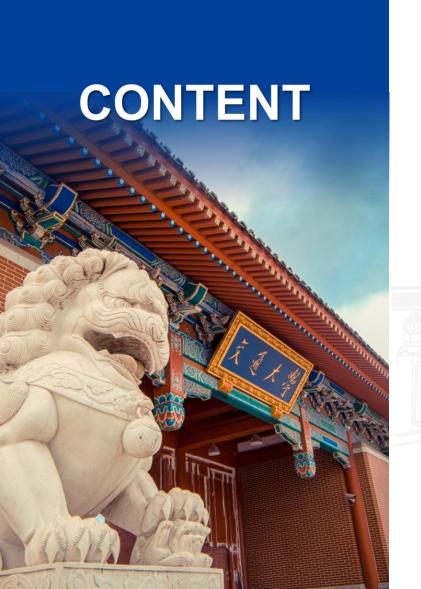
Quasi-2D Shear Correlation

Texas 2023

Zhenjie Liu

Shanghai Jiao Tong University



1 Methodology

2 Data and Results

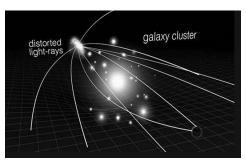
PART ONE

Methodology

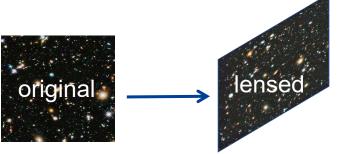
Introduction

- Shear refers to the distortion of the background source image caused by the bending of the light path as it passes through a mass distribution.
- Weak lensing is sensitive to the matter fluctuations (σ_8) and the matter density (Ω_m).

$$\vec{x}_S = \begin{pmatrix} x_S \\ y_S \end{pmatrix} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix} \begin{pmatrix} x_I \\ y_I \end{pmatrix} = \vec{A} \cdot \vec{x}_I$$



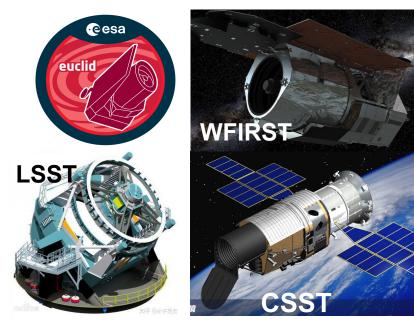
Reduced shear: $g_i = \gamma_i / (1 - \kappa)$



	< 0	> 0	
κ			
γ ₁			
γ_2		0	

Nowadays: DES, HSC, KiDs, ...

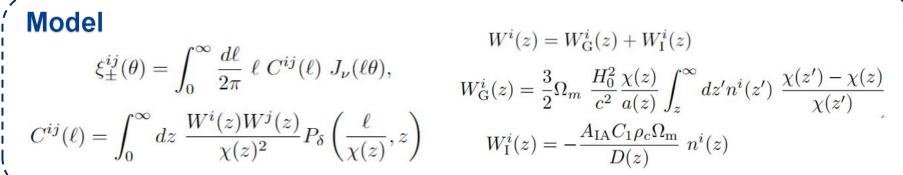
Future:



Shear-shear correlation

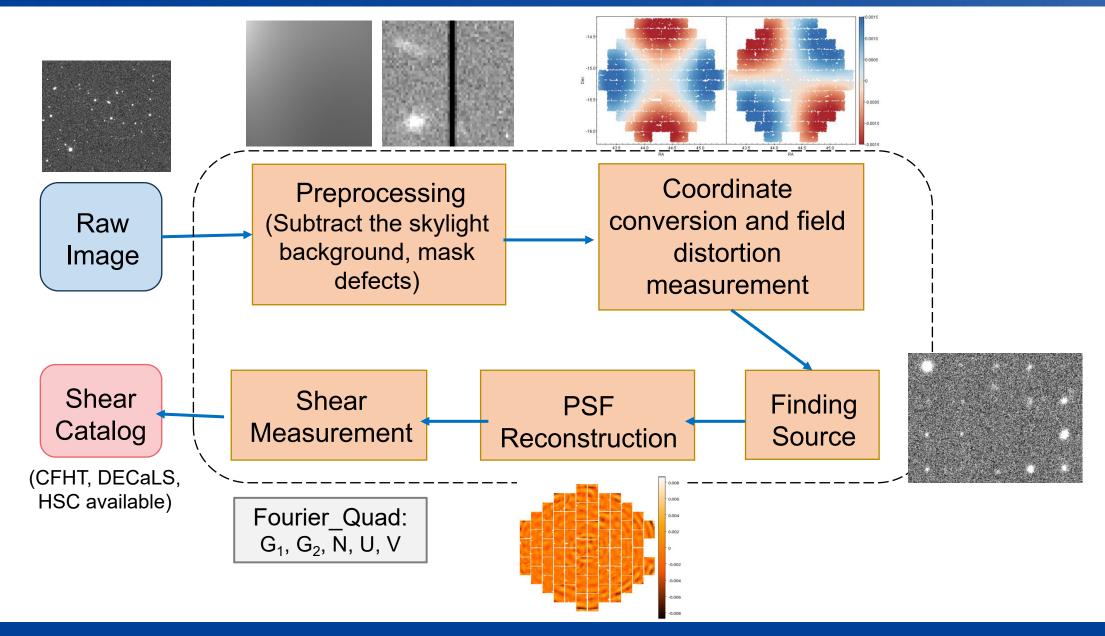
• Shear-shear correlation is to measure the correlation between shear signals at two given positions separated by a certain distance.

$$\xi_{\pm} = \xi_{\gamma_t \gamma_t} \pm \xi_{\gamma_\times \gamma_\times}$$



- γ_1 ϕ
- Possible systematics: intrinsic alignment, baryon effect, errors of photometric redshift ...
 - Baryonic Correction Model (BCM; Schneider & Teyssier (2015))
 - Mc = $1.2 \times 10^{14} M_{\odot}$ /h and $\eta_b = 0.5$
 - Nonlinear Alignment Model (NLA; Bridle & King (2007)) (free A_{IA}) $\xi_{\pm} = \xi_{GG\pm} + \xi_{II\pm} + \xi_{GI\pm}$

Pipeline



Fourier_Quad Method

Shear Estimators

$$G_{1} = -\frac{1}{2} \int d^{2}\vec{k} \left(k_{x}^{2} - k_{y}^{2}\right) T(\vec{k}) M(\vec{k})$$

$$G_{2} = -\int d^{2}\vec{k} k_{x} k_{y} T(\vec{k}) M(\vec{k})$$

$$N = \int d^{2}\vec{k} \left[k^{2} - \frac{\beta^{2}}{2} k^{4}\right] T(\vec{k}) M(\vec{k})$$

$$M(\vec{k}) = \left| \widetilde{f}^S(\vec{k}) \right|^2 - F^S - \left| \widetilde{f}^B(\vec{k}) \right|^2 + F^B$$
$$T(\vec{k}) = \left| \widetilde{W}_\beta(\vec{k}) \right|^2 / \left| \widetilde{W}_{PSF}(\vec{k}) \right|^2$$

The ensemble averages of the shear estimators give

$$\frac{\langle G_1 \rangle}{\langle N \rangle} = g_1 + O(g_{1,2}^3),$$
$$\frac{\langle G_2 \rangle}{\langle N \rangle} = g_2 + O(g_{1,2}^3)$$

Unbiased, recovering the shear values to the second order in accuracy.

Fourier_Quad Method

Shear Estimators

$$G_{1} = -\frac{1}{2} \int d^{2}\vec{k} \left(k_{x}^{2} - k_{y}^{2}\right) T(\vec{k}) M(\vec{k})$$

$$G_{2} = -\int d^{2}\vec{k} k_{x} k_{y} T(\vec{k}) M(\vec{k})$$

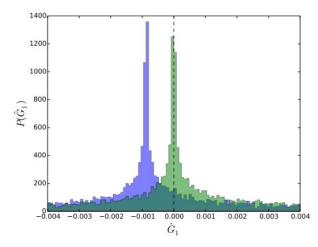
$$N = \int d^{2}\vec{k} \left[k^{2} - \frac{\beta^{2}}{2} k^{4}\right] T(\vec{k}) M(\vec{k})$$

