

Dark photon effects with the kinetic and Mass mixing in Z decay

Zhi-Peng Xing work with Jin Sun

Based on arXiv: 2310.06526

TDLI&NJNU

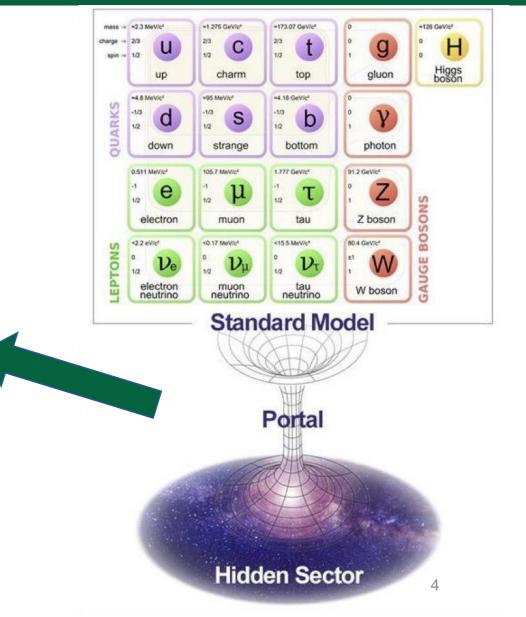
The 9th China LHC Physics Workshop (CLHCP2023)

- Introduction
- Dark photon mixing model
- Phenomenology
- Conclusion

Dark photon mixing model

Phenomenology

Conclusion



南京师范大学 NANJING NORMAL UNIVERSITY

Portal:

Dark photon:

- A new U(1) gauge boson acting like photon. $Q_f A'_{\mu} \bar{f} \gamma^{\mu} f$ • Dark: No charge under SM gauge groups.
- SM particle without charge under new U(1)

No direct interaction with SM particle

$$U(1)_Y \times U(1)_X \qquad L = -\frac{1}{4}Y_{\mu\nu}Y^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + j_Y^{\mu}Y_{\mu} + j_X^{\mu}X_{\mu}$$

$$Massless$$
Dark photon

Massive

Kinetic mixing:

- Renormalizable: dimension 4 operator
- Enlighten : dark photon interacts with SM particles

 $X \longrightarrow \gamma$

Gauge group:
$$SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X$$

 $L = -\frac{1}{4}Y_{\mu\nu}Y^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} + j_Y^{\mu}Y_{\mu} + j_X^{\mu}X_{\mu} - \frac{\epsilon}{2}X_{\mu\nu}Y^{\mu\nu}$

Rewrite in the canonical form to identify physical guage boson (remove mixing term)

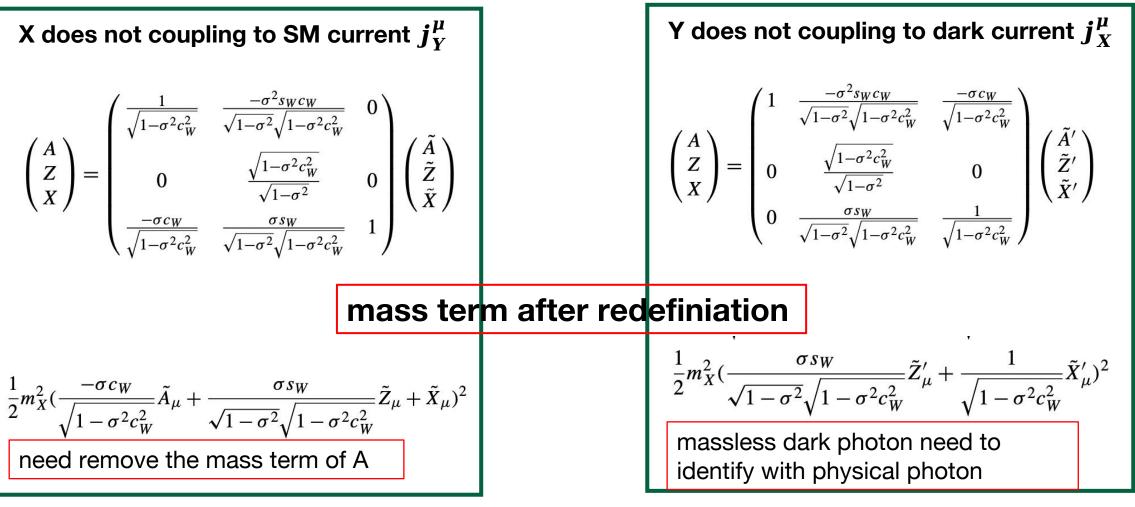
Remove mixing scheme:

X does not coupling to SM current j_{V}^{μ} $\hat{Y}_{\mu} = \sqrt{1 - \epsilon^2} Y_{\mu}$ $\hat{X}_{\mu} = \epsilon Y_{\mu} + X_{\mu}$ $\mathcal{L}_a = -\frac{1}{4}\hat{X}_{\mu\nu}\hat{X}^{\mu\nu} - \frac{1}{4}\hat{Y}_{\mu\nu}\hat{Y}^{\mu\nu}$ $+ j_{Y}^{\mu} \frac{1}{\sqrt{1-\epsilon^{2}}} \hat{Y}_{\mu}$ $+ j_X^{\mu} \left(\hat{X}_{\mu} - \frac{\epsilon}{\sqrt{1-\epsilon^2}} \hat{Y}_{\mu} \right)$

Y does not coupling to dark current j_{X}^{μ} $\hat{Y}'_{\mu} = Y_{\mu} + \epsilon X_{\mu}$ $\hat{X}'_{\mu} = \sqrt{1 - \epsilon^2} X_{\mu}$ $\mathcal{L}_{b} = -\frac{1}{4}\hat{X}'_{\mu\nu}\hat{X}'^{\mu\nu} - \frac{1}{4}\hat{Y}'_{\mu\nu}\hat{Y}'^{\mu\nu}$ $+ j_X^{\mu} \frac{1}{\sqrt{1-\epsilon^2}} \hat{X}'_{\mu}$ $+ j_Y^{\mu} \left(\hat{Y}'_{\mu} - \frac{\epsilon}{\sqrt{1-\epsilon^2}} \hat{X}'_{\mu} \right)$

case a: Massless

Nucl.Phys.B 953 (2020)


case b: Massive

case a: Massless

Remove mixing scheme:

Nucl.Phys.B 953 (2020)

Dark photon mixing model

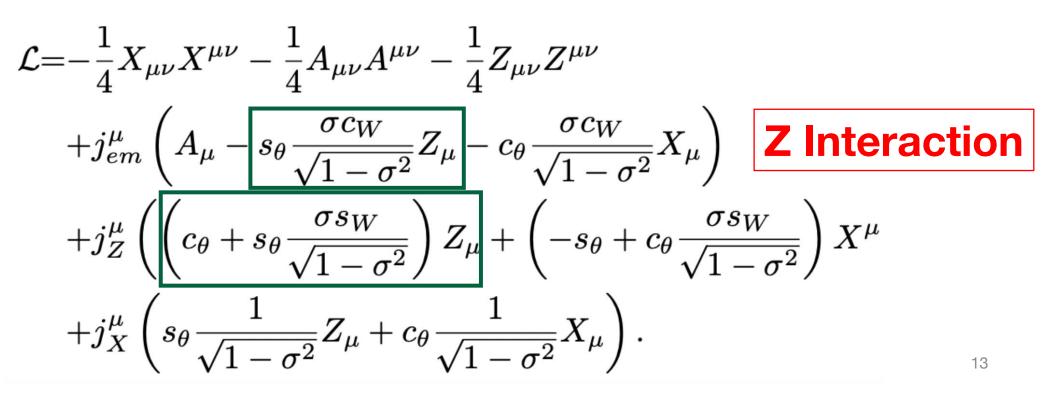
Phenomenology

Conclusion

The simplest kinetic mixing:

