

Constraint for a light charged Higgs boson and its neutral partners from top quark pairs at the LHC

ChunHao Fu (傅淳浩)

A joint work with Jun Gao (高俊)

@CLHCP2023

• Extending the scalar sector $\longrightarrow h_{125}$, H^{\pm} , H_i

• Extending the scalar sector $\longrightarrow h_{125}$, H^{\pm} , H_i

• A *light* charged Higgs boson: $t \rightarrow H^+b$

• Extending the scalar sector $\longrightarrow h_{125}$, H^{\pm} , H_i

• A *light* charged Higgs boson: $t \rightarrow H^+b$

(a)
$$H^+ \to l^+ \nu_l \ (\tau^+ \nu_{\tau}, \ ...)$$

(b)
$$H^+ \rightarrow u_i \overline{d}_i \ (t^{(*)} \overline{b}, \ c\overline{s}, \ \dots)$$

(c) $H^+ \rightarrow W^+ H_i$ — usually dominant when a lighter H_i exists

• Extending the scalar sector $\longrightarrow h_{125}$, H^{\pm} , H_i

• A *light* charged Higgs boson: $t \to H^+b$

(a)
$$H^+ \to l^+ \nu_l \ (\tau^+ \nu_{\tau}, \ ...)$$

(b)
$$H^+ \rightarrow u_i \overline{d}_i \ (t^{(*)} \overline{b}, \ c\overline{s}, \ \dots)$$

(c) $H^+ \rightarrow W^+ H_i$ — usually dominant when a lighter H_i exists

• We consider $m_{H^{\pm}} = 100 \text{-} 160 \, \text{GeV}$, $m_{H_i} = 10 \text{-} 110 \, \text{GeV}$.

• ATLAS measured tar t + b jets production in $W^+W^-bbar bar b$ final states JHEP 04 (2019) 046

- ATLAS measured tar t + b jets production in $W^+W^-bbar bb$ final states JHEP 04 (2019) 046
- With charged-Higgs process $H^+ \to W^+ H_i \to W^+ b \bar{b}$:

$$\sigma_{\text{pre}}^{\text{bin}} = \sigma_{\text{SM}}^{\text{bin}} + \sigma_{H^{+}}^{\text{bin}} := \sigma_{\text{SM}} (t\bar{t}b\bar{b})\epsilon_{\text{SM}}^{\text{bin}} + 2B_{H^{+}}^{\text{sig}}\sigma_{\text{SM}}(t\bar{t})\epsilon_{H^{+}}^{\text{bin}}$$

$$B_{H^+}^{\text{sig}} := B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$$

- ATLAS measured tar t + b jets production in $W^+W^-bbar bar b$ final states JHEP 04 (2019) 046
- With charged-Higgs process $H^+ \to W^+ H_i \to W^+ b \bar{b}$:

$$\sigma_{\text{pre}}^{\text{bin}} = \sigma_{\text{SM}}^{\text{bin}} + \sigma_{H^{+}}^{\text{bin}} := \sigma_{\text{SM}}(t\bar{t}b\bar{b})\epsilon_{\text{SM}}^{\text{bin}} + 2B_{H^{+}}^{\text{sig}}\sigma_{\text{SM}}(t\bar{t})\epsilon_{H^{+}}^{\text{bin}}$$

$$B_{H^+}^{\text{sig}} := B(t \to H^+ b, H^+ \to W^+ H_i, H_i \to b\bar{b})$$

- Prior assumptions:
 - (a) Narrow-width approximation
 - (b) On-shellness of H_i relative to W^+

- ATLAS measured tar t + b jets production in $W^+W^-bbar bar b$ final states JHEP 04 (2019) 046
- With charged-Higgs process $H^+ \to W^+ H_i \to W^+ b \bar{b}$:

$$\sigma_{\text{pre}}^{\text{bin}} = \sigma_{\text{SM}}^{\text{bin}} + \sigma_{H^{+}}^{\text{bin}} := \sigma_{\text{SM}} (t\bar{t}b\bar{b})\epsilon_{\text{SM}}^{\text{bin}} + 2B_{H^{+}}^{\text{sig}}\sigma_{\text{SM}}(t\bar{t})\epsilon_{H^{+}}^{\text{bin}}$$

$$B_{H^+}^{\text{sig}} \coloneqq B(t \to H^+ b, H^+ \to W^+ H_i, H_i \to b\bar{b})$$

