

Accretion onto black holes with saturated magnetic pressure

Jiahui Huang (Tsinghua)

huangjh19@mails.tsinghua.edu.cn

Collaborators: Hua Feng, Yan-Fei Jiang, Shane W. Davis, James M. Stone,

Matthew J. Middleton, Wei-Min Gu, Wen-Biao Wu

2023.12.14

if 著大拿 Limitations of Classical Models

>Outflows confirmed by absorption lines

➢Geometry of coronae

≻Magnetic field: MRI & turbulence

题 清華大学 3D RMHD Simulation

 \triangleright Different magnetic field configurations and initial densities leads to different \dot{m}

> Velocity peaks around axis, $v \sim 0.1c$

Mass load rate peaks at the surface of the disk

Comparable magnitude of magnetic / radiation pressure
Gradient of magnetic pressure supports the disk
Saturated magnetic pressure: P_B~ρc_gV_K (Begelman & Pringle 2007)

>Outflows: $\dot{M} \propto R^p$ (Blandford & Begelman 1999) (mass conservation)

 $p = \lambda(H/R) \text{ (Wu et al. 2022)}$ $-\frac{1}{R}\frac{d}{dR}(R^{3}\Sigma V_{R}\Omega) + \frac{1}{R}\frac{d}{dR}\left(R^{3}\nu\Sigma\frac{d\Omega}{dR}\right) - \frac{(lR)^{2}\Omega}{2\pi R}\frac{d\dot{M}_{w}}{dR} = 0 \text{ (momentum conservation)}$ $Q_{\text{vis}} = Q_{\text{rad}} + Q_{\text{adv}} + Q_{w}$

(energy conservation: viscous heating = radiative + advective + wind cooling)

>Magnetic pressure: $P_B = \rho c_g V_K$ (Begelman & Pringle 2007) (confirmed by simulation)

Esin et al. 1997 ⁹

9

$$L_{\rm bol} = \int_{R_{\rm in}}^{R_{\rm out}} 2\pi R Q_{\rm rad} dR \,,$$

$$L_{\rm iso} = \frac{1}{b} L_{\rm bol} \approx \frac{1}{1 - \cos \theta} L_{\rm bol} \,,$$

Huang et al. 2023b

Luminosity has a saturated value similar to AGN (Wang et al. 2014)

Background: limitation of classical models

Simulation: outflows in the near critical runs with velocity $\sim 0.1c$

Simulation: vertical structure supported by magnetic pressure, $P_B \sim \rho c_S v_K$

12

>Analytical model with outflows and P_B : SSD exists only at larger radius

Thank you!