$$\begin{aligned} \text{Gauge group:} \quad & SU(3) \times SU(2)_L \times U(1)_Y \times U(1)_X \\ \mathscr{L} &= -\frac{1}{4} \tilde{X}'_{\mu\nu} \tilde{X}'^{\mu\nu} - \frac{\sigma}{2} \tilde{X}'_{\mu\nu} \tilde{Y}'^{\mu\nu} - \frac{1}{4} \tilde{Y}'_{\mu\nu} \tilde{Y}'^{\mu\nu} + j_Y^{\mu} \tilde{Y}'_{\mu} + j_X^{\mu} \tilde{X}'_{\mu} \\ & \begin{pmatrix} \tilde{Y}' \\ \tilde{X}' \end{pmatrix} = \begin{pmatrix} 1 & -\frac{\sigma}{\sqrt{1-\sigma^2}} \\ 0 & \frac{1}{\sqrt{1-\sigma^2}} \end{pmatrix} \begin{pmatrix} \tilde{Y} \\ \tilde{X} \end{pmatrix} \\ \mathscr{L} &= -\frac{1}{4} \tilde{X}_{\mu\nu} \tilde{X}^{\mu\nu} - \frac{1}{4} \tilde{Y}_{\mu\nu} \tilde{Y}^{\mu\nu} + j_Y^{\mu} \left(\tilde{Y}_{\mu} - \frac{\sigma}{\sqrt{1-\sigma^2}} \tilde{X}_{\mu} \right) + j_X^{\mu} \frac{1}{\sqrt{1-\sigma^2}} \tilde{X}_{\mu} \end{aligned}$$

Mass mixing:


Mass mixing:

Dark photon mixing model

 $\begin{array}{l} \textbf{Mass mixing:} \\ \begin{pmatrix} \tilde{A}' \\ \tilde{Z}' \\ \tilde{X}' \end{pmatrix} = \begin{pmatrix} 1 & -s_{\theta} \frac{\sigma c_W}{\sqrt{1 - \sigma^2}} & -c_{\theta} \frac{\sigma c_W}{\sqrt{1 - \sigma^2}} \\ 0 & c_{\theta} + s_{\theta} \frac{\sigma s_W}{\sqrt{1 - \sigma^2}} & -s_{\theta} + c_{\theta} \frac{\sigma s_W}{\sqrt{1 - \sigma^2}} \\ 0 & s_{\theta} \frac{1}{\sqrt{1 - \sigma^2}} & c_{\theta} \frac{1}{\sqrt{1 - \sigma^2}} \end{pmatrix} \begin{pmatrix} A \\ Z \\ X \end{pmatrix} \end{array}$

Dark photon mixing model

Z couplings:
$$j_Z^{\mu} = -\frac{e}{2s_W c_W} \bar{f} \gamma^{\mu} (\tilde{g}_V^f - \tilde{g}_A^f \gamma_5) f \quad \tilde{g}_V^f = I_3^f - 2Q_f s_W^2 , \quad \tilde{g}_A^f = I_3^f$$
$$g_V^f = \tilde{g}_V^f \left(c_\theta + s_\theta \frac{\sigma s_W}{\sqrt{1 - \sigma^2}} \right) + 2s_\theta \frac{\sigma s_W c_W^2}{\sqrt{1 - \sigma^2}} \approx \tilde{g}_V^f \left[1 + \sigma^2 \tilde{s}_W^2 \left(\frac{1 - \epsilon}{1 - \tilde{r}^2} - \frac{(1 - \epsilon)^2}{2(1 - \tilde{r}^2)^2} \right) \right]$$
$$g_A^f = \tilde{g}_A^f \left(c_\theta + s_\theta \frac{\sigma s_W}{\sqrt{1 - \sigma^2}} \right) \approx \tilde{g}_A^f \left[1 + \sigma^2 s_W^2 \left(-\frac{(1 - \epsilon)^2}{2(1 - \tilde{r}^2)^2} + \frac{1 - \epsilon}{1 - \tilde{r}^2} \right) \right]$$
only kinetic mixing $\epsilon = 0$