$$U = -\frac{1}{2} \beta^{2} \int d^{2}\vec{k} \left(k_{x}^{4} - 6k_{x}^{2} k_{y}^{2} + k_{y}^{4}\right) T(\vec{k}) M(\vec{k})$$

$$V = -2\beta^{2} \int d^{2}\vec{k} \left(k_{x}^{3} k_{y} - k_{x} k_{y}^{3}\right) T(\vec{k}) M(\vec{k})$$

$$M(\vec{k}) = \left|\widetilde{f}^{S}(\vec{k})\right|^{2} - F^{S} - \left|\widetilde{f}^{B}(\vec{k})\right|^{2} + F^{B}$$

$$T(\vec{k}) = \left|\widetilde{W}_{\beta}(\vec{k})\right|^{2} / \left|\widetilde{W}_{PSF}(\vec{k})\right|^{2}$$



The relation between the shear estimates of lensed galaxy image and those of unlensed galaxy is

$$G_i = G_i^{S} + g_i B_i$$

$$B_i = \begin{cases} N + U & i = 1\\ N - U & i = 2 \end{cases}$$

PDF-SYM Method for shear

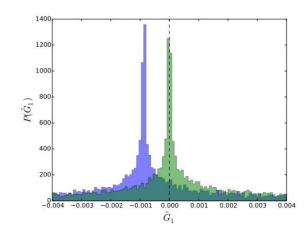
(Probability Distribution Function Symmetrization)

Averaging PDF-SYM Unbiased. Unbiased, optimal. Affected by outlier. Accuracy approach the Cramér-Rao bound.

The PDF-SYM method is similar to finding the median.

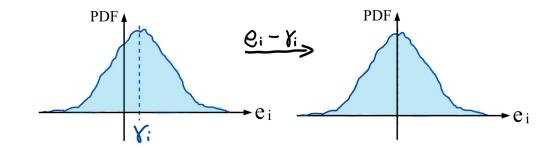
• Use \hat{g}_i to modify the shear estimators

$$\hat{G}_i = G_i - \hat{g}_i B_i = G_i^{S} + (g_i - \hat{g}_i) B_i.$$



• Ellipticity

$$e_i = e_i^{\rm S} + \gamma_i$$

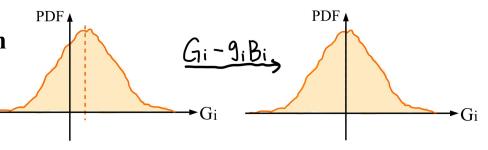


For recovering shear, $\hat{g}_i = g_i$ can best symmetrize $P(\hat{G}_i)$.

$$\chi^2 = \frac{1}{2} \sum_{i>0} \frac{(n_i - n_{-i})^2}{n_i + n_{-i}}$$

Fourier_Quad paradigm

$$G_i = G_i^{S} + g_i B_i$$



PDF-SYM Method for shear-shear correlation

(Probability Distribution Function Symmetrization)

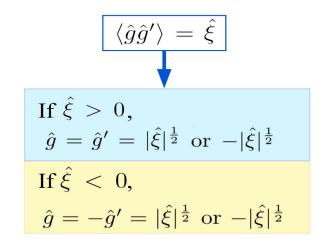
• Use \hat{g}_i to modify the shear estimators

$$\hat{G}_i = G_i - \hat{g}_i B_i = G_i^{S} + (g_i - \hat{g}_i) B_i.$$

• The modified PDF:

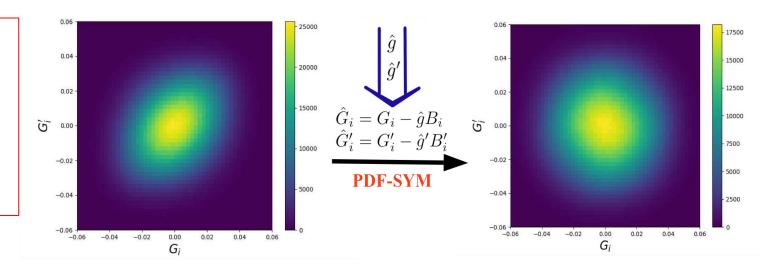
$$P(\hat{G}_{i}, \hat{G}'_{i}) + P(-\hat{G}_{i}, -\hat{G}'_{i}) - P(-\hat{G}_{i}, \hat{G}'_{i}) - P(\hat{G}_{i}, -\hat{G}'_{i})$$

$$\approx \int dB \int dB' (\langle g_{i}g'_{i}\rangle + \hat{\xi})BB' \partial_{\hat{G}_{i}}\partial_{\hat{G}'_{i}}P_{S}. \tag{12}$$

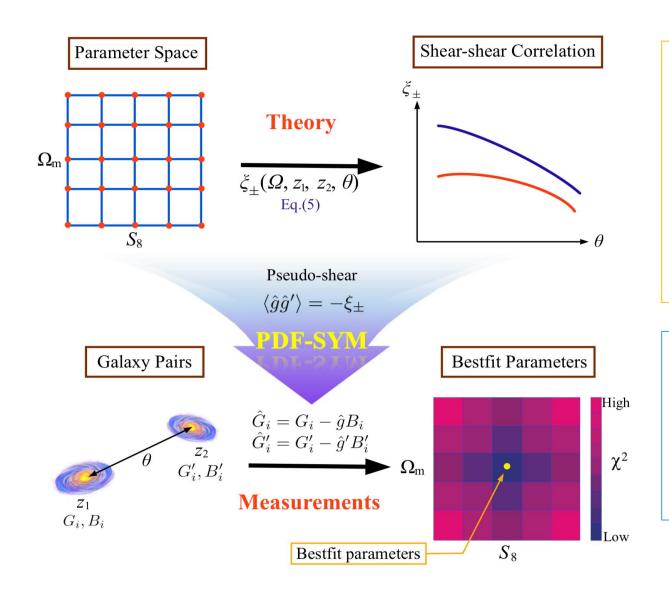


For recovering shear-shear correlation, $\hat{\xi} = -\langle g_i g_i' \rangle$ can best symmetrize $P(\hat{G}_i, \hat{G}_i')$.

$$\chi^2 = \frac{1}{2} \sum_{i,j>0} \frac{(n_{i,j} + n_{-i,-j} - n_{-i,j} - n_{i,-j})^2}{n_{i,j} + n_{-i,-j} + n_{-i,j} + n_{i,-j}}$$



Quasi-2D Analysis



Steps:

- 1. Calculate the theoretical auto-correlation functions of γ_t , γ_{\times} with different parameters.
- 2. Find two galaxies and use the theory to modify the shear estimators.
- 3. Calculate the χ^2 and find the minimum in parameter space.

Quasi-2D:

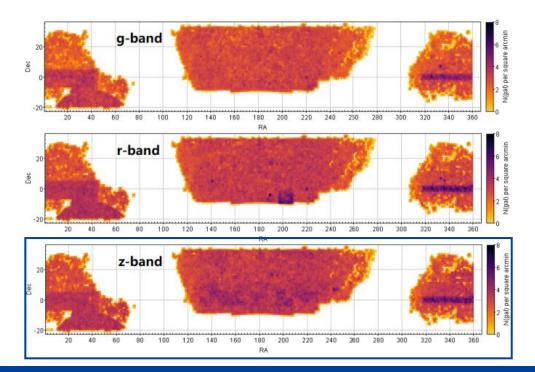
- 1. The redshift of each galxy is **used**.
 - 2. There is just **one** bin on redshift.
- Jackknife approach to estimate the covariance matrix of parameters $(N_{IK}=200)$

