

Nonperturbative fit in resummation calculation

Joshua Isaacson, Yao Fu, C.–P. Yuan

Resummation calculation in p_T **modeling**

Fixed order calculation breaks down when $q_T \rightarrow 0$, after q_T resummation, the q_T distribution can agree with data.

Lepton kinematics are also sensitive to the p_T modeling.

2023/11/16

Resummation calculation in EW parameter measurement

ResBos (Resummation for Bosons)

Event generator.

Precision Electroweak Physics at Hadron Colliders

Measurement of electroweak parameter is sensitive to p_T modeling

Measurement of W boson mass and $\sin^2 \theta_{eff}^l$ at hadron collider both need resummation calculation. 2023/11/16 Yao Fu

CSS q_T -resummation formalism and ResBos program

CSS resummation formalism

$$\frac{d\sigma}{dQ^2 dq_T^2 dy} = \frac{H}{(2\pi)^2} \int d^2 b e^{i\vec{q}_T \cdot \vec{b}} e^{-\mathcal{S}(Q,b)}$$
$$\times \sum_j C_j \left(\frac{C_1}{C_2 b}, Q, x_1\right) C_j \left(\frac{C_1}{C_2 b}, Q, x_2\right) + Y(q_T, Q, x_1, x_2),$$

$$\mathcal{S}(Q,b) = \int_{C_1^2/b^2}^{C_2^2Q^2} \frac{d\mu^2}{\mu^2} \left(A\left(g_s\left(\mu\right), C_1\right) \log \frac{C_2^2Q^2}{\mu^2} + B\left(\mu\right), C_1, C_2 \right).$$

 $A \equiv \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n A^{(n)}$ $B \equiv \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n B^{(n)}$ $C \equiv \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n C^{(n)}$

 $A^{(n)}$, $B^{(n)}$, and $C^{(n)}$ are calculated order by order.

		Anomalous Dimension			
	Order	Boundary Condition (C)	γ_i (B)	Γ_{cusp} (A)	Fixed Order Matching (Y)
	LL	1	-	1-loop	-
10000 202	NLL	1	1-loop	2-loop	-
ResBos	NLL' (+ NLO)	$lpha_s$	1-loop	2-loop	$lpha_s$
	NNLL (+ NLO)	$lpha_{s}$	2-loop	3-loop	a.
	NNLL' (+ NNLO)	α_s^2	2-loop	3-loop	α_s^2
	$N^{3}LL$ (+ NNLO)	α_s^2	3-loop	4-loop	α_s^2
ResBos2	$N^{3}LL'$ (+ $N^{3}LO$)	α_s^3	3-loop	4-loop	α_s^3
	$N^{4}LL (+ N^{3}LO)$	α_s^3	4-loop	5-loop	$lpha_s^3$

Nonperturbative part in CSS formalism

> Nonperturbative function

When $b \to \infty$, $q_T \to 0$, the calculation is nonperturbative.

$$b^* = \frac{b}{\sqrt{1 + \frac{b^2}{m_{ax}}}}, \qquad \qquad \mathcal{S}(Q, b) = \int_{C_1^2/b^2}^{C_2^2Q^2} \frac{d\mu^2}{\mu^2} \left(A\left(g_s\left(\mu\right), C_1\right) \log \frac{C_2^2Q^2}{\mu^2} + B\left(\mu\right), C_1, C_2 \right).$$

Final resummation formalism is

$$\frac{d\sigma}{dQ^2 dq_T^2 dy} = \sum_{i,j} \frac{H}{(2\pi)^2} \int d^2 b e^{iq_T \cdot \vec{b}} e^{-S_{\text{pert}}} e^{-S_{NP}} C \otimes f_i C \otimes f_j,$$

$$\frac{Q \text{-dependence}}{Q \text{-dependence}} \sqrt{s \text{-dependence}}$$

$$BLNY: \ e^{-S_{NP}} = \exp\left[-g_1 - g_2 \ln(\frac{Q}{2Q_0}) - g_1 g_3 \ln(100x_1x_2)\right] b^2,$$

hep-ph/0212159

SIYY:
$$e^{-S_{NP}} = \exp\left[-g_1b^2 - g_2\ln(b/b_*)\ln(Q/Q_0) - g_3b^2\left[\left((x_0/x_1)^{\lambda} + (x_0/x_2)^{\lambda}\right)\right], \quad \underline{\operatorname{arxiv: } 1406.3073}$$

Nonperturbative function depends on collision energy \sqrt{s} and energy scale Q.

