

Exploring Ultralight Scalar Assistance in Sterile Neutrino Dark Matter:

Cold Spectrum and Unusual X/Gamma-ray Signatures

Yuxuan He (何雨轩)

Peking University

2023.8.3@TDLI-PKU BSM Workshop 2023:

Looking to the Sky

2305.08095, YXH, Jia Liu, Xiaolin Ma and Xiao-Ping Wang

Introduction

- Sterile neutrino dark matter
- Dodelson-Widrow (DW) mechanism

$$\frac{\partial}{\partial t} f_N(p,t) - Hp \frac{\partial}{\partial p} f_N(p,t) \approx \frac{1}{4} \Gamma_{\rm SM}(p,T) \sin^2(2\theta_{\rm eff}) \left[f_{\nu}(p,t) - f_N(p,t) \right]$$

Mixing induced Gamma/X ray signals

S. Dodelson and L. M. Widrow 1994

$$\Gamma_{N \to \nu \gamma} = \frac{9\alpha G_F^2}{2048\pi^4} \sin^2(2\theta) \, m_N^5$$
$$= 1.361 \times 10^{-29} \, \text{s}^{-1} \left(\frac{\sin^2(2\theta)}{10^{-7}}\right) \left(\frac{m_N}{1 \text{keV}}\right)^5$$

K. Abazajian et. al. 1705.01837

Introduction

WDM constraints

Sterile neutrino produced in DW mechanism have thermal distribution, there are stringent constraints on light DM. DW sterile neutrino DM mass need $m_N>92~{
m keV}$ 1. Zelko et. al 2205.09777

 Alternative production mechanisms of sterile neutrino dark matter

Shi-Fuller mechanism X. Shi and G. M. Fuller. 9810076

GUT-scale scenario

A. Kusenko et. al. 1006.1731

Higgs production mechanism

K. Petraki and A. Kusenko, 0711.4646

Ultralight Scalar assistant production

A. Berlin and D. Hooper, 1610.03849

Ultralight Scalar Assistance production mechanism

Basic idea

Consider a time dependent mixing angle

$$\frac{\partial}{\partial t} f_N(p,t) - Hp \frac{\partial}{\partial p} f_N(p,t) \approx \frac{1}{4} \Gamma_{\rm SM}(p,T) \sin^2(2\theta_{\rm PM}) \left[f_\nu(p,t) - f_N(p,t) \right]$$
 time dependent

Induced by couple to ultralight back ground scalar field mixing angle takes large value at early universe

But tiny at today

$\Gamma_{N \to \nu \gamma} = \frac{9\alpha G_F^2}{2048\pi^4} \sin^2\left(2\theta\right) m_N^5$ $= 1.361 \times 10^{-29} \text{ s}^{-1} \left(\frac{\sin^2\left(2\theta\right)}{10^{-7}}\right) \left(\frac{m_N}{1\text{keV}}\right)^5$

Ultralight Scalar Assistance production mechansim

Model set up

Begin with following Lagrangian

$$-\mathcal{L} = \left[\frac{1}{2}(m_N + \lambda\phi)\overline{N^c}N + y\phi\bar{\nu}N^c + h.c.\right] + \frac{1}{2}m_\phi^2\phi^2$$

After diagonalization $m_{\nu}(\phi) = \frac{1}{2} \left[\sqrt{(\lambda \phi + m_N)^2 + 4(y\phi)^2} - (\lambda \phi + m_N) \right]$ $m_N(\phi) = \frac{1}{2} \left[\sqrt{(\lambda \phi + m_N)^2 + 4(y\phi)^2} + (\lambda \phi + m_N) \right]$

We get field dependent mixing angle

$$\tan\theta = \frac{y\phi}{m_N(\phi)}$$

Ultralight scalar obeying EOM $\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{\phi}}{\partial \phi} = 0$

Ultralight Scalar Assistance production mechansim

Production driven by ultralight scalar

Ultralight Scalar Assistance production mechanism

- Constraints on parameter space
- Long range force between DM mediated by ultralight scalar $\beta \equiv \lambda M_{\rm pl}/\sqrt{4\pi}m_N < 2.2$.