Z boson phenomenology

Z couplings:

$$\epsilon = 1$$
 case

$$j_{Z}^{\mu} = -\frac{e}{2s_{W}c_{W}}\bar{f}\gamma^{\mu}(\tilde{g}_{V}^{f} - \tilde{g}_{A}^{f}\gamma_{5})f \qquad \tilde{g}_{V}^{f} = I_{3}^{f} - 2Q_{f}s_{W}^{2}, \quad \tilde{g}_{A}^{f} = I_{3}^{f}$$
$$g_{V}^{f} = \tilde{g}_{V}^{f}\left(c_{\theta} + s_{\theta}\frac{\sigma s_{W}}{\sqrt{1 - \sigma^{2}}}\right) + 2s_{\theta}\frac{\sigma s_{W}c_{W}^{2}}{\sqrt{1 - \sigma^{2}}} \approx \tilde{g}_{V}^{f}\left[1 + \sigma^{2}\tilde{s}_{W}^{2}\left(\frac{1 - \epsilon}{1 - \tilde{r}^{2}} - \frac{(1 - \epsilon)^{2}}{2(1 - \tilde{r}^{2})^{2}}\right)\right]$$

 $g_A^f = \tilde{g}_A^f \left(c_\theta + s_\theta \frac{\sigma s_W}{\sqrt{1 - \sigma^2}} \right) \approx \tilde{g}_A^f \left| 1 + \sigma^2 s_W^2 \left(-\frac{(1 - \epsilon)^2}{2(1 - \tilde{r}^2)^2} + \frac{1 - \epsilon}{1 - \tilde{r}^2} \right) \right|$

$$\begin{pmatrix} \tilde{A}' \\ \tilde{Z}' \\ \tilde{X}' \end{pmatrix} = \begin{pmatrix} 1 & -s_{\theta} \frac{\sigma c_{W}}{\sqrt{1 - \sigma^{2}}} & -c_{\theta} \frac{\sigma c_{W}}{\sqrt{1 - \sigma^{2}}} \\ 0 & c_{\theta} + s_{\theta} \frac{\sigma s_{W}}{\sqrt{1 - \sigma^{2}}} & -s_{\theta} + c_{\theta} \frac{\sigma s_{W}}{\sqrt{1 - \sigma^{2}}} \\ 0 & s_{\theta} \frac{1}{\sqrt{1 - \sigma^{2}}} & c_{\theta} \frac{1}{\sqrt{1 - \sigma^{2}}} \end{pmatrix} \begin{pmatrix} A \\ Z \\ X \end{pmatrix} \quad \longleftrightarrow \quad \varTheta \quad \Theta = 0$$

no mixing with Z

The effect of kinetic mixing in Z coupling are fully cancled by mass mixing.

Dark photon mixing model

Phenomenology

Conclusion

Phenomenology

Z-tau coupling modification:

$$\begin{split} g_V^f &= \left(-\frac{1}{2} + 2s_W^2 \right) \left[1 + \sigma^2 s_W^2 \left(\frac{1-\epsilon}{1-\tilde{r}^2} - \frac{(1-\epsilon)^2}{2(1-\tilde{r}^2)^2} \right) \right] + 2\sigma^2 s_W^2 (1-s_W^2) \frac{1-\epsilon}{1-\tilde{r}^2} \\ g_A^f &= -\frac{1}{2} \left[1 + \sigma^2 s_W^2 \left(\frac{1-\epsilon}{1-\tilde{r}^2} - \frac{(1-\epsilon)^2}{2(1-\tilde{r}^2)^2} \right) \right] \end{split}$$