MadGraph + PYTHIA + Rivet

- Prior assumptions:
 - (a) Narrow-width approximation
 - (b) On-shellness of H_i relative to W^+

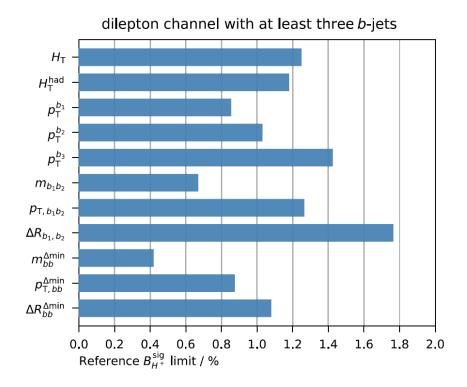
- ATLAS measured tar t + b jets production in $W^+W^-bbar bar b$ final states JHEP 04 (2019) 046
- With charged-Higgs process $H^+ \to W^+ H_i \to W^+ b \bar{b}$:

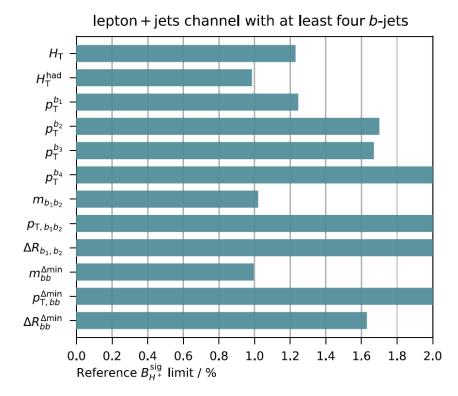
$$\sigma_{\text{pre}}^{\text{bin}} = \sigma_{\text{SM}}^{\text{bin}} + \sigma_{H^{+}}^{\text{bin}} := \sigma_{\text{SM}} (t\bar{t}b\bar{b})\epsilon_{\text{SM}}^{\text{bin}} + 2B_{H^{+}}^{\text{sig}}\sigma_{\text{SM}}(t\bar{t})\epsilon_{H^{+}}^{\text{bin}}$$

$$B_{H^+}^{\text{sig}} := B(t \to H^+ b, H^+ \to W^+ H_i, H_i \to b\bar{b})$$

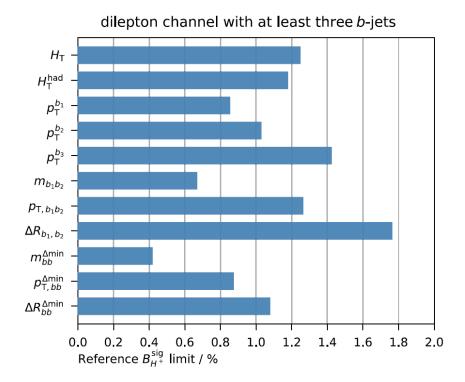
MadGraph + PYTHIA + Rivet

- Prior assumptions:
 - (a) Narrow-width approximation
 - (b) On-shellness of H_i relative to W^+
 - e.g., the pseudoscalar A, and the extra scalar H, in two-Higgs-doublet models (2HDM).

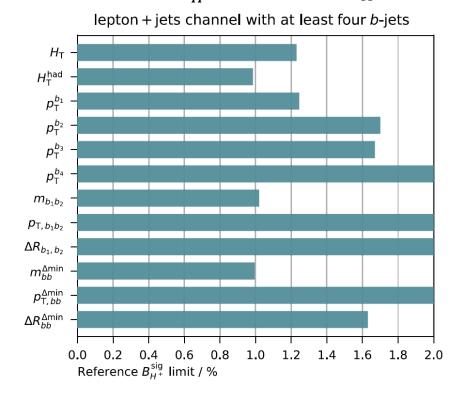



• Datasets \longrightarrow Likelihood $\chi^2(B_{H^+}^{\rm sig}, m_{H^\pm}, m_A) \longrightarrow$ Hypothesis testing (CL_S)

