $[10^{10} M_{\odot}]$	time steps	disp rel diff	vel rel diff
single	8	1	63	5.2×10^{-2}	7.1×10^{-2}
single	8	1	126	2.1×10^{-2}	3.6×10^{-2}
single	8	8	63	3.3×10^{-3}	7.6×10^{-3}
single	8	8	126	3.7×10^{-3}	7.0×10^{-3}
single	1	1	63	1.4×10^{-3}	2.2×10^{-3}
single	1	1	126	1.3×10^{-3}	1.7×10^{-3}
single	1	8	63	4.3×10^{-4}	7.3×10^{-4}
single	1	8	126	4.4×10^{-4}	6.3×10^{-4}
double	8	1	63	5.4×10^{-11}	1.3×10^{-10}
double	8	1	126	3.5×10^{-11}	7.0×10^{-11}
double	8	8	63	5.8×10^{-12}	1.4×10^{-11}
double	8	8	126	6.4×10^{-12}	1.2×10^{-11}
double	1	1	63	2.2×10^{-12}	3.4×10^{-12}
double	1	1	126	2.1×10^{-12}	2.9×10^{-12}
double	1	8	63	7.2×10^{-13}	1.2×10^{-12}
double	1	8	126	6.9×10^{-13}	9.4×10^{-13}