Cosmological Phase Transitions in Composite Higgs Models

CLHCP 2023

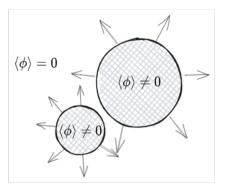
Speaker: Yaoduo Wang^{1,2} based on JHEP09(2023)053 K. Fujikura³, Y. Nakai^{1,2}, R. Sato⁴ and Y. Wang

> ¹Tsung-Dao Lee Institute ²Shanghai Jiao Tong University ³University of Tokyo Komaba ⁴Osaka University

> > November 19, 2023

Content

1 Intro: Why does the order matter?


2 RG flows: Another viewpoint of PT dynamics

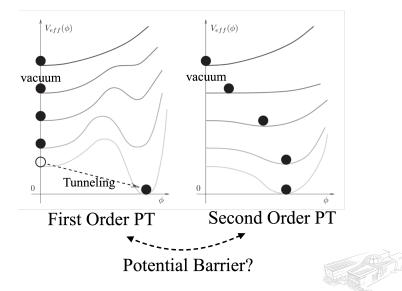
3 Application: Composite Higgs models

Cosmological PTs and bubble formation

First Order PTs

Under PTs

Bubble Formation


GW, DM,

primordial BH...

How to determine the order of PTs?

Content

1 Intro: Why does the order matter?

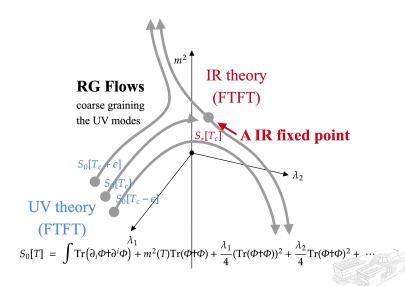
2 RG flows: Another viewpoint of PT dynamics

3 Application: Composite Higgs models

PTs in the viewpoint of RG flow

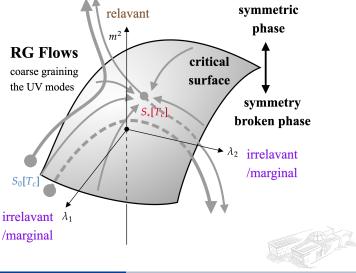
Problem: Strongly-coupled system

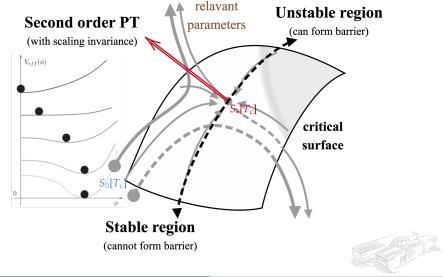
During PTs, the system is strongly-coupled (the coupling constants $\lambda(T_c)$ divergent), and perturbative $V_{\rm eff}$ is no longer reliable.

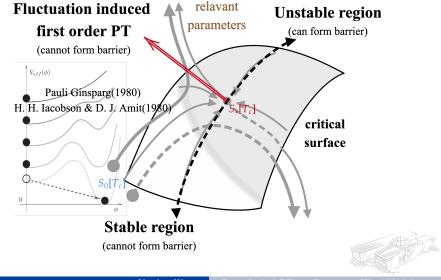

Hint: IR fixed points control the critical behavior

 $\begin{array}{c} {\rm Stable~IR~fixed~point} \\ {\rm (who~controls~the~PT~dynamics)} \end{array}$

Information of the barrier formation (who controls the PT order)


RG flow depicted in terms of couplings


Critical surface and phases

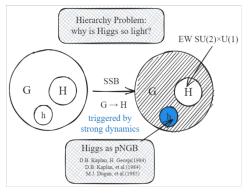


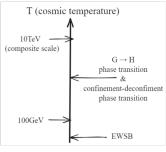
Classicification of stable IR fixed points

Content

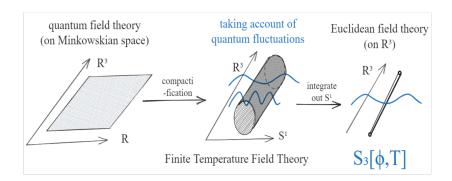
1 Intro: Why does the order matter?

2 RG flows: Another viewpoint of PT dynamics


3 Application: Composite Higgs models



Composite Higgs models



Finite Temperature Field Theory

PT orders in Composite Higgs models

G→H SSB patterns	SO(N)→SO(N-1)	$SO(9) \rightarrow SO(5) \times SO(4)$	$\begin{array}{c} SU(2N) {\longrightarrow} Sp(2N) \\ U(2N) {\longrightarrow} Sp(2N) \end{array}$	$\begin{array}{c} SU(N) \rightarrow SO(N) \\ U(N) \rightarrow SO(N) \end{array}$
Composite Higgs Models	N=5: K. Agashe et al.(2005) N=9: E. Beltuzzo et al.(2013)	S. Chang(2013)	N=2: J.Barnald et al.(2014) N=3: E. Katz et al.(2005)	N=5: N. Arkani-Hamed et al.(2005)

PT orders in Composite Higgs models

G→H SSB patterns	SO(N)→SO(N-1)	$SO(9) \rightarrow SO(5) \times SO(4)$	$SU(2N) \rightarrow Sp(2N)$ $U(2N) \rightarrow Sp(2N)$	$SU(N) \rightarrow SO(N)$ $U(N) \rightarrow SO(N)$
Composite Higgs Models	N=5: 2nd E. Brezin et al(1973) N=9: 2nd P.H. Ginsparg (1980)	1st this work	N=2: anomaly J. Wirstam (2000) N=3; Ist J. Wirstam (2000)	N=5: 1st F. Basile et al. (2005)

Thanks