 H. Davoudiasl et. al. 1804.01098

 S. C. F. Morris et. al., 1304.2196
- mixing term induced dark matter decay $N
 ightarrow
 u + \phi$

$$\Gamma(N \to \nu \phi) = y^2 m_N / (16\pi)$$

We choose parameter space

λ	y	$m_{\phi}(\mathrm{eV})$	$\phi_{\rm ini}({ m GeV})$	$m_N({ m keV})$
10^{-24}	$\lesssim \mathcal{O}(10^{-18})$	$\mathcal{O}(10^{-22} \sim 10^{-9})$	$\mathcal{O}(10^8 \sim 10^9)$	$\mathcal{O}(10 \sim 1000)$

Energy spectrum of DW sterile neutrino

The effective mixing angle is

$$\sin^2(2\theta_{\text{eff}}) \equiv \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + \Gamma_{\text{SM}}^2/4 + (\Delta(p)\cos(2\theta) - V^T(p))^2}$$

Ignoring tiny terms

$$\frac{f_N(y)}{f_\nu(y)} \propto \sin^2(2\theta)y \int_0^{x_{ini}} \frac{1}{(1+x^2y^2)^2} dx$$

with y = p/T $x \propto T^3$

sterile neutrino takes thermal distribution

$$f_N(y) \propto f_{\nu}(y) \propto \frac{1}{1 + e^y}$$

• Colder spectrum due to time dependent mixing angle When production during oscillation $m_{\phi}>3H(T_{\rm max})$ approximately $\phi\propto T^{3/2} = \sin^2(2\theta)\propto T^3\propto x$ the distribution given by $\frac{f_N(y)}{f_{\nu}(y)}\propto y\int_0^{x_{ini}}\frac{x}{(1+x^2y^2)^2}dx$

Spectrum suppressed in large y

$$f_N(y) \propto \frac{1}{y} f_{\nu}(y) \propto \frac{y^{-1}}{1 + e^y}$$

Colder spectrum due to entropy injection

$$f_N(T_f, p) = \int_{T_{\text{ini}}}^{T_f} h\left(p\left(\frac{g_{\star s}(T_2)}{g_{\star s}(T_f)}\right)^{1/3} \frac{T_2}{T_f}, T_2\right) dT_2$$

• Even more cool spectrum scalar coupling changed to $\frac{\phi^n}{\Lambda^{n-1}} \bar{\nu} N^c$

then
$$\sin^2(2\theta) \propto \phi^{2n}$$

Previous argument give

$$\sin^2(2\theta) \propto T^{3n} \propto x^n$$

And

$$f_N(y) \propto \frac{1}{y^n} f_{\nu}(y) \propto \frac{y^{-n}}{1 + e^y}$$

Sterile neutrino DM can be further cold

• Transfer function and constraints $\hat{T}_{\mathrm{WDM}}(k) \equiv \sqrt{\frac{P(k)}{P_{\mathrm{CDM}}(k)}}$

Can be fit with thWDM

$$\hat{T}_{\text{thWDM}}(k) = [1 + (\alpha k)^{2\mu}]^{-5/\mu}$$

P. Bode, J. P. Ostriker, and N. Turok. 2001

The DW mechanism mass should larger 92keV

Less constrained

Today's scalar field takes tiny value

$$\rho_{\phi} \simeq 1.7 \times 10^{-16} \frac{\text{GeV}}{\text{cm}^3} \times \sqrt{\frac{m_{\phi}}{10^{-10} \text{eV}}} \left(\frac{\phi_{\text{ini}}}{10^9 \text{GeV}}\right)^2 \mathcal{F}(T_0)$$

 The local scalar field is also relied on density dependent potential

$$\partial V_{\phi}/\partial \phi \simeq \lambda n_N + \left(m_{\phi}^2 + \frac{2y^2 n_N}{m_N}\right) \phi$$

Which have stationary field value

$$\tilde{\phi} \sim \lambda n_{\rm DM}/m_{\phi}^2$$

And scalar field oscillate around its stationary value

$$\phi_0 \simeq \tilde{\phi} + \hat{\phi} \cos(m_{\phi}t + \theta_0)$$

Density dependence of scalar field

• The scalar field will saturated at $\frac{2m_N m_\phi^2(\sqrt{y^2(3\lambda^2+y^2)}-y^2)}{3\lambda^2 y^2}$ maximal

$$\tilde{\phi}_{\max} \sim \frac{m_N(\sqrt{y^2(3\lambda^2 + y^2)} - y^2)}{3\lambda y^2}$$

Density dependent mixing angle

$$\left\langle \sin^2(2\theta) \right\rangle \simeq 4 \left\langle \frac{y^2 \phi_0^2}{m_N^2} \right\rangle = \frac{4y^2}{m_N^2} \left(\frac{\lambda^2 n_{DM}^2}{m_\phi^4} + \frac{\rho_\phi}{m_\phi^2} \right)$$

Unusual density dependent flux

$$F = \frac{9\alpha G_F^2}{2048\pi^5} \cdot \frac{\lambda^2 y^2}{m_\phi^4} \int d\Omega_{\text{f.o.v.}} \int_{\text{l.o.s}} dr \ \rho_{\text{DM}}^3 \left(\sqrt{d^2 + r^2 - 2dr \cos\varphi}\right)$$

Constraints from X/Gamma-ray observations

Conclusion

- Scalar assistant mechanism for sterile neutrino DM production can relax X/Gamma ray constraints
- This mechanism can successfully provide a colder dark matter spectrum compared with DW mechanism
- With sterile neutrino scalar coupling, there are detectable
 X/Gamma ray signals with density dependent feature.

