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Abstract

In this work, we try to improve the classic asymptotic formulae to describe the probability distribution of likelihood-ratio statistical tests. The idea is to split the probability distribution function into two
parts. One part is universal and described by the asymptotic formulae. The other part is case-dependent and estimated explicitly using a 6-bin model proposed in this work. The latter is similar to doing toy
simulations and hence is able to predict the discrete structures in the probability distributions.

Introduction
When we do physics interpretation in a measurement, the test-statistics with the biggest power is
likelihood ratio.

tµ = −2 ln
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)

The classical asymptotic formula [1] describing tµ’s probability distribution is based on Wald’s
theorem.

tµ =
(µ̂− µ)2

σ2
+O(

1√
N
)

where µ̂ abides by a Gaussian distribution with a mean µH and standard deviation σ. In practise,
the 1√

N
term is neglected and it applies well in the large-statistics cases.

However, we still meet many cases where few events are expected, especially, in searching for
rare physics signals. A natural idea to overcome the limitation above is to split the probability
distribution function (PDF) of a likelihood-ratio based test statistics, Tµ, into two parts according
to the expected number of events.
Here is our new asymptotic formula [2] for Tµ’s PDF. It has two parts.

f (Tµ|µH) =
+∞∑
n=0

f (Tµ|n, µH)P (n|b + µHs)

=
nsmall∑
n=0

f (Tµ|n, µH)P (n|b + µHs) +
∑

n>nsmall

f (Tµ|n, µH)P (n|b + µHs)

≈
nsmall∑
n=0

fSS(Tµ|n, µH)P (n|b + µHs) + (1−
nsmall∑
n=0

P (n|b + µHs))fLS(Tµ|nsmall, µH)

nsmall is the threashold we split the PDF of tµ. fSS describes the small-statistics (SS) contribution.
It will be calculated using a 6-bin model proposed here. fLS describes the large-statistics (LS)
contribution. It is universal and just the classical formula with a propoer correction.

An Example

We design a pseudo experiment. The prototype is searching for Higgs boson using the H → γγ
mode. The signal is described by a Gaussian function while the background is described by a
smooth and slowly-dropping exponential function. In the signal-sensitive region (123 < mγγ <
127 GeV), the expected signal (background) yield is 0.91 (0.64).
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Figure 1. (L) Distribution of mγγ in our pseudo experiment. (R) The 6-bin model used to calculate the small-statistics
contribution.

Discrete Features in q̃µ and µ̂

The scattering plot of q̃µ : µ̂ with µ = 3 from the toy experiments under the hypothesis µH = 0
(L) and µH = µ = 3 (R). The dashed curve shows the asymptotic formulae according to Wald’s
theorem. On the one hand, we can see that the asymptotic form still looks good even in these
low-statisics cases. On the other hand, there are clear structures which reflect the discrete feature
in the distribution of q̃µ or µ̂.
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Workflow
Here is the workflow to obtain the 6-bin model to calculate fSS.

1 Merge All Signal Region, Merge the observable distributions in all signal regions into a
fine-binning histogram for the signal and background component

2 Re-order the bins with the decreasing significance. Zi represents each bin’s
significance. The defination of significance is

Zi = 2

[
(bi + µHsi) ln

(
1 +

µHsi
bi

)
− µHsi

]
3 Find the bin6 (denoted by i6), the contribution of all the bins after which to the total
significance is less than 0.1%. Define the signal and background yield summed over those
bins as s6 and b6.

4 Rebin into 6bins, For the bins before i6 , we categorize them into 5 bins and the binning is
determined by maximizing the significance.

Discrete features in the small-statistics contribution

Here we use the toy MC simulations with observing 2 events to illustrate the discrete features in
the small-statistics contribution. The curves with different colors represent the solutions of µ̂
predicted in a simplified model.
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Figure 2. The distribution of µ̂ (L) and q̃µ (R) from the toy experiments under the hypothesis µH = 3.

6-Bin Model Approximation for Small Statistics

Once we obtain the 6-bin model, we can calculate the small-statistics part explicitly using the
following formula.

fSS(Tµ|n, µH) =
∑

k0+k1...+k5=n

n!

k0!k1!...k5!

5∏
i=0

(
bi + µHsi
b + µHs

)ki

× fbinned(Tµ|n0 = k0, n1 = k1, · · · , n5 = k5)

where fbinned is the PDF of Tµ for a given observation.

Results

Some examples of probability distributions of q̃µ are shown below.

q̃µ(µ) =


0 µ̂ > µ

−2 ln L(µ,
ˆ̂
θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

−2 ln L(µ,
ˆ̂
θ(µ))

L(0,
ˆ̂
θ(0))

µ̂ < 0

The black dots and open circles represent the toy MC results. The blue solid/dashed histograms
represent the new asymptotic formulae in this work while the red solid/dashed histograms
represent the classic asymptotic formulae from Wald’s approximation. The black and gray arrows
represent the observed and expected q̃µ , respectively.
We can see that new asymptotic formulae predict the bump structures in the PDF of q̃µ.
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The table below summarizes the upper limits. We can see that our new formulae show better
agreement with the toy MC results.

Toy Classic New

Exp 3.19 2.80 (12.2%) 3.07 (3.5%)
Obs 3.38 3.48 (3.0%) 3.48 (3.0%)

Table 1. Summary of the upper limits at 95 % Confidence Level.

The numbers in the brackets indicate the relative difference with respective to the toy results.

Conclusion

In this work, we try to improve the classic asymptotic formulae to describe the probability
distribution of the likelihood-ratio statistical tests which are commonly used in the field of high
energy physics. The idea is to split the PDF into two parts. One is described by the classic
formulae with proper corrections, and the other is calculated by mimicing the process of toy MC
simulation. This idea successfully predict the discrete features in the small-statistics cases. Two
examples with different sample sizes are presented and show that the new formulae have stable
improvements on both the differential distribution of the test statistic and the upper limit
calculation.
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