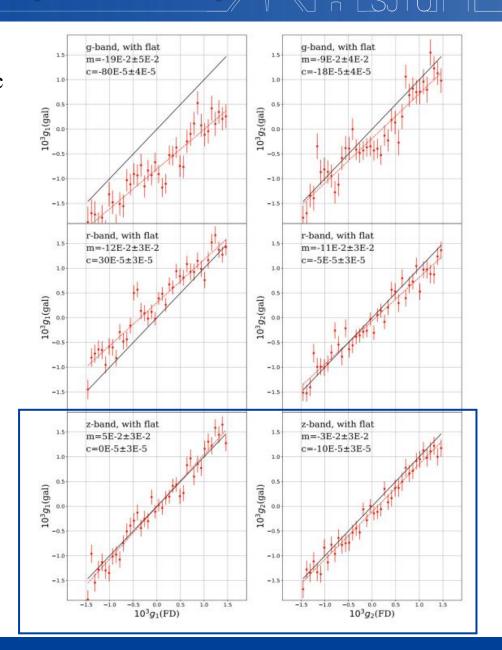
PART TWO

Data and Results

DECam Legacy Survey (DECaLS)

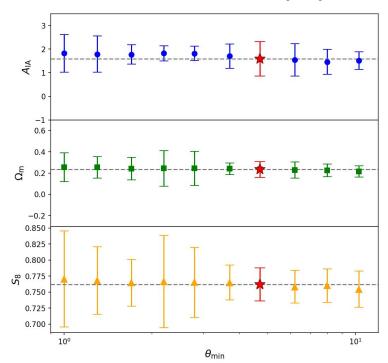
- DECaLS is one of the three public projects in Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys (Dey et al. 2019)
- Area: about 10000 deg²
- Band: g, r, z band, containing 15420/15162/16501 exposures.
- Only **z-band** data used in this work.





Results

Baseline results: γ_t , γ_{\times}

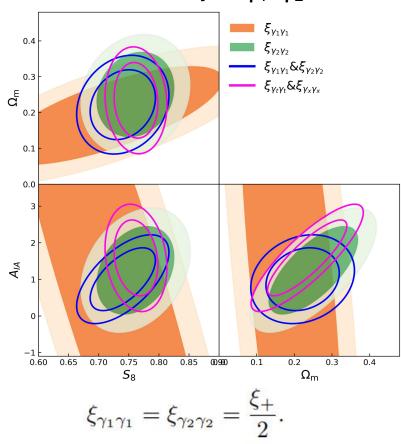


Angular range: 4.7-180 arcmin

$$S_8 = 0.762 \pm 0.026$$

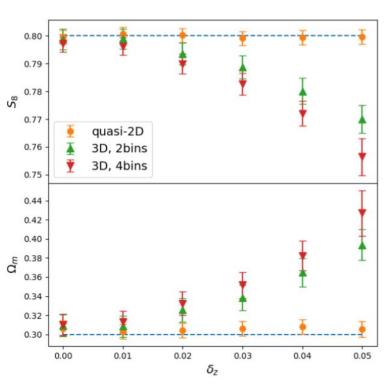
 $\Omega_{\rm m} = 0.234 \pm 0.075$
 $A_{\rm IA} = 1.59 \pm 0.73$.

Consistency of γ_1 , γ_2



The results using different shear components are consistent, but the errors from γ_1 is quite large.

Photo-z



Quasi-2D lensing: It has a tolerance for photo-z errors.

3D lensing: It need some extra modification on photo-z

2D Analysis

bestfit ξ_+ bestfit ξ_-

The estimators of total shear-shear correlations:

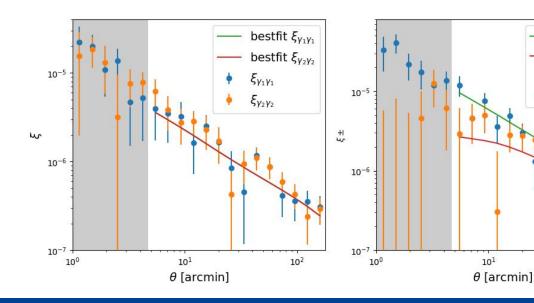
$$\langle \hat{g}\hat{g}' \rangle = -\frac{\int dz \int dz' w(z, z') \langle g(z)g'(z') \rangle}{\int dz \int dz' w(z, z')},$$

