Hybrid Renormalization for Quasi Distribution Amplitudes of A Light Baryon

Authors:Chao Han, Yushan Su, Wei Wang, Jia-lu Zhang

Speaker:Jia-Lu Zhang Shanghai Jiaotong University

Contents

$1>$ Introduction to LCDA\Quasi-DA
$2>$ Introduction to LaMET
$3>$ Hybrid Renormalization
$4>$ Result and Outlook

Introduction to LCDA\Quasi-DA

Physical Meaning of LCDA:
It describes the momentum fraction of each parton in the baryon.

The partonic interpretation has not been proven beyond tree level.

Introduction to LCDA\Quasi-DA

Operator definition of baryon LCDA in coordinate space:

$$
\begin{aligned}
& M\left(z_{1}, z_{2}, z_{3}, P, \mu\right)=\langle 0| \varepsilon^{i j k} u_{\alpha}^{i^{\prime}}\left(\vec{z}_{1}\right) U_{i^{\prime} i}\left(\vec{z}_{1}, \vec{z}_{0}\right) d_{\beta}^{j^{j^{\prime}}}\left(\vec{z}_{2}\right) U_{j^{\prime} j}\left(\vec{z}_{2}, \vec{z}_{0}\right) s_{\gamma}^{k^{\prime}}\left(\vec{z}_{3}\right) U_{k^{\prime} k}\left(\vec{z}_{3}, \vec{z}_{0}\right)|P(P, \lambda)\rangle \\
& {\left[a_{1} n, a_{0} n\right]=P \exp \left[i g \int_{0}^{1} d t(x-y)_{\mu} A^{\mu}(t x+(1-x) y)\right]} \\
& \quad f, g, \text { h:quark flavour } \\
& |P(P, \lambda)\rangle: \text { Baryon state } \\
& \vec{z}_{1}=\frac{1}{\sqrt{2}}\left(z_{1}, 0,0, z_{1}\right)
\end{aligned}
$$

Introduction to LCDA\Quasi-DA

$$
\langle 0| u_{\alpha}\left(z_{1}\right) d_{\beta}\left(z_{2}\right) s_{\gamma}\left(z_{3}\right)|P(P, \lambda)\rangle
$$

leading twist

$$
=f_{N}\left\{(H C)_{\alpha \beta}\left(\gamma_{5} u_{\Lambda}\right)_{\gamma} V\left(z_{i} P \cdot n\right)+\left(H \gamma_{5} C\right)_{\alpha \beta}\left(u_{\Lambda}\right)_{\gamma} A\left(z_{i} P \cdot n\right)+\left(i \sigma_{\mu \nu} P^{\nu} C\right)_{\alpha \beta}\left(\gamma_{\mu} \gamma_{5} u_{\Lambda}\right)_{\gamma} T\left(z_{i} P \cdot n\right)\right.
$$

$$
M\left(z_{1}, z_{2}, z_{3}, P^{z}, \mu\right)=\langle 0| u^{T}\left(z_{1}\right) \Gamma d\left(z_{2}\right) s\left(z_{3}\right)|P(P, \lambda)\rangle_{R} \quad \Gamma=C \gamma_{5} h
$$

Difficulty of LCDA: cannot be calculated perturbatively

Introduction to LCDA\Quasi-DA

A good way to calculate non-perturbative physics:

Lattice QCD

Flaw of Lattice QCD: only cannot solve light-like correlator

Matrix element which is calculable on Lattice: Quasi-DA

$$
\begin{aligned}
& \tilde{M}\left(z_{1}, z_{2}, z_{3}, P^{z}, \mu\right)=\langle 0| u^{T}\left(z_{1}\right) \tilde{\Gamma} d\left(z_{2}\right) s\left(z_{3}\right)|P(P, \lambda)\rangle_{R} \quad \tilde{\Gamma}=C \gamma_{5} h_{z} \\
& \vec{z}=(0,0,0, z)
\end{aligned}
$$

Large Momentum Effective theory

10.1103/PhysRevLett.110.262002

LCDA
Light-cone operator

Quasi-DA
Equal-time operator

Large Momentum Effective theory

Baryon-DA

$$
\tilde{\Phi}\left(x_{1}, x_{2}, P^{z}, \mu\right)=\int d y_{1} d y_{2} \mathcal{C}\left(x_{1}, x_{2}, y_{1}, y_{2}, P^{z}, \mu\right) \Phi\left(y_{1}, y_{2}, \mu\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{x_{1} P^{z}}, \frac{\Lambda_{\mathrm{QCD}}}{x_{2} P^{z}}, \frac{\Lambda_{\mathrm{QCD}}}{\left(1-x_{1}-x_{2}\right) P^{z}}\right)
$$

The matching kernel C is perturbative calculable.
The matching kernel is valid for the same renormalization.