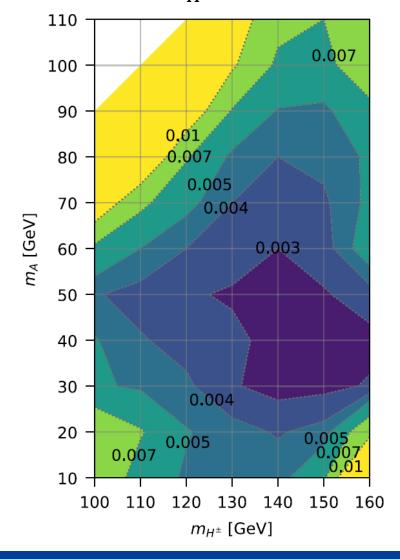
- Datasets \longrightarrow Likelihood $\chi^2(B_{H^+}^{\text{sig}}, m_{H^{\pm}}, m_A) \longrightarrow$ Hypothesis testing (CL_S)
- Kinematic variable $m_{bb}^{\Delta {
 m min}}$



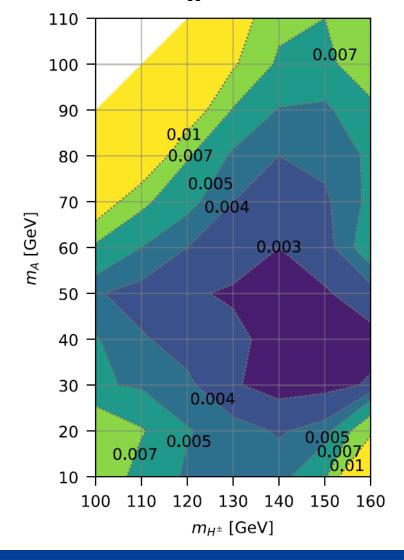
- Datasets \longrightarrow Likelihood $\chi^2(B_{H^+}^{\text{sig}}, m_{H^{\pm}}, m_A) \longrightarrow$ Hypothesis testing (CL_S)
- Kinematic variable $m_{bb}^{\Delta {
 m min}}$



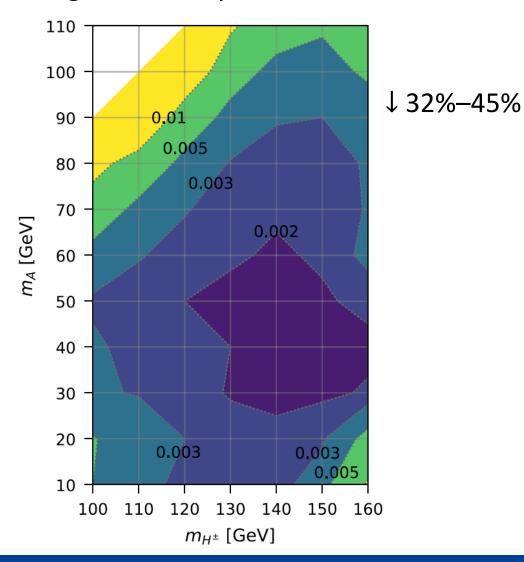
- Datasets Likelihood $\chi^2(B_{H^+}^{\rm sig}, m_{H^\pm}, m_A)$ Hypothesis testing (CL_S)
- Kinematic variable $m_{bb}^{\Delta {
 m min}}$



Exception for $m_{H^\pm} \leq 130\,\mathrm{GeV}$, $m_A \geq 70\,\mathrm{GeV}$



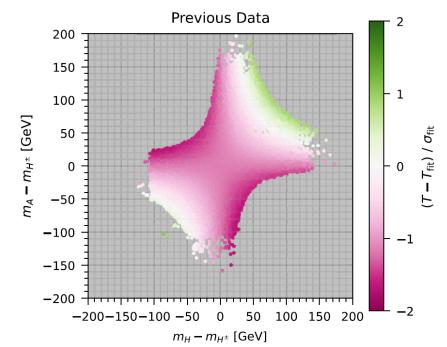
Upper limits on $B_{H^+}^{\rm sig}$ at 95% confidence level

