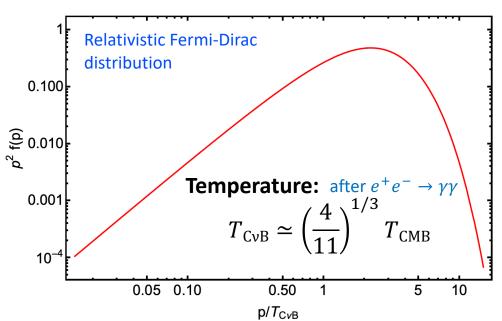

Neutrino (and other particle) physics in large-scale structure


Yvonne Y. Y. Wong
UNSW Sydney

The 32nd Texas Symposium on Relativistic Astrophysics, Shanghai, December 11-15, 2023

The cosmic neutrino background...

Standard model predictions

Number density:

Per family of neutrinos +antineutrinos

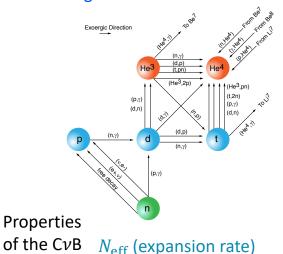
$$n_{\rm CvB} \simeq 110 {\rm \ cm^{-3}}$$

Energy density: Per family

• Relativistic (if $T_{
m C\nu B}\gg m_{
m V}$):

$$\rho_{\text{CvB}} \simeq \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\text{CMB}} \simeq 0.227 \rho_{\text{CMB}}$$

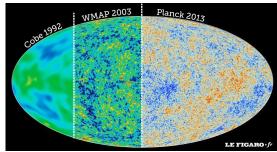
• Non-rel (if $T_{
m C}_{
m VB} \ll m_{
m V}$):


Neutrino (hot)
$$\Omega_{\text{CvB}} \simeq \frac{m_{\nu}}{93 \, h^2 \, \text{eV}}$$

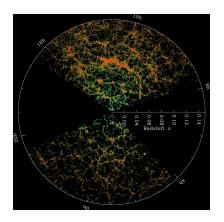
Reduced Hubble parameter

Cosmological bounds on neutrino physics...

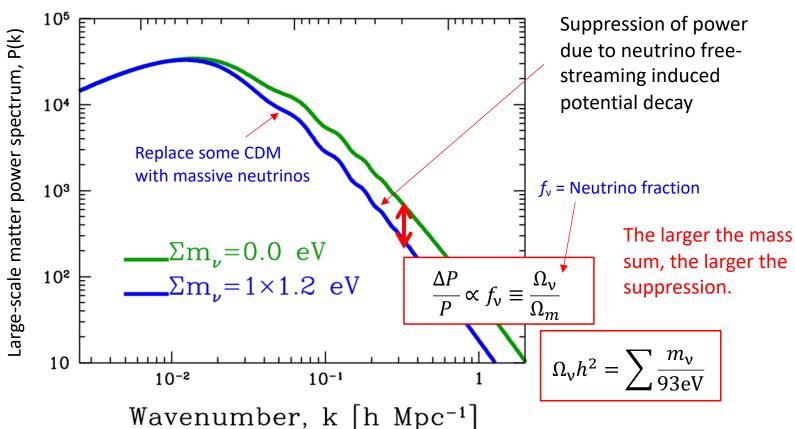
How the C ν B affects the events that take place after its formation can be exploited to constrain its properties.


Light element abundances

probed:


. 2003 Plans

CMB anisotropies


 $N_{\rm eff}$ (expansion rate) $\sum m_{\nu}$ (perturbation growth) Interactions (free-streaming) Lifetime (free-streaming)

Large-scale matter distribution

 $\sum m_{\nu}$ (perturbation growth) Interactions (free-streaming) Lifetime (free-streaming)

E.g., neutrino masses & perturbation growth...

Two different high-likelihood functions

Constraints on the neutrino mass sum...

 Λ CDM+neutrino mass 7-parameter fit; 95% C.L. on $\Sigma m_{_{V}}$ in [eV].