New nonperturbative function is needed

- The calculation order of ResBos is improved from A=3, B=2, C=1 (NNLL) to A=4, B=3, C=2 (N3LL), the nonperturbative function is needed to be updated.
- Previous nonperturbative function fitting only include low energy data and Tevatron data. Currently ATLAS, CMS, and LHCb collaboration have published more precise p_T data. Including the impact from new data is important.
- p_T data from ATLAS and CMS has rapidity dependence, and the data from LHCb is obtained in high rapidity region. It's good to test whether the nonperturbative function has rapidity dependence.

Rapidity-dependent nonperturbative formalism

IFY functional form

$$S_{IFY} = g_1 + (g_2 + g_3 b^2) \log\left(\frac{Q}{M_Z}\right) + g_4 \log\left(\frac{1960}{\sqrt{s}}\right) + g_5 \left(\tanh\left(g_6 y_{\text{Max}}\right) + \tanh\left(g_6 (|y| - y_{\text{Max}})\right)\right),$$

- y_{max} is the maximum allowed rapidity for a given experimental setup, it's fixed to 5 here.
- The term proportional to g_4 is chosen such that at the Tevatron, the dominate contribution comes to the non-perturbative function comes from g_1 .
- The term proportional to g_5 is chosen such that for y = 0 the contribution from this term vanishes.
- The g_3 is fixed to 0 in the fit.

Data list in nonperturbative fit

	Experiment	\sqrt{s}	Cuts	N_{pts}
	CDF Run 1 [64]	$1800 {\rm GeV}$	$66 \text{ GeV} < M_{\ell\ell} < 116 \text{ GeV}$	32
	CDF Run 2 [65]	$1960 {\rm GeV}$	$66 \text{ GeV} < M_{\ell\ell} < 116 \text{ GeV}$	41
	D0 Run 1 [66]	$1800 {\rm GeV}$	$66 \text{ GeV} < M_{\ell\ell} < 116 \text{ GeV}$	15
	D0 Run 2 [67]	$1960 {\rm GeV}$	$66 \text{ GeV} < M_{\ell\ell} < 116 \text{ GeV}$	8
	E288 200 [68]	$19.4 \mathrm{GeV}$	4 GeV $< M_{\ell\ell} < 8$ GeV, y = 0.4	28
	E288 300 [68]	$23.8 {\rm GeV}$	4 GeV < $M_{\ell\ell}$ < 8 GeV, 11 GeV < $M_{\ell\ell}$ < 12 GeV, y = 0.21	35
	E288 400 [68]	$27.4 \mathrm{GeV}$	5 GeV < $M_{\ell\ell}$ < 8 GeV, 11 GeV < $M_{\ell\ell}$ < 14 GeV, y = 0.03	42
	E605 [69]	$38.8 {\rm GeV}$	$7 \text{ GeV} < M_{\ell\ell} < 9 \text{ GeV}, 10.5 \text{ GeV} < M_{\ell\ell} < 14 \text{ GeV}, E_z = 0.1 \text{ GeV}$	35
	R209 [70]	$62 {\rm GeV}$	5 GeV $< M_{\ell\ell} < 11$ GeV, $0.1 < x < 0.8$	10
	ATLAS [71]	8000 GeV	66 GeV $< M_{\ell\ell} < 116$ GeV, $p_{T_{\ell}} > 20$ GeV, $ \eta_{\ell} < 2.4$	48
New data	CMS [2]	$13000~{\rm GeV}$	76.1876 GeV < $M_{\ell\ell}$ < 106.1876 GeV, $p_{T_{\ell}}$ > 25 GeV, $ \eta_{\ell} $ < 2.4	80
	LHCb [72]	$13000~{\rm GeV}$	60 GeV $< M_{\ell\ell} < 120$ GeV, $p_{T_{\ell}} > 20$ GeV, $2.0 < \eta_{\ell} < 4.5$	10

TABLE II. A list of all experiments used for the non-perturbative fit. The first column gives the name of the experiment, the second gives the center of mass energy, the third describes the experimental cuts applied for each set of events, and the last column gives the total number of datapoints for each experiment.

