

Probing the Higgs trilinear self-coupling through Higgs+jet production

Jun Gao, Xiao-Min Shen, Guoxing Wang, Li Lin Yang and Bin Zhou

Phys.Rev.D 107 (2023) 11, 115017

The 9th China LHC Physics Workshop, November 17, 2023

・ロト ・四ト ・ヨト ・ ヨ

Outline

Summary and Outlook

1 Introduction

- **2** Methods
- **3** Numerical results
- **4** Summary and Outlook

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production November 1'

▲ 国 ト ▲ 国 ト 国 の Q (C) November 17, 2023 2 / 22

(日)

Numerical results

Summary and Outlook

Outline

1 Introduction

- **2** Methods
- **3** Numerical results
- **4** Summary and Outlook

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production November

イロト イポト イヨト イヨト

Experiments¹

The precise determination of λ_{HHH}

- the electroweak symmetry breaking mechanism
- new physics (NP) beyond the SM

Experiments

- the double-Higgs production: $-0.6 < \kappa_{\lambda} < 6.6$
- the single-Higgs production: $-4.0 < \kappa_{\lambda} < 10.3$
- combine them together: $-0.4 < \kappa_{\lambda} < 6.3$, where $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$

Figure 1: Examples of λ_{HHH} -dependent diagrams for single-Higgs production in the (b) ggF, (c) VBF, (d) VH, and (e) ttH modes.

 ^{&#}x27;G. Aad et al. (ATLAS), "Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV", Phys. Lett. B 843, 137745 (2023).
 Image: Comparison of the ATLAS detector using pp collisions at s=13 TeV", Phys. Lett. B 843, 137745 (2023).

Consider a beyond-the-SM scenario where the only modification is λ_{HHH}^{SM} .

$$\lambda_{HHH}^{\rm SM} \lor H^3 \to \kappa_\lambda \lambda_{HHH}^{\rm SM} \lor H^3$$

In the presence of the modified trilinear coupling, a generic NLO observable Σ_{NLO} for single Higgs production can be written as

$$\Sigma_{\rm NLO} = Z_H \Sigma_{\rm LO} (1 + \kappa_\lambda C_1) \,, \tag{1}$$

where C_1 is the process- and kinematic-dependent component. Hence C_1 is different for any production process, a fit involving different measurements can be very powerful for the determination of a single parameter.

Bin Zhou (SJTU)

¹G. Degrassi et al., "Probing the Higgs self coupling via single Higgs production at the LHC"; THEP 12 080 (2016). (🖹) 🚊 🔗 Q (🔿

In the limit $\kappa_{\lambda} \rightarrow 1$, $Z_H = 1 + \delta Z_H$, and Σ_{NLO} goes to its SM value

$$\Sigma_{\rm NLO}^{\rm SM} = \Sigma_{\rm LO} (1 + C_1 + \delta Z_H) \,, \tag{2}$$

Therefore, C_1 can be extracted as

$$C_{1} = \frac{\sum_{\text{NLO}}^{\text{SM}} - \sum_{\text{LO}} - \delta Z_{H} \Sigma_{\text{LO}}}{\sum_{\text{LO}}} = \frac{\sum_{i,j} \int dx_{1} dx_{2} f_{i}(x_{1}) f_{j}(x_{2}) 2 \Re \left(\mathcal{M}^{(0)*} \delta \mathcal{M}^{(1)}_{\text{bare}} \right) d\Phi_{2}}{\sum_{i,j} \int dx_{1} dx_{2} f_{i}(x_{1}) f_{j}(x_{2}) |\mathcal{M}^{(0)}|^{2} d\Phi_{2}},$$
(3)

where the sum goes over all possible partonic initial states *i*, *j*; $\delta \mathcal{M}_{\text{bare}}^{(1)}$ don't include contributions coming from the Higgs field renormalization.

Current situations

- All the relevant single Higgs production (ggF, VBF, VH, tt
 H
 , tH
) and decay channels (γγ, VV*, 4l, gg) have been analysed¹².
- The calculation of differential effects for ggF is not yet available.
- The analytic expressions of the relevant amplitudes for $pp \rightarrow H + jet$ in the large top quark mass expansion up to $O[1/(m_t^2)^3]$ are given in Ref.³, which are then used to study the effect of κ_λ on the Higgs boson transverse momentum (p_T) distribution⁴.

Give reliable predictions in the high energy regions, which are more sensitive to NP beyond the SM!

¹G. Degrassi et al., "Probing the Higgs self coupling via single Higgs production at the LHC", JHEP 12, 080 (2016).

²F. Maltoni et al., "Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC", Eur. Phys. J. C 77, 887 (2017).

³M. Gorbahn and U. Haisch, "Two-loop amplitudes for Higgs plus jet production involving a modified trilinear Higgs coupling", JHEP 04, 062 (2019).