		+CMB lensing	+BAO (non-CMB)	+CMB lensing+BAO
Planck2018 TT+lowE	0.54	0.44	0.16	0.13
2015 number	0.72	0.68	0.21	n/a
Planck2018 TT +lowE+TE+EE	0.26	0.24	0.13	0.12
Planck2018 TT +lowE+TE+EE [CamSpec]	0.38	0.27	n/a	0.13
2015 number	0.49	0.59	0.17	n/a

Planck2015 TT+lowP+Lyα

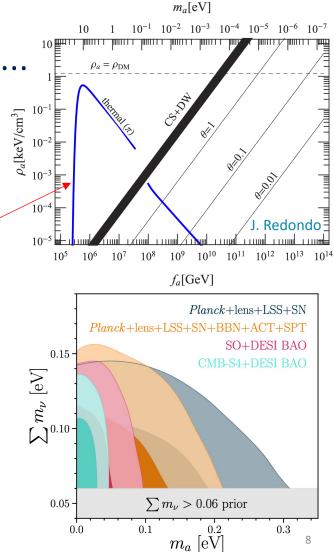
 $\sum m_{\nu} < 0.13 \text{ eV}$

Aghanim et al. [Planck] 2018 Ade et al. [Planck] 2015

What to expect in the future?

Galaxies, cosmic shear, clusters, etc.

		1σ sensitivity to $\sum m_{ u}$	1σ sensitivity to $N_{ m eff}$
ESA Euclid	2024	0.011 - 0.02 eV	0.05
LSST	2024	0.015 eV	0.05

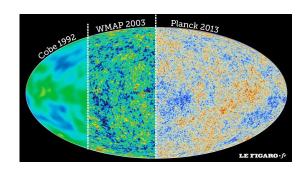

These numbers mean, if the true neutrino mass sum is $\sum m_{\nu} = 0.06 \text{ eV}$ (minimum number required by neutrino oscillation experiments), then it will be possible to measure it with $(3-5)\sigma$ significance.

Variants on the same theme...

Some other BSM particle physics scenarios can also be constrained in the same way.

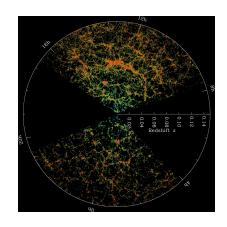
- E.g., for sufficiently small axion decay constants f_a , a thermal background of QCD axions can be produced via $\pi + \pi \rightarrow \pi + a$ in the early universe ($T \sim \Lambda_{\rm OCD} \sim 200~{\rm MeV}$).
- Analogous to the $C\nu B \rightarrow$ the axion mass m_a can be constrained in the same way as $\sum m_{\nu}$.

Bianchini, Cortona & Valli 2023 Also: Notari, Rompineve & Villadoro 2023 D'Eramo et al. 2022 Hannestad, Mirizzi, Raffelt & Y³W 2007, 2008, 2010, 2013, etc.



Cosmological bounds on neutrino physics...

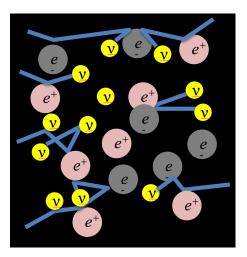
How the C ν B affects the events that take place after its formation can be exploited to constrain its properties.

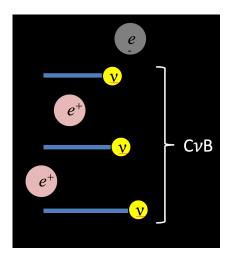

Light element abundances **Properties** of the CνB $N_{\rm eff}$ (expansion rate) probed:

CMB anisotropies

 $N_{\rm eff}$ (expansion rate) $\sum m_{\nu}$ (perturbation growth) Interactions (free-streaming) Lifetime (free-streaming)

Large-scale matter distribution


 $\sum m_{\nu}$ (perturbation growth) Interactions (free-streaming) Lifetime (free-streaming)


Constraining non-standard neutrino interactions & lifetime...

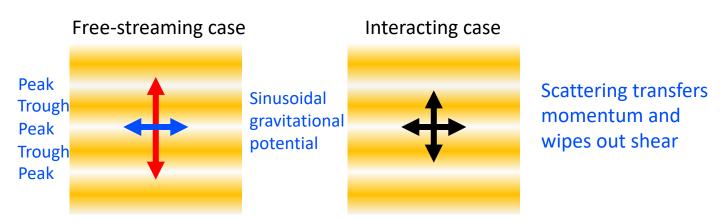
Cosmic neutrino background ... Interaction rate: $\Gamma_{\text{weak}} \sim G_F^2 T^5$

Expansion rate: $H \sim M_{\rm nl}^{-2} T^2$

The CvB is formed when neutrinos decouple from the cosmic plasma.