Large Momentum Effective theory

Procedure to calculate LCDA:

1. Using pQCD to calculate the matching kernel.
2. Calculate the quasi-DA using Lattice QCD.
3. Do the same renormalization on Quasi-DA
4. Convert the Quasi-DA calculated on lattice to LCDA.

Hybrid Renormalization

Difficulty1: Regularization

$$
\begin{array}{cc}
\text { Perturbative QCD. v.s. } & \text { Lattice QCD } \\
\text { DR } & \text { Hard-cutoff }
\end{array}
$$

Difficulty2: Cannot introduce infrared effect
We need to extract perturbative information on Lattice.

Difficulty3: Perturbative calculation

Quasi-DA is divergent even after regular $\overline{M S}$ subtraction.

Hybrid Renormalization

The previous method: RI/MOM
$M^{R I / M O M}\left(x_{1}, x_{2}, \mu, P^{2}=0\right)=\frac{M^{\overline{M S}}\left(x_{1}, x_{2}, \mu, P^{2}=0\right)}{M^{\overline{M S}}\left(x_{1}, x_{2}, \mu, P^{2}=-\rho\right)}$

Linear divergence is not eliminated thoroughly.
It introduces extra infrared structure.

Hybrid Renormalization

1. Do 'Self-renormalization' to lattice matrix element

$$
\begin{aligned}
& \tilde{M}^{\overline{M S}}\left(z_{1}, z_{2}, P^{z}\right)=\frac{\tilde{M}\left(z_{1}, z_{2}, a, P^{z}\right)}{Z_{R}\left(z_{1}, z_{2}, a\right)} \\
& Z_{R}\left(z_{1}, z_{2}, a, \mu\right)=\exp \left[\left(\frac{k}{\operatorname{an}\left[a \Lambda_{\varrho C D}\right]}-m_{0}\right) \tilde{z}+\frac{\gamma_{0}}{b_{0}} \ln \left[\frac{\ln \left[1 /\left(a \Lambda_{Q C D}\right)\right]}{\ln \left[\mu / \Lambda_{\overline{M S}}\right]}\right]+\ln \left[1+\frac{d}{\ln \left(a \Lambda_{\varrho C D}\right)}\right]+f\left(z_{1}, z_{2}\right) a\right]
\end{aligned}
$$

2. Do 'Ratio-renormalization' to both lattice matrix element and perturbative calculation.

$$
\tilde{M}^{h y b r i d}\left(z_{1}, z_{2}, P^{z}\right)=\frac{\tilde{M}^{M \overline{M S}}\left(z_{1}, z_{2}, P\right)}{\tilde{M}^{\overline{M S}}\left(z_{1}^{\prime}\left(z_{1}, z_{2}\right), z_{2}^{\prime}\left(z_{1}, z_{2}\right), P=0\right)}
$$

Hybrid Renormalization

A scheme which deal with short and long length scale differently.

On lattice QCD side: Self-renormalization
A scheme convert factor should be included on Lattice QCD to convert to $\bar{M} S$ scheme

Hybrid Renormalization

A scheme which deal with short and long length scale differently.

On lattice QCD side: Self-renormalization
A scheme convert factor should be included on Lattice QCD to convert to $\bar{M} S$ scheme

Claim: $\quad \lim _{a \rightarrow 0} \frac{\tilde{M}\left(z_{1}, z_{2}, a, P^{z}\right)}{Z_{R}\left(z_{1}, z_{2}, a\right)}=\lim _{\epsilon \rightarrow 0} \frac{\tilde{M}\left(z_{1}, z_{2}, \epsilon, P^{z}\right)}{Z_{\overline{M S}}\left(z_{1}, z_{2}, \epsilon\right)}=\tilde{M}^{\overline{M S}}\left(z_{1}, z_{2}, P^{z}\right)$

Hybrid Renormalization

On pQCD side:
Quasi-DA is a plus function which contains divergence even after $\bar{M} S$
$\stackrel{\text { Real Diagram }}{M(x)_{\oplus}^{x_{0}}=M(x)-\delta\left(x-x_{0}\right) \int M(y) d y}$
$\lim _{x_{1 / 2} \rightarrow \infty} \tilde{M}\left(x_{1}, x_{2}, P, \epsilon\right) \simeq \frac{C}{x_{1 / 2}} \quad \rightarrow \int d x_{1 / 2} M\left(x_{1 / 2}\right)$ is divergent at large x

We need to eliminate the $\frac{1}{x}$ behavior at large momentum.