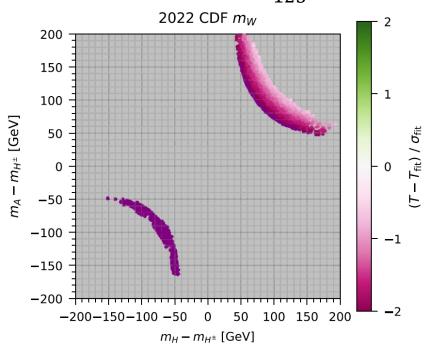


Upper limits on $B_{H^+}^{\text{sig}}$ at 95% confidence level

High-luminosity LHC @900 fb⁻¹

A specific model: type-I 2HDM


A specific model: type-I 2HDM

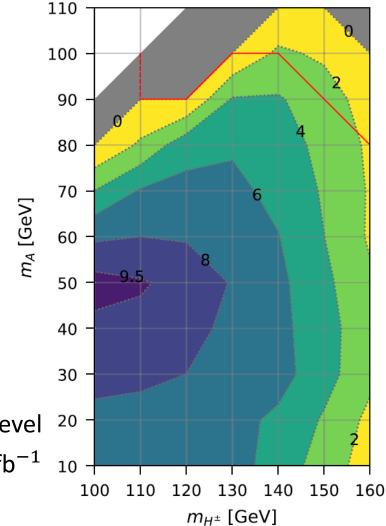

- On the mass space $(m_{H^{\pm}}, m_A, m_H)$:
 - Electroweak precision constraints parametrized by oblique parameters, S, T, and U
 - Flavour constraints from b physics
 - Constraints from searches for additional scalars and measurements of h_{125}

A specific model: type-I 2HDM

- On the mass space $(m_{H^{\pm}}, m_A, m_H)$:
 - Electroweak precision constraints parametrized by oblique parameters, S, T, and U
 - Flavour constraints from *b* physics
 - Constraints from searches for additional scalars and measurements of h_{125}

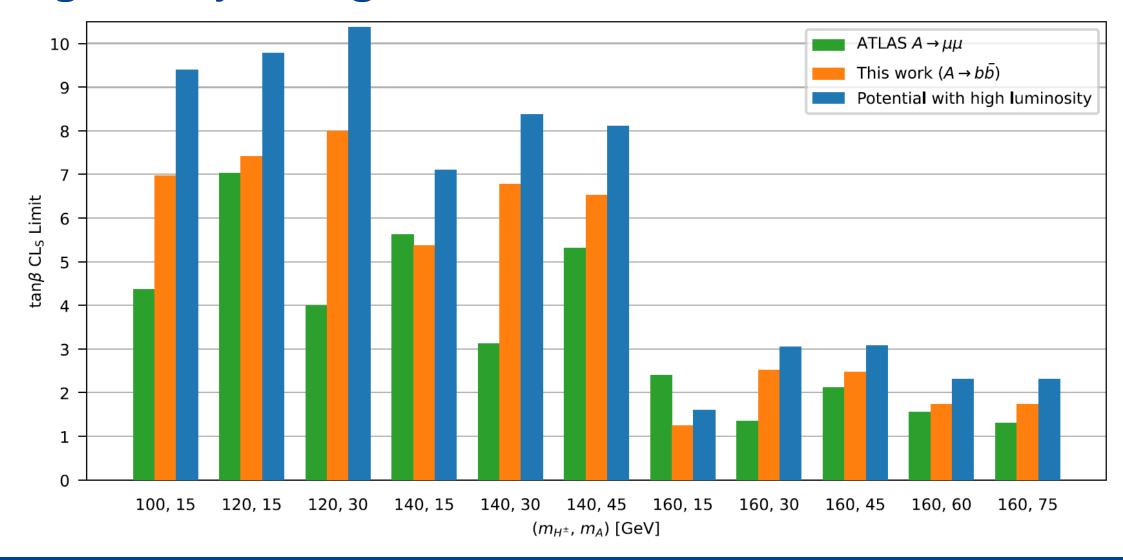
Constraining the parameter space

- $m_H > m_{H^{\pm}} > m_A$
 - $B_{H^{+}}^{\text{sig}} = B_{H^{+}}^{\text{sig}}(m_{H^{\pm}}, m_{A}, \tan \beta)$, decreases as $\tan \beta$ increases


Constraining the parameter space

- $m_H > m_{H^{\pm}} > m_A$
 - $B_{H^{+}}^{\text{sig}} = B_{H^{+}}^{\text{sig}}(m_{H^{\pm}}, m_{A}, \tan \beta)$, decreases as $\tan \beta$ increases
 - An alternative decay chain: $t \to H^+b$, $H^+ \to t^{(*)}\bar{b}$, $t^{(*)} \to W^+b$