Neutrinos "free-stream" to infinity.

 $(T_{\odot \text{core}} \sim 1 \text{ keV})$


Above $T \sim 1$ MeV, even weakly-interacting neutrinos can be produced, scatter off e^+e^- and other neutrinos, and attain thermodynamic equilibrium

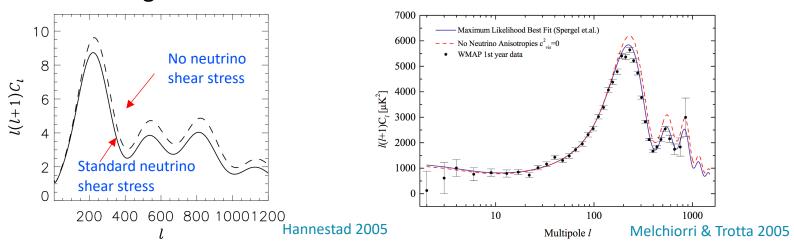
Below $T \sim 1$ MeV, expansion dilutes plasma, and reduces interaction rate: the universe becomes transparent to neutrinos.

Neutrino free-streaming vs interactions...

Standard-model neutrinos free-stream.

- Free-streaming in an inhomogeneous background induces shear stress (aka momentum anisotropy).
- Conversely, interactions transfer momentum and, if sufficiently efficient, can wipe to out shear.

Neutrino shear stress & the metric...

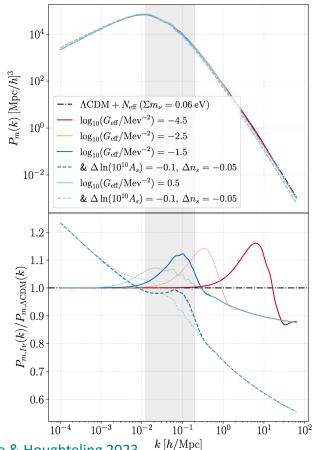

Neutrino shear stress (or lack thereof) leaves distinct imprints on the spacetime metric perturbations.

Scale factor
$$\mathrm{d} s^2 = a^2(\tau)[-(1+2\psi)\mathrm{d}\tau^2 + (1-2\phi)\mathrm{d}x^i\mathrm{d}x_i]$$
 where $k^2(\phi-\psi) = 12\pi G a^2(\bar{\rho}+\bar{P})\sigma$ Shear stress In Λ CDM, mainly from ultra-relativistic neutrinos and photons.

- Changes to $(\phi \psi)$ at CMB formation times affect the evolution of CMB perturbations and are observable in the **TT power spectrum**.
- In turn, the evolution of ϕ and ψ individually can influence growth of matter perturbations.

Neutrino shear stress & the CMB...

That the CMB prefers neutrino shear stress to no shear stress has been known for a long time.



- The tricky part is in translating this preference to constraints on the fundamental parameters of a non-standard neutrino interaction
- → What is the **isotropisation timescale** given an interaction?

Neutrino shear stress & LSS power spectrum...

Neutrino shear stress (or lack thereof) also has a signature in the mildly-nonlinear part of the matter power spectrum.

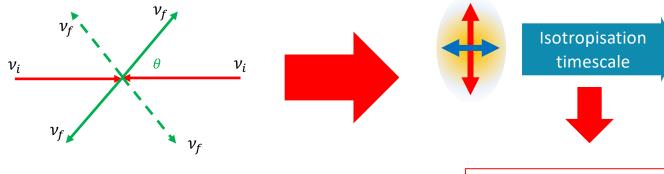
- Large neutrino shear stress expected only during and shortly after radiation domination, when neutrinos are ultra-relativistic.
 - Observable signatures are thus confined to small scales that entered the horizon at the said times.
- There is however room for improvement in the modelling of the LSS signature....

Isotropisation timescale $T_{isotropise}$...

The key to **connecting anisotropic stress loss to a non-standard neutrino interaction** lies in the isotropisation timescale.