Hybrid Renormalization

Where does $\frac{1}{x}$ come from ?
$\tilde{M}\left(z_{1}, z_{2}, P^{z}, \epsilon\right) \supset \log z_{1}^{2}, \log z_{2}^{2}, \log \left(z_{1}-z_{2}\right)^{2}$
$\log z_{1}^{2} \rightarrow \frac{1}{\left|x_{1}\right|}, \log z_{2}^{2} \rightarrow \frac{1}{\left|x_{2}\right|}, \log \left(z_{1}-z_{2}\right)^{2} \rightarrow \frac{1}{\left|x_{1}-x_{2}\right|}$

A simple solution: Ratio with 0 momentum matrix element when z is small

$$
\tilde{M}^{\text {ratio }}\left(z_{1}, z_{2}, P, \epsilon\right)=\frac{\tilde{M}\left(z_{1}, z_{2}, P, \epsilon\right)}{\tilde{M}\left(z_{1}, z_{2}, 0, \epsilon\right)}
$$

Hybrid Renormalization

In PDF case: only one length scale $\bar{\psi}(z) \Gamma \psi(0)$

1. Ratio with the zero momentum matrix element at
 the same point, when $z<z_{s}$.
2. Ratio with the zero momentum matrix element at point z_{s} when $z>z_{s}$.

In baryon-LCDA case: three length scale $\psi^{T}\left(z_{1}\right) \Gamma \psi\left(z_{2}\right) \psi(0) \rightarrow z_{1} z_{2}\left(z_{1}-z_{2}\right)$
small and large scales are mixed in yellow area. Matrix element should be renormalized separately.

Hybrid Renormalization

Up to one loop, the scale is separated: $A \log z_{1}^{2}+B \log z_{2}^{2}+C \log \left(z_{1}-z_{2}\right)^{2}$
$\tilde{q}^{\text {hybrid }}\left(z_{1}, z_{2}, P\right)=\frac{\tilde{q}^{M \overline{M S}}\left(z_{1}, z_{2}, P\right)}{\tilde{q}^{M S}\left(z_{1}^{\prime}\left(z_{1}, z_{2}\right), z_{2}^{\prime}\left(z_{1}, z_{2}\right), P=0\right)}$

$$
\frac{\hat{M}_{\overline{\mathrm{MS}}}\left(z_{1}, z_{2}, 0, P^{z}, \mu\right)}{\hat{M}_{\overline{\mathrm{MS}}}\left(z_{1}, \operatorname{sign}\left(z_{2}\right) 2 z_{s}, 0,0, \mu\right)} \theta\left(z_{s}-\left|z_{1}\right|\right) \theta\left(\left|z_{2}\right|-2 z_{s}\right)
$$

Result and Outlook

One-loop calculation for Quasi-DA under $\bar{M} S$ using pQCD

Result and Outlook

One-loop calculation:

$$
L_{1}=\ln \frac{z_{1}^{2} \mu^{2} e^{2 \gamma_{E}}}{4} \& L_{2}=\ln \frac{z_{2}^{2} \mu^{2} e^{2 \gamma_{E}}}{4} \& \cdot L_{12}=\ln \frac{\left(z_{1}-z_{2}\right)^{2} \mu^{2} e^{2 \gamma_{E}}}{4}
$$