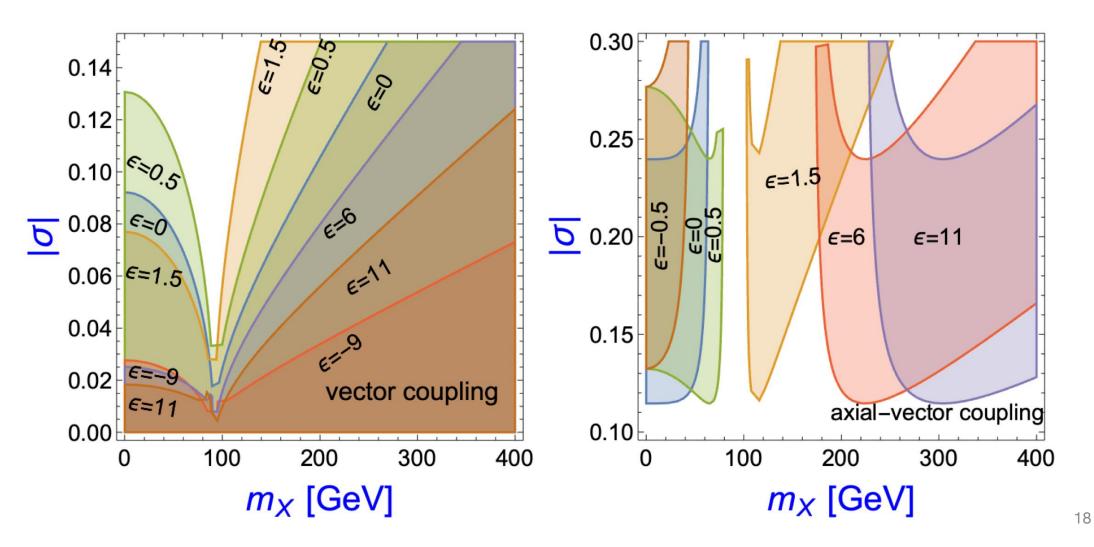
Experiment data:

Vector and axial-vector

$$g_V^\tau = -\ 0.0366 \pm 0.0010$$

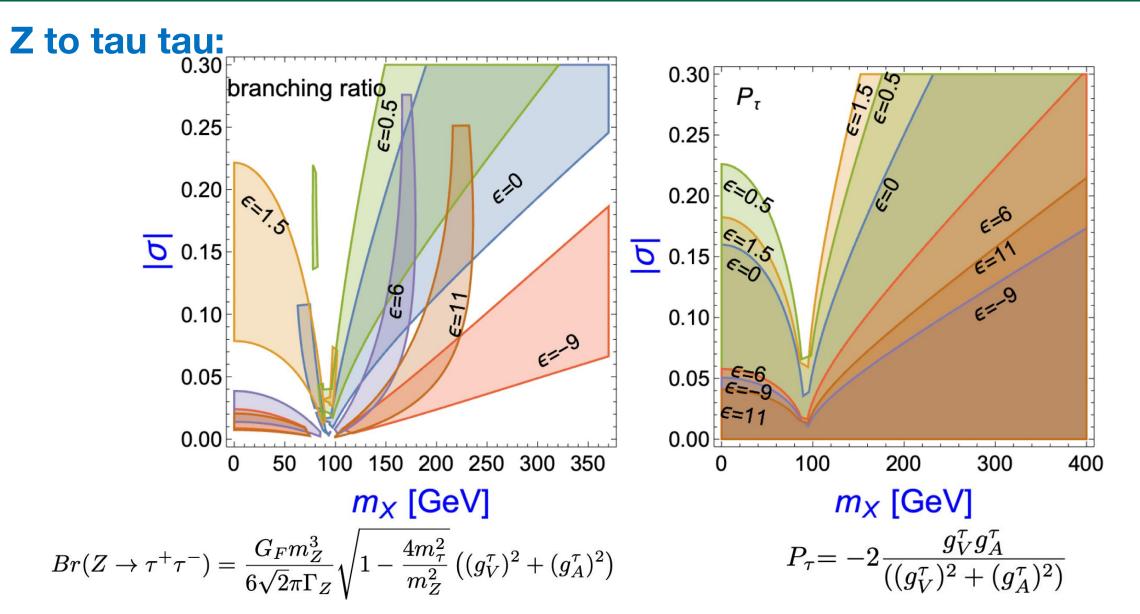
$$g_A^{\tau} = -0.50204 \pm 0.00064$$

Z decay to tau tau

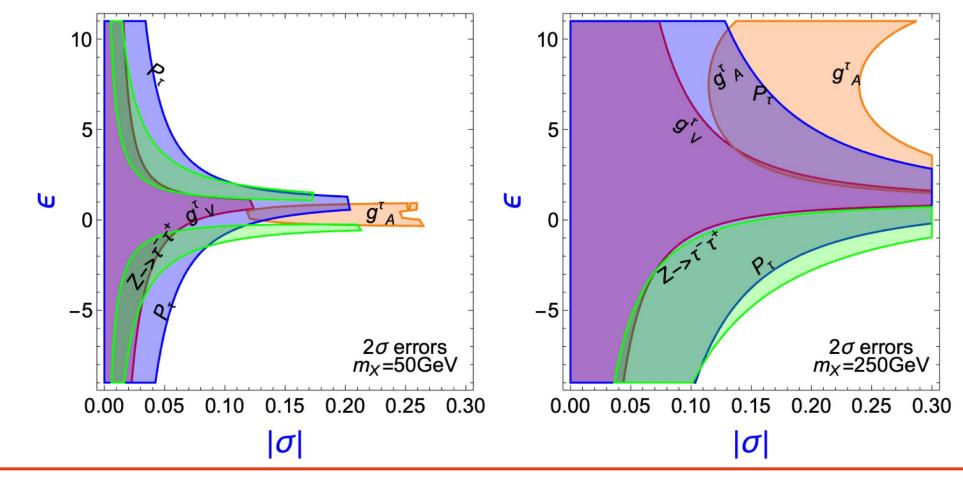

 $Br(Z \to \tau^+ \tau^-) = (3.3696 \pm 0.0083)\,\%$

$$P_{\tau}(Z) = -0.144 \pm 0.015$$

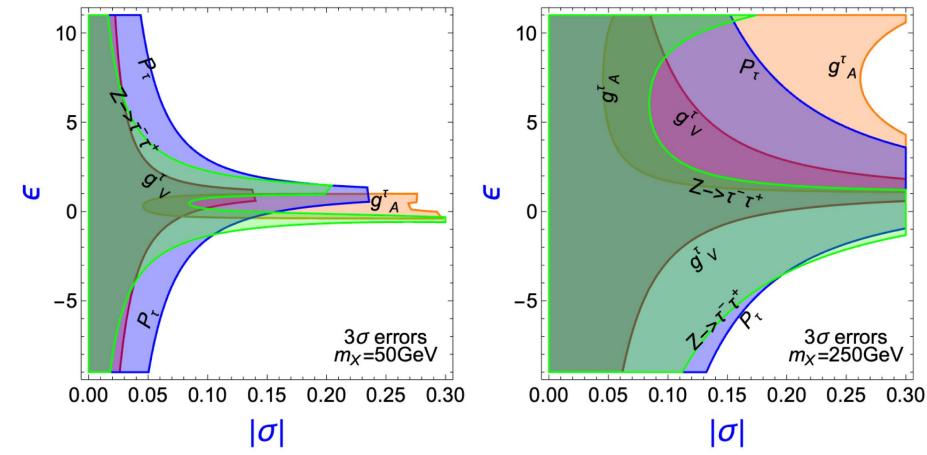
A. Hayrapetyan[CMS],¹⁷ 2023



Z-tau coupling:



Common regions with 2 sigma error margin:



No common region to satisfy the constraints simultaneously

Common regions with 3 sigma error margin:

Common region to satisfy the constraints simultaneously

Dark photon mixing model

Phenomenology

Conclusion

- The dark photon model with kinetic and mass mixing is constructed by introducing additional Higgs doublet with vev and U(1)x charge.
- The mixing ratio parameter modifies Z coupling to further affect its phenomenology.
- The relevant constraints can be satisfied within 3sigma error simultaneously.

Thanks!