Only $p_T < 20$ GeV data will be used in the fit, since the resummation calculation is mainly focus on low p_T region.

Fitting strategy

 $\succ \chi^2$ function

$$\chi_E^2 = \sum_{k=1}^{N_{pt}} \frac{1}{s_k^2} \left(D_k - T_k(g) - \sum_{\alpha=1}^{N_\lambda} \lambda_\alpha \beta_{k\alpha} \right)^2 + \sum_{\alpha=1}^{N_\lambda} \lambda_\alpha^2 \,.$$

 D_k : Central value of data.

 $T_k(g)$: Theoretical prediction of the data.

 s_k^2 : Quadratic sum of the statistical uncertainty and uncorrelated uncertainty.

 $\beta_{k\alpha}$: The matrix for correlated uncertainty.

 λ_{α} : Nuisance parameters.

 $-0.5\chi^2$ is used to be as the logarithm of Gaussian function in the likelihood fitting. The Bayesian Analysis Toolkit (BAT) package is used to perform the fitting.

PDF uncertainty

The PDF uncertainty of each data point is treated as uncorrelated, which is also included in the χ^2 function.

The PDF uncertainties of ATLAS, CMS, and LHCb data set are divided by a factor of 3, to increase the weight of the rapidity dependence data in the global fitting. After fitting, the χ^2 are calculated again using the normal PDF uncertainty for each data set.

Scale choice

Resummation scale and fixed order scale

Resummation scale: $C_1(b_0)$, $C_2(1)$, $C_3(4b_0)$ Fixed order scale: $\mu_R(M_T)$, $\mu_F(M_T)$ $M_T = \sqrt{p_T^2 + Q^2}$

The choice of $C_3 = 4b_0$ is to ensure that the ratio C_3/b^* is always greater than the cutoff scale for the PDF to ensure that there is no extrapolation needed in the calculation.

$h_{\rm c} \approx 1.123$	$C_{2}(1)$	$\mu_R(M_T)$	$\mu_F(M_T), C_1(b_0), C_3(4b_0)$
b0 ~ 1.125	1	1	1
$b = b_0 \approx 1.123$ $b^* = -\frac{b}{\sqrt{2}}$	0.5	1	1
$b_{max} = b_0 + 1.125$	1	0.5	1
$0 (CT19NNL0) - 13$ $V^{-1} b_{max}^2$	1	1	0.5
$Q_0(CT10NNLO) = 1.5$	0.5	0.5	1
$(C h^*) = C h = 4 > 12$	0.5	1	0.5
$(C_3/D)_{min} = C_3/D_{max} = 4 > 1.3$	1	0.5	0.5
	0.5	0.5	0.5
	2	1	1
	1	2	1
Scale variation in the estimation	1	1	2
of coole uncontainty	2	2	1
	2	1	2
	1	2	2
In original BLNY, $b_{max} = 0.5$	2	2	2

2023/11/16

g_5 determination in the nonperturbative fit

The g_1 and g_5 are highly correlated in the fit, because most of the data doesn't have rapidity dependence or in low rapidity region. The g_5 term in low rapidity region is almost flat and play the same role as the g_1 $g_5(tanh(g_6y_{Max}) + tanh(g_6(|y| - y_{Max})))$

> fitting results on nonperturbative parameters

Yao Fu

$\succ \chi^2$ results

Experiment	N_{pts}	$\chi^2 (\text{IFY})$	$\chi^2/dof (IFY)$	χ^2 (SIYY)	χ^2/dof (SIYY)
CDF1	32	19.8	0.62	20.6	0.64
CDF2	41	48.5	1.18	62.6	1.53
D01	15	11.1	0.74	14.1	0.94
D02	8	19.4	2.43	21.9	2.74
E288 200	28	31.4	1.12	60.0	2.14
E288 300	35	34.6	0.99	42.0	1.20
E288 400	42	89.9	2.14	104.0	2.48
E605	35	54.5	1.56	71.1	2.03
R209	10	8.5	0.85	11.3	1.13
ATLAS	48	9.2	0.19	11.4	0.24
\mathbf{CMS}	80	35.7	0.45	39.7	0.50
LHCb	10	18.3	1.83	23.2	2.32
Total	384	380.8	0.992	481.7	1.25