Thank You

Back up

Boltzmann eq

$$\begin{split} \frac{\partial}{\partial t} f_N(p,t) - H p \frac{\partial}{\partial p} f_N(p,t) &\approx \frac{1}{4} \Gamma_{\text{SM}}(p,T) \sin^2(2\theta_{\text{eff}}) \left[f_{\nu}(p,t) - f_N(p,t) \right] \\ \sin^2(2\theta_{\text{eff}}) &\equiv \frac{\Delta^2(p) \sin^2(2\theta)}{\Delta^2(p) \sin^2(2\theta) + \Gamma_{\text{SM}}^2/4 + (\Delta(p) \cos(2\theta) - V^T(p))^2} \\ V_{\alpha}^T(p) &= -\frac{8\sqrt{2}G_F p_{\nu}}{3m_Z^2} \left(\langle E_{\nu^{\alpha}} \rangle n_{\nu^{\alpha}} + \langle E_{\bar{\nu}^{\alpha}} \rangle n_{\bar{\nu}^{\alpha}} \right) - \frac{8\sqrt{2}G_F p_{\nu}}{3m_W^2} \left(\langle E_{\alpha} \rangle n_{\alpha} + \langle E_{\bar{\alpha}} \rangle n_{\bar{\alpha}} \right) \\ f_N(T_f, p) &= \int_{T_{\text{ini}}}^{T_f} h \left(p \left(\frac{g_{\star s}(T_2)}{g_{\star s}(T_f)} \right)^{1/3} \frac{T_2}{T_f}, T_2 \right) dT_2 \, V_{\phi} = \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{2} m_N(\phi) \langle \overline{N^c} N + h.c. \rangle - \frac{1}{\pi^2} T^4 J_F \left[\frac{m_{\nu}(\phi)^2}{T^2} \right] \\ h(p, T) &= \frac{1}{-4H(T)T} \Gamma_{\text{SM}}(p, T) \sin^2(2\theta_{\text{eff}}) f_{\nu}(p, t) \cdot \left(1 + \frac{1}{3} \frac{d \ln g_{\star s}(T)}{d \ln T} \right) \\ \phi'' &= \phi' \frac{g_{\star s}(T)'}{g_{\star s}(T)} + \phi \frac{(\partial V_{\phi}/\partial \phi)}{H(T)^2 T^2} \cdot \left(1 + \frac{1}{3} \frac{d \ln g_{\star s}(T)}{d \ln T} \right)^2 = 0, \\ n_N(T_f) &= \frac{1}{(2\pi)^3} \int d^3 \vec{p} \cdot f_N \left[T_f, p, \sin^2(2\theta_{\text{eff}})(\phi) \right]. \end{split}$$

Back up

Effects that cool the spectrum

Transfer function of thWDM

$$\alpha(m_{\rm thWDM}) = 0.049 \left(\frac{m_{\rm thWDM}}{\text{keV}}\right)^{-1.11} \left(\frac{\Omega_{\rm thWDM}}{0.25}\right)^{0.11} \left(\frac{h}{0.7}\right)^{1.22}$$

Back up

	Strong	Strong Lensing		Lyman- α
	Strong $\operatorname{Lensing}$	&	Lyman- $lpha$	&
	Lensing	Galaxy Counts		Thermo.
PK [keV]	I: 11, II: 9.8	I: 26,II: 24	7.1	12
KTY [keV]	I: 2.1, II: 1.9	I: 5.3,II: 4.9	1.3	2.5
$\nu \mathrm{MSM} \; [\mathrm{keV}]$	7.0	16	I: 5.0, II: 5.0	I: 9.0, II: 10
DW [keV]	I: 34, II: 31	I: 92, II: 84	21	40
$\log_{10}\left(\mathrm{hm}[M_{\odot}]\right)$	8.1	7.0	I: 8.6, II: 8.5	I: 7.9, II: 7.8
thWDM [keV]	I: 4.6, II: 4.3	I: 9.8, II: 9.2	3.3	5.3