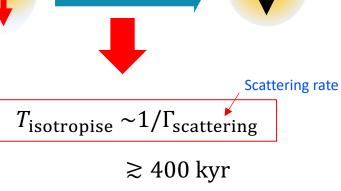
- Given an interaction Lagrangian, $T_{isotropise}$ is calculable.
- Write down the Boltzmann equation:

$$P^{\alpha} \frac{\partial f}{\partial x^{\alpha}} - \Gamma^{\gamma}_{\alpha\beta} P^{\alpha} P^{\beta} \frac{\partial f}{\partial P^{\gamma}} = \frac{1}{2} \left(\prod_{j=1}^{N} \int g_{j} \frac{\mathrm{d}^{3} \mathbf{n}_{j}}{(2\pi)^{3} 2E_{j}(\mathbf{n}_{j})} \right) \left(\prod_{k=1}^{M} \int g_{k} \frac{\mathrm{d}^{3} \mathbf{n}_{k}}{(2\pi)^{3} 2E_{k}(\mathbf{n}_{k})} \right)$$


$$\times (2\pi)^{4} \delta_{D}^{(4)} \left(p + \sum_{j=1}^{N} n_{j} - \sum_{k=1}^{M} n_{k}' \right) |\mathcal{M}_{i+j_{1}+\dots+j_{N} \leftrightarrow k_{1}+\dots+k_{M}}|^{2}$$

$$\times [f_{k_{1}} \cdots f_{k_{N}} (1 \pm f_{i}) (1 \pm f_{j_{1}}) \cdots (1 \pm f_{j_{N}}) - f_{i} f_{j_{1}} \cdots f_{j_{N}} (1 \pm f_{k_{1}}) \cdots (1 \pm f_{k_{M}})]$$

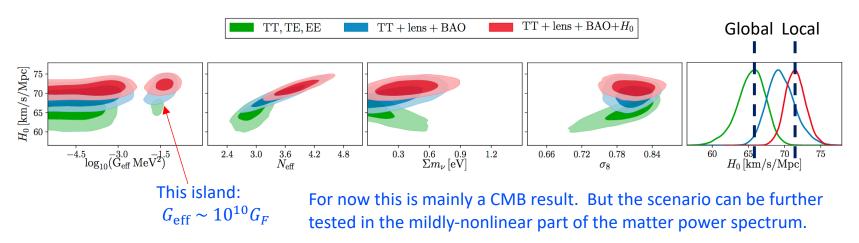
- Decompose in a Legendre series.
- The damping rate of the quadrupole ($\ell = 2$) moment is the **isotropisation rate**.


Example 1: ν self-interaction...

Isotropisation from 2-to-2 scattering $v_i + v_i \rightarrow v_f + v_f$.

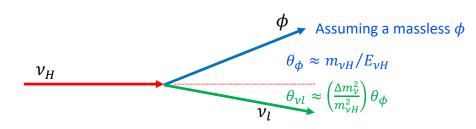
• The probability of v_f emitted at any angle θ is the same for all $\theta \in [0, \pi]$.

Cyr-Racine & Sigurdson 2014; Oldengott, Rampf & Y³W 2015; Lancaster, Cyr-Racine, Knox & Pan 2017; Oldengott, Tram, Rampf & Y³W 2017; Kreisch, Cyr-Racine & Dore 2019; Forastieri et al. 2019; etc.


 \rightarrow Upper limit on $\Gamma_{\text{scattering}}$ (hence coupling).

ν self-interaction and the H_0 tension...

Kreisch, Cyr-Racine & Dore 2019


Recent claim that self-interaction alleviates the Hubble tension.

- Local/late time: Cepheid-calibrated SNIa (SH0ES) and strong-lensing time delays (H0liCOW); $H_0 = (73.5 \pm 1.4) \text{ km/s/Mpc}$
- Global/early time: Statistical inference from CMB anisotropies (Planck), weak lensing, BAO; $H_0 = (67.4 \pm 0.5) \text{ km/s/Mpc}$

Example 2: Relativistic ν decay...

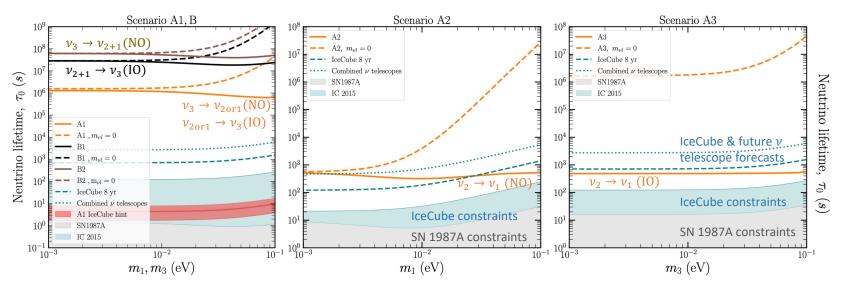
Isotropisation can also happen via $v_H \rightarrow v_l + \phi$ and its inverse process $v_l + \phi \rightarrow v_H$, but the rate is a bit more complicated.