> SIYY refitting after including new data set

	Parameter	Value	Correlation matrix			
	<i>g</i> ₁	0.0 ± 0.004	$\left(\begin{array}{ccc} 1 & 0.198 & -0.748 \end{array} \right)$			
	g_2	0.773 ± 0.042	C = 0.198 1 -0.708			
	<i>g</i> ₃	0.122 ± 0.006	-0.748 - 0.708 1			
$e^{-S_{NP}} = \exp\left[-g_1 b^2 - g_2 \ln(b/b_*) \ln(Q/Q_0) - g_3 b^2 \left((x_0/x_1)^{\lambda} + (x_0/x_2)^{\lambda}\right)\right],$						

Previous results

Parameter	SIYY fit
g_1	0.212
g_2	0.84
g_3	0.0

arxiv: 1406.3073

2023/11/16

Rapidity dependence in nonperturbative function

 $g_5(\tanh(g_6y_{Max}) + \tanh(g_6(|y| - y_{Max})))$

The g_5 (g_6) term is merely constrained by the LHCb data.

The χ^2 of each data point of LHCb data

χ^2	${oldsymbol g}_5={oldsymbol 0}$	$g_5 = 13.45$
$p_{T} = 1.1$	1.422	0.042
$p_{T} = 2.8$	0.864	0.122
$p_{T} = 4.0$	2.666	2.086
$p_T = 5.2$	0.028	0.065

$$S_{IFY} = g_1 + (g_2 + g_3 b^2) \log\left(\frac{Q}{M_Z}\right) + g_4 \log\left(\frac{1960}{\sqrt{s}}\right) + g_5(\tanh(g_6 y_{Max}) + \tanh(g_6(|y| - y_{Max})))$$
2023/11/16 14

> Data/prediction comparison for LHC data

ATLAS

The discrepancy in high p_T region is due to the missing of α_s^3 contribution.

We also did comparison for LHC 7/8/13 TeV data, all comparison look good. Detailed information is in the back-up.

Summary

- The resummation order of ResBos2 has been updated to N3LL, a new nonperturbative fitting needs to be performed.
- A rapidity-dependent function is used in the nonperturbative fitting. New ATLAS, CMS, and LHCb rapidity-dependent data are included in the new fitting. Fitting results show the nonperturbative function has rapidity dependence.
- Data/prediction comparisons are shown using new ResBos2 calculation with new nonperturbative function. All the comparisons have good agreement.

Back up

> Data/prediction comparison for low energy data

E288

E605

R209

> Data/prediction comparison for Tevatron data

CDF I

CDF II

 3×10^{2}

 2×10^{2}

10²

0.0

1.05 Data 1.00 Data 1.00 Data

D0 I

ResBos2

12.5

15.0

17.5

p⊤ [GeV]

 $D0 \sqrt{s} = 1.96 \text{ TeV}$

D0 II

2023/11/16

5.0

7.5

10.0

2.5

Yao Fu

FIG. 9. Comparison between the ResBos2 calculation and the ATLAS 7 TeV p_T distributions from Ref. [22].

FIG. 10. Comparison between the ResBos2 calculation and the ATLAS 7 TeV ϕ_{η}^* distributions from Ref. [83].

> Data/prediction comparison for LHC data

FIG. 12. Comparison between the ResBos2 calculation and the ATLAS 8 TeV ϕ_n^* distributions from Ref. [71].

> Data/prediction comparison for LHC data

FIG. 13. Comparison between the ResBos2 calculation and the ATLAS 8 TeV p_T distributions from Ref. [74].

> Data/prediction comparison for LHC data

FIG. 15. Comparison between the Resbos2 calculation and CMS [2] for the p_T distribution in different rapidity bin.

ResBos2
 PDF Uncertainty

10

Scale Uncertainty

CMS √5 = 13 TeV

p₇ [GeV]

> Data/prediction comparison for LHC data

FIG. 11. Comparison between the ResBos2 calculation and the CMS 7 TeV p_T distributions from Ref. 84].

FIG. 14. Comparison between the ResBos2 calculation and the CMS 8 TeV p_T distributions from Ref. [86].