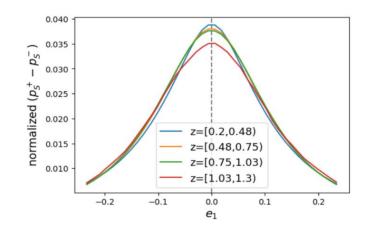
in which w(z, z') is the weight given by the PDF shape:

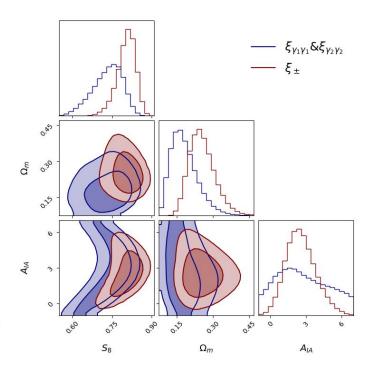
$$w(z, z') = P_S^+(0, 0, z, z') - P_S^-(0, 0, z, z').$$

In practice, we find that as a good approximation, we can factorize w(z, z') as:

$$w(z, z') \approx [p_S^+(0, z) - p_S^-(0, z)][p_S^+(0, z') - p_S^-(0, z')]$$



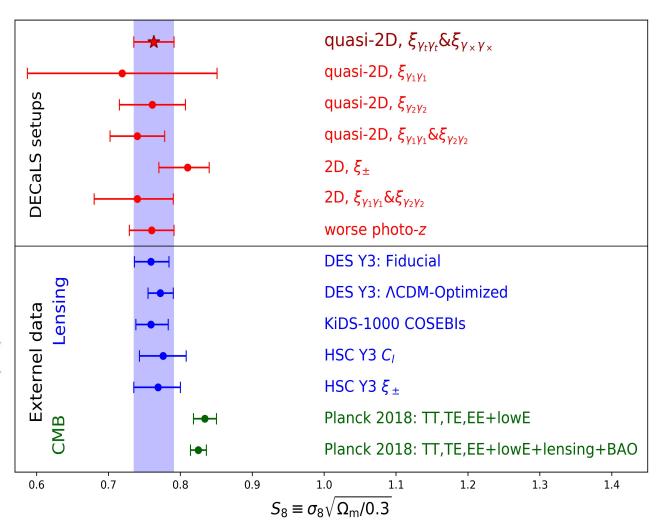




Summary

- We provide a new method, PDF-SYM method, to constrain cosmological parameters using quasi-2D shear correlations.
- Quasi-2D means that we use the redshift for each galaxy but do not divide bins on it.
- Our method has a tolerence for photo-z errors, and the results are robust in different consistency tests.

Setups	S_8	$\Omega_{ m m}$	$A_{ m IA}$
Quasi-2D $\xi_{\gamma_t \gamma_t} \& \xi_{\gamma_\times \gamma_\times}$	0.762 ± 0.026	0.23 ± 0.07	1.59 ± 0.73
Quasi-2D $\xi_{\gamma_1\gamma_1}$	0.719 ± 0.132	0.19 ± 0.10	1.05 ± 6.43
Quasi-2D $\xi_{\gamma_2\gamma_2}$	0.761 ± 0.046	0.25 ± 0.08	1.25 ± 0.85
Quasi-2D $\xi_{\gamma_1\gamma_1} \& \xi_{\gamma_2\gamma_2}$	0.740 ± 0.038	0.22 ± 0.07	1.00 ± 0.60
Worse photo-z	0.761 ± 0.031	0.24 ± 0.06	2.37 ± 1.04
$2D \xi_{\pm}$	$0.81^{+0.03}_{-0.04}$	$0.25^{+0.06}_{-0.05}$	$2.47^{+1.35}_{-1.16}$ $2.50^{+2.67}_{-1.33}$
$2D \xi_{\gamma_1 \gamma_1} \& \xi_{\gamma_2 \gamma_2}$	$0.74^{+0.05}_{-0.06}$	$0.25^{+0.06}_{-0.05} \ 0.17^{+0.06}_{-0.05}$	$2.50^{-1.10}_{-2.01}$



Our S_8 are consistent with those from other lensing surveys, but has more than 2σ -tension compared with Planck predictions.

THANKS FOR WATCHING

I LIHIAVO LOV MAHICUIMO