Constraining the parameter space


- $m_H > m_{H^{\pm}} > m_A$
 - $B_{H^{+}}^{\text{sig}} = B_{H^{+}}^{\text{sig}}(m_{H^{\pm}}, m_{A}, \tan \beta)$, decreases as $\tan \beta$ increases
 - An alternative decay chain: $t \to H^+b$, $H^+ \to t^{(*)}\bar{b}$, $t^{(*)} \to W^+b$

Lower limits on $\tan \beta$ at 95% confidence level \uparrow 21%–38% @900 fb⁻¹

A generally stronger result

Other mass hierarchies

- $m_A > m_{H^{\pm}} > m_H$
 - $c(HH^+H^-) \longrightarrow H \rightarrow \gamma\gamma$
 - $B_{H^+}^{\rm sig}=B_{H^+}^{\rm sig}(m_{H^\pm},m_H,\, aneta\,,m_{12}^2)$, decreases faster when $aneta\,$ increases, also decreases for m_{12}^2

Other mass hierarchies

- $m_A > m_{H^{\pm}} > m_H$
 - $c(HH^+H^-) \longrightarrow H \rightarrow \gamma\gamma$
 - $B_{H^+}^{\rm sig}=B_{H^+}^{\rm sig}(m_{H^\pm},m_H,\, aneta\,,m_{12}^2)$, decreases faster when $aneta\,$ increases, also decreases for m_{12}^2

- $m_{H^{\pm}} > m_A$, m_H
 - More intricate, yet suppression of H is possible in part of the parameter space

Other mass hierarchies

- $m_A > m_{H^{\pm}} > m_H$
 - $c(HH^+H^-) \longrightarrow H \rightarrow \gamma\gamma$
 - $B_{H^+}^{\rm sig} = B_{H^+}^{\rm sig}(m_{H^\pm}, m_H, \tan \beta, m_{12}^2)$, decreases faster when $\tan \beta$ increases, also decreases for m_{12}^2

- $m_{H^{\pm}} > m_A$, m_H
 - More intricate, yet suppression of H is possible in part of the parameter space
 - Suppress $H \to b\bar{b}$ with $H \to \gamma\gamma$:

For $m_{H^\pm} = 100 - 170 \, {\rm GeV}, \,\, m_H < m_A, m_{h_{125}}, m_{H^\pm}, \,\, an eta \sim 10^0, 10^1,$

$$\frac{m_H^{1.1}}{m_{H^+}^{2.1} \times 6 \text{ TeV}} \frac{m_{12}^2 \tan \beta}{|\tan 2\beta| \sin 2\beta} > 10 \approx B(H \to b\bar{b}) < 10\%$$

• We set upper limits on the signal strength $B(t \to H^+ b, H^+ \to W^+ H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbbar{b}ar{b}$ final states

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%
 - The limits are expected to be lowered by 32%–45% with purely statistical improvements

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%
 - The limits are expected to be lowered by 32%–45% with purely statistical improvements
- We translate the limits into constraints on the parameter space of type-I 2HDM

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%
 - The limits are expected to be lowered by 32%–45% with purely statistical improvements
- We translate the limits into constraints on the parameter space of type-I 2HDM
 - When the pseudoscalar A but not the scalar H is lighter than H^{\pm} , our result imposes generally the strongest constraints on $\tan \beta$, with a 95% CL lower limit varying from 1 to 10

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%
 - The limits are expected to be lowered by 32%–45% with purely statistical improvements
- We translate the limits into constraints on the parameter space of type-I 2HDM
 - When the pseudoscalar A but not the scalar H is lighter than H^{\pm} , our result imposes generally the strongest constraints on $\tan \beta$, with a 95% CL lower limit varying from 1 to 10
 - Other mass hierarchies are also discussed within the reach of our current method

- We set upper limits on the signal strength $B(t \to H^+b, H^+ \to W^+H_i, H_i \to b\bar{b})$ with the ATLAS measurement on the $WWbb\bar{b}\bar{b}$ final states
 - The distributions of the invariant mass of the two closest b jets show the greatest signal sensitivity
 - The upper limit at 95% confidence level (CL) varies from 0.26% to greater than 1.5%
 - The limits are expected to be lowered by 32%–45% with purely statistical improvements
- We translate the limits into constraints on the parameter space of type-I 2HDM
 - When the pseudoscalar A but not the scalar H is lighter than H^{\pm} , our result imposes generally the strongest constraints on $\tan \beta$, with a 95% CL lower limit varying from 1 to 10
 - Other mass hierarchies are also discussed within the reach of our current method

Thank you!