$$
\begin{align*}
& M_{p}\left(z_{1}, z_{2}, 0, P^{z}, \mu\right)=\left\{1+\frac{\alpha_{s} C_{F}}{\pi}\left(\frac{1}{2} L_{1}^{\mathrm{UV}}+\frac{1}{2} L_{2}^{\mathrm{UV}}+\frac{1}{2} L_{12}^{\mathrm{UV}}+\frac{3}{2}\right)\right\} M_{0}\left(z_{1}, z_{2}, 0, P^{z}, \mu\right) \\
& -\frac{\alpha_{s} C_{F}}{8 \pi} \int_{0}^{1} d \eta_{1} \int_{0}^{1-\eta_{1}} d \eta_{2} \\
& \times\left\{\left(L_{1}^{\mathrm{IR}}-1+\frac{1}{\epsilon_{\mathrm{IR}}}\right) M_{0}\left(\left(1-\eta_{1}\right) z_{1}, z_{2}, \eta_{2} z_{1}, P^{z}, \mu\right)+\left(L_{2}^{\mathrm{IR}}-1+\frac{1}{\epsilon_{\mathrm{IR}}}\right) M_{0}\left(z_{1},\left(1-\eta_{1}\right) z_{2}, \eta_{2} z_{2}, P^{z}, \mu\right)\right. \\
& \left.+2\left(L_{12}^{\mathrm{IR}}-3+\frac{1}{\epsilon_{\mathrm{IR}}}\right) M_{0}\left(\left(1-\eta_{1}\right) z_{1}+\eta_{1} z_{2},\left(1-\eta_{2}\right) z_{2}+\eta_{2} z_{1}, 0, P^{z}, \mu\right)\right\} \\
& -\frac{\alpha_{s} C_{F}}{4 \pi} \int_{0}^{1} d \eta \times\left\{M_{0}\left((1-\eta) z_{1}+\eta z_{2}, z_{2}, 0, P^{z}, \mu\right)\left\{\left(L_{12}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)^{2}\left(\frac{1-\eta}{\eta}\right)_{+}+2\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}\right. \\
& +M_{0}\left(z_{1},(1-\eta) z_{2}+\eta z_{1}, 0, P^{z}, \mu\right)\left\{\left(L_{12}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)\left(\frac{1-\eta}{\eta}\right)_{+}^{+2}\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}_{+} \\
& +M_{0}\left((1-\eta) z_{1}, z_{2}, 0, P^{z}, \mu\right)\left\{\left(L_{1}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)\left(\frac{1-\eta}{\eta}\right)_{+}^{\left.+2\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}_{+}}\right. \\
& +M_{0}\left(z_{1},(1-\eta) z_{2}, 0, P^{z}, \mu\right)\left\{\left(L_{2}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)\left(\frac{1-\eta}{\eta}\right)_{+}^{\left.+2\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}}\right. \\
& -M_{0}\left(z_{1}, z_{2}, \eta z_{1}, P^{z}, \mu\right)\left\{\left(L_{1}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)\left(\frac{1-\eta}{\eta}\right)_{+}^{\left.+2\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}}\right. \\
& \left.-M_{0}\left(z_{1}, z_{2}, \eta z_{2}, P^{z}, \mu\right)\left\{\left(L_{2}^{\mathrm{IR}}+1+\frac{1}{\epsilon_{\mathrm{IR}}}\right)\left(\frac{1-\eta}{\eta}\right)_{+}^{+2}\left(\frac{\ln \eta}{\eta}\right)_{+}\right\}\right\} \tag{2.10}
\end{align*}
$$

Result and Outlook

One-loop calculation of ratio element:

$$
\begin{aligned}
& \delta \hat{M}_{H}^{(1)}\left(z_{1}, z_{2}, \mu\right)=\hat{M}_{p}^{(1)}\left(z_{1}, z_{2}, 0,0, \mu\right)\left(\theta\left(2 z_{s}-\left|z_{1}\right|\right) \theta\left(z_{s}-\left|z_{2}\right|\right)+\theta\left(z_{s}-\left|z_{1}\right|\right) \theta\left(\left|z_{2}\right|-z_{s}\right) \theta\left(2 z_{s}-\left|z_{2}\right|\right)\right) \\
& +\hat{M}_{p}^{(1)}\left(z_{1}, \operatorname{sign}\left(z_{2}\right) 2 z_{s}, 0,0, \mu\right) \theta\left(z_{s}-\left|z_{1}\right|\right) \theta\left(\left|z_{2}\right|-2 z_{s}\right)+\hat{M}_{p}^{(1)}\left(\operatorname{sign}\left(z_{1}\right) 2 z_{s}, z_{2}, 0,0, \mu\right) \theta\left(\left|z_{1}\right|-2 z_{s}\right) \theta\left(z_{s}-\left|z_{2}\right|\right) \\
& +\hat{M}_{p}^{(1)}\left(z_{s}+\left(z_{1}-z_{2}\right) \theta\left(z_{1}-z_{2}\right), z_{s}+\left(z_{2}-z_{1}\right) \theta\left(z_{2}-z_{1}\right), 0,0, \mu\right) \theta\left(\left|z_{1}\right|-z_{s}\right) \theta\left(\left|z_{2}\right|-z_{s}\right) \theta\left(z_{s}-\left|z_{1}-z_{2}\right|\right) \\
& +\hat{M}_{p}^{(1)}\left(z_{s}+\left(z_{1}+z_{2}\right) \theta\left(z_{1}+z_{2}\right),-z_{s}+\left(z_{2}+z_{1}\right) \theta\left(-z_{2}-z_{1}\right), 0,0, \mu\right) \theta\left(\left|z_{1}\right|-z_{s}\right) \theta\left(\left|z_{2}\right|-z_{s}\right) \theta\left(z_{s}-\left|z_{1}+z_{2}\right|\right) \\
& +\hat{M}_{p}^{(1)}\left(\operatorname{sign}\left(z_{1}\right) z_{s}, \operatorname{sign}\left(z_{2}\right) 2 z_{s}, 0,0, \mu\right) \theta\left(\left|z_{1}\right|-z_{s}\right) \theta\left(\left|z_{2}\right|-z_{s}\right) \theta\left(\left|z_{1}-z_{2}\right|-z_{s}\right) \theta\left(\left|z_{1}+z_{2}\right|-z_{s}\right) .
\end{aligned}
$$

Result and Outlook

$$
C^{\text {hybrid }}\left(x_{1}, x_{2}, y_{1}, y_{2}, \mu\right)=C^{M \bar{M} S}\left(x_{1}, x_{2}, y_{1}, y_{2}, \mu\right)-\delta C\left(x_{1}, x_{2}, y_{1}, y_{2}, \mu\right)
$$

$$
\begin{align*}
& \delta \mathcal{C}_{H}^{(1)}\left(x_{1}, x_{2}, y_{1}, y_{2}, P^{z}, \mu\right)=\left(P^{z}\right)^{2} \frac{\alpha_{s} C_{F}}{2 \pi}\left[I_{\mathrm{H}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right]+I_{\mathrm{HSI}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right]\right. \\
& +I_{\mathrm{HSII}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right]+I_{\mathrm{HSIII}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right]+I_{\mathrm{HSIV}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right] \\
& \left.+I_{\mathrm{S}}\left[\left(x_{1}-y_{1}\right) P^{z},\left(x_{2}-y_{2}\right) P^{z}\right]+\delta\left[\left(x_{1}-y_{1}\right) P^{z}\right] \delta\left[\left(x_{2}-y_{2}\right) P^{z}\right]\left(\frac{5}{2} \ln \left(\frac{\mu^{2} e^{2 \gamma_{E}}}{4}\right)+4\right)\right], \tag{3.22}
\end{align*}
$$