In relativistic decay, the decay products are **beamed**.

Some boson

Inverse decay can also only happen when the daughter particles satisfy **strict momentum/angular requirements**.

→ Isotropisation takes a looooong time:

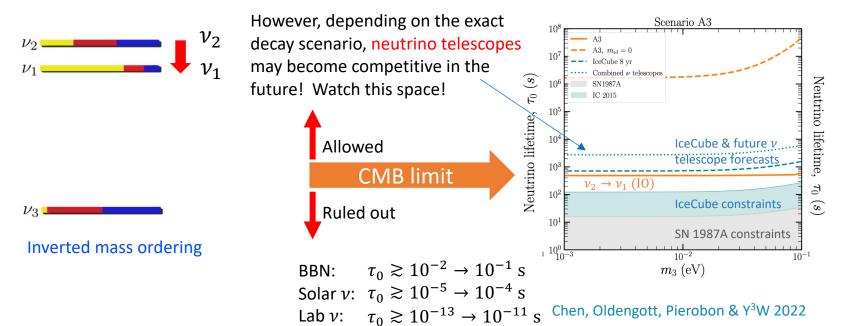

Boost Rest-frame lifetime
$$T_{\rm isotropise} \sim \left(\theta_{\phi}\theta_{\nu l}\right)^{-2} \gamma_{\nu H} \tau_{\rm rest}$$
 $\gtrsim 400~{\rm kyr}$

Barenboim, Chen, Hannestad, Oldengott, Tram & Y³W 2021; Chen, Oldengott, Pierobon & Y³W 2022

 \rightarrow Lower bound on τ_{rest} as a function of $m_{\nu H}$ and $m_{\nu I}$.

Lower bounds on the neutrino lifetime...

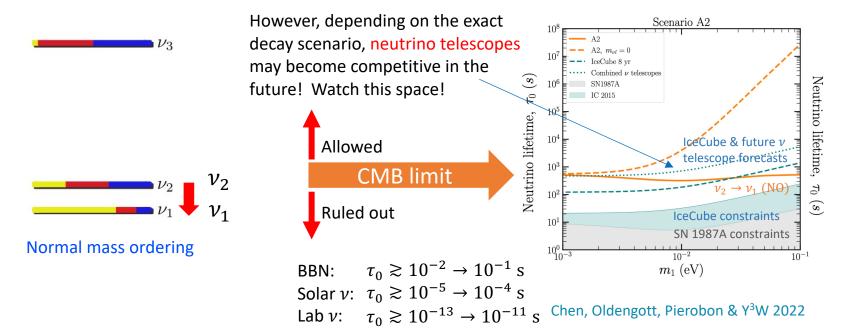
CMB currently gives the best limits on invisible neutrino decay $\nu_H \rightarrow \nu_l + \phi$.


NO = Normal mass ordering IO = Inverted mass ordering

Chen, Oldengott, Pierobon & Y³W 2022

^{*} IceCube constraints & forecasts from Song et al. 2021

Lower bounds on the neutrino lifetime...


CMB currently gives the best limits on invisible neutrino decay $\nu_H \rightarrow \nu_l + \phi$.

^{*} IceCube constraints & forecasts from Song et al. 2021

Lower bounds on the neutrino lifetime...

CMB currently gives the best limits on invisible neutrino decay $\nu_H \rightarrow \nu_l + \phi$.

^{*} IceCube constraints & forecasts from Song et al. 2021

Summary...

It is well known that CMB/large-scale structure observations can set very competitive upper limits on the neutrino mass sum.

- But there are also other well-motivated particle physics scenarios, e.g., the QCD axion, that can be constrained in the same way.
- Furthermore, besides mass limits, CMB/LSS observations can also be used to probe non-standard neutrino interactions and to constrain the neutrino lifetime.
 - However, more work on modelling is required to predict the precise LSS signatures of these scenarios.