$$
\begin{align*}
& I_{\mathrm{H}}\left[p_{1}, p_{2}\right] \equiv \int \frac{d z_{1}}{2 \pi} \frac{d z_{2}}{2 \pi} e^{i p_{1} z_{1}+i p_{2} z_{2}}\left[\frac{7}{8} \ln \left(z_{1}^{2}\right)+\frac{7}{8} \ln \left(z_{2}^{2}\right)+\frac{3}{4} \ln \left(\left(z_{1}-z_{2}\right)^{2}\right)\right] \tag{B.7}\\
& \quad \times\left(\theta\left(2 z_{s}-\left|z_{1}\right|\right) \theta\left(z_{s}-\left|z_{2}\right|\right)+\theta\left(z_{s}-\left|z_{1}\right|\right) \theta\left(\left|z_{2}\right|-z_{s}\right) \theta\left(2 z_{s}-\left|z_{2}\right|\right)\right) \\
& =\frac{7}{8}\left[\mathrm{I} 0\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{2}\right) \mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)+\left(\mathrm{I} 0\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{1}\right)-\mathrm{I} 0\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)\right) \mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\}, p_{2}\right)\right. \\
& \left.+\mathrm{I} 0\left(\left\{z_{s},-z_{s}\right\}, p_{2}\right)\left(\mathrm{I} 1\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{1}\right)-\mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)\right)+\mathrm{I} 0\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right) \mathrm{I} 1\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{2}\right)\right] \\
& +\frac{3}{8 \pi\left(p_{1}+p_{2}\right)}\left[\operatorname { s i n } ((p _ { 1 } + p _ { 2 }) z _ { s }) \left[\mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)+\mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\},-p_{2}\right)\right.\right. \\
& \left.-\mathrm{I} 1\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{1}\right)-\mathrm{I} 1\left(\left\{2 z_{s},-2 z_{s}\right\},-p_{2}\right)+\mathrm{I} 1\left(\left\{3 z_{s},-3 z_{s}\right\}, p_{1}\right)+\mathrm{I} 1\left(\left\{3 z_{s},-3 z_{s}\right\},-p_{2}\right)\right] \\
& +\sin \left(2\left(p_{1}+p_{2}\right) z_{s}\right)\left[-\mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)-\mathrm{I} 1\left(\left\{z_{s},-z_{s}\right\},-p_{2}\right)\right. \\
& \left.+\mathrm{II}\left(\left\{3 z_{s},-3 z_{s}\right\}, p_{1}\right)+\mathrm{I} 1\left(\left\{3 z_{s},-3 z_{s}\right\},-p_{2}\right)\right] \\
& +\cos \left(2\left(p_{1}+p_{2}\right) z_{s}\right)\left[-\mathrm{Itt}\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)+\mathrm{I} 1 \mathrm{t}\left(\left\{z_{s},-z_{s}\right\},-p_{2}\right)\right. \\
& \left.+\mathrm{I} 1 \mathrm{t}\left(\left\{3 z_{s},-3 z_{s}\right\}, p_{1}\right)-\mathrm{I} 1 \mathrm{t}\left(\left\{3 z_{s},-3 z_{s}\right\},-p_{2}\right)\right] \\
& +\cos \left(\left(p_{1}+p_{2}\right) z_{s}\right)\left[-\mathrm{I} 1 \mathrm{t}\left(\left\{z_{s},-z_{s}\right\}, p_{1}\right)+\mathrm{I} 1 \mathrm{t}\left(\left\{z_{s},-z_{s}\right\},-p_{2}\right)-\mathrm{I} 1 \mathrm{t}\left(\left\{2 z_{s},-2 z_{s}\right\}, p_{1}\right)\right. \\
& \left.\left.+\mathrm{IIt}\left(\left\{2 z_{s},-2 z_{s}\right\},-p_{2}\right)+\mathrm{Itt}\left(\left\{3 z_{s},-3 z_{s}\right\}, p_{1}\right)-\mathrm{Itt}\left(\left\{3 z_{s},-3 z_{s}\right\},-p_{2}\right)\right]\right],
\end{align*}
$$

Result and Outlook

Apply hybrid scheme to all leading twist LCDA:
$f_{N}\left\{(P C)_{\alpha \beta}\left(\gamma_{5} u_{\Lambda}\right)_{\gamma} V\left(z_{i} P \cdot n\right)+\left(H \gamma_{5} C\right)_{\alpha \beta}\left(u_{\Lambda}\right)_{\gamma} A\left(z_{i} P \cdot n\right)+\left(i \sigma_{\mu \nu} P^{\nu} C\right)_{\alpha \beta}\left(\gamma_{\mu} \gamma_{5} u_{\Lambda}\right)_{\gamma} T\left(z_{i} P \cdot n\right)\right.$

Does scales separate to all order? -A prerequisite to hybrid scheme

$$
\begin{array}{r}
\hat{M}_{p}\left(z_{1}, z_{2}, 0,0, \mu\right)=\left(1+\sum_{n=1} \sum_{m=0}^{n} \alpha_{s}^{n} a_{n, m} L_{1}^{m}\right)\left(1+\sum_{n=1} \sum_{m=0}^{n} \alpha_{s}^{n} b_{n, m} L_{2}^{m}\right)\left(1+\sum_{n=1} \sum_{m=0}^{n} \alpha_{s}^{n} c_{n, m} L_{12}^{m}\right) \\
L_{1}=\ln \frac{z_{1}^{2} \mu^{2} e^{2 \gamma_{F}}}{4} \& L_{2}=\ln \frac{z_{2}^{2} \mu^{2} e^{2 \gamma_{F}}}{4} \& \cdot L_{12}=\ln \frac{\left(z_{1}-z_{2}\right)^{2} \mu^{2} e^{2 \gamma_{F}}}{4}
\end{array}
$$

Thank you for listening!