⁴J. Alison et al., "Higgs boson potential at colliders: Status and perspectives", Rev. Phys. 5, edited by 📴 Di Micco et al., 300045 2020 D a 🔿

Outline

Numerical results

Summary and Outlook

1 Introduction

2 Methods

- **3** Numerical results
- **4** Summary and Outlook

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production Novemb

▲ 国 ト ▲ 国 ト 国 の Q (C) November 17, 2023 8 / 22

イロト イポト イヨト イヨト

Theory Ingredients

Consider four partonic processes

$$g_{a}(p_{1}) + g_{b}(p_{2}) \rightarrow g_{c}(p_{3}) + H(p_{4}), \ q_{a}(p_{1}) + \bar{q}_{b}(p_{2}) \rightarrow g_{c}(p_{3}) + H(p_{4})$$
$$q_{a}(p_{1}) + g_{b}(p_{2}) \rightarrow q_{c}(p_{3}) + H(p_{4}), \ \bar{q}_{a}(p_{1}) + g_{b}(p_{2}) \rightarrow \bar{q}_{c}(p_{3}) + H(p_{4})$$

- neglect the masses of all light fermions except that of the top quark
- consider the diagrams including a top-quark loop at LO and both a top-quark loop and a λ_{HHH} vertex at NLO

Figure 2: Typical one-loop (upper) and two-loop (lower) Feynman diagrams for the gluon fusion channel.

Introduction 00000	Methods 00000	Numerical results	Summary and Outlook

Amplitude in the gluon fusion channel

The amplitude for the gluon fusion channel is given by

$$\mathcal{M}_{abc}^{gg} = \sqrt[4]{2} \sqrt{G_F} \sqrt{4\pi\alpha_s} \, \mathcal{M}_{abc}^{\mu\nu\rho} \epsilon_\mu(p_1) \epsilon_\nu(p_2) \epsilon_\rho^*(p_3) \,, \tag{4}$$

 $\mathcal{M}_{abc}^{\mu\nu\rho}$ can be written as linear combinations of independent tensor structures¹:

$$\mathcal{M}_{abc}^{\mu\nu\rho} = f_{abc} \sum_{i=1}^{4} \mathcal{T}_{gg,i}^{\mu\nu\rho} A_{gg,i}(\hat{s}, \hat{t}, m_H, m_t) , \qquad (5)$$

The form factors can be perturbatively expanded

$$A_{gg,i} = \frac{\alpha_s}{4\pi} \left[A_{gg,i}^{(0)} + \frac{G_F}{2\sqrt{2}\pi^2} A_{gg,i}^{(1)} + O\left(G_F^2\right) \right],$$
(6)

where $A_{gg,i}^{(0)}$ are the one-loop contributions, and $A_{gg,i}^{(1)}(A_{gg,i}^{(1),\text{bare}})$ are the two-loop contributions.

November 17, 2023 10/22

¹M. Gorbahn and U. Haisch, "Two-loop amplitudes for Higgs plus jet production involving a modified trilinear Higgs coupling", JHEP 04 062 (2019).

The large top quark mass expansion up to N⁶LP

Based on the method of expansion by regions, the integration domain of the loop momenta (l_1, l_2) is divided into four regions: <u>hard-hard</u>, <u>hard-soft</u>, soft-hard and soft-soft.

Figure 3: Typica two-loop Feynman diagrams for the gluon fusion channel.

Schematically, we present the $O[1/(m_t^2)^0]$ (LP) contributions to $A_{gg,i}^{(1),\text{bare}}$ as

$$\vec{A}_{gg}^{(1),\text{bare}} = \frac{m_H^2}{12} \left(-12L_m + 4\sqrt{3}\pi - 23 \right) \left(\frac{1}{\hat{t}}, \frac{1}{\hat{s}}, -\frac{1}{\hat{s}}, \frac{1}{\hat{s}} + \frac{1}{\hat{t}} + \frac{1}{\hat{u}} \right), \tag{7}$$

where $L_m = \ln(m_t^2/m_H^2)$. Note that there are no ultraviolet (UV) and infrared (IR) divergences in the form factors.

Bin Zhou (SJTU)

November 17, 2023

11/22

Padé approximation¹

A conformal mapping:
$$w(m_t^2) \equiv \frac{1 - \sqrt{1 - s'/(4m_t^2)}}{1 + \sqrt{1 - s'/(4m_t^2)}}$$
,

The interference with the unexpanded one-loop amplitudes is given by

$$\left[\mathcal{M}^{*(0)}\mathcal{M}^{(j)}\right](w) = \sum_{n=0}^{\infty} b_n^{(j)} w^n \,. \tag{8}$$

The resulting [m/n] Padé approximation for the squared amplitudes takes the following form:

$$\left[\mathcal{M}^{*(0)}\mathcal{M}^{(j)}\right]_{[m/n]} = \frac{c_0^{(j)} + c_1^{(j)}w + \dots + c_m^{(j)}w^m}{1 + d_1^{(j)}w + \dots + d_n^{(j)}w^n},$$
(9)

In general, there is no way to tell how accurate the approximation is, nor how far the convergent range can be extended.

¹J. M. Campbell et al., "Two loop correction to interference in $gg \rightarrow ZZ$ ", JHEP 08, 011 (2016). Probing the Higgs trilinear self-coupling through Higgs+jet production November 17, 2023 12/22 Outline

Numerical results

Summary and Outlook

1 Introduction

2 Methods

3 Numerical results

4 Summary and Outlook

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production November

 ▲ ■ ▶ ▲ ■ ▶ ■
 ● ● ●

 November 17, 2023
 13 /

<ロト < 四ト < 三ト < 三ト

3/22

The *m_{jh}* distributions at LO

14/22

Setting:

•
$$\mu_f = \mu_r = (\sqrt{p_T^2 + m_H^2} + p_T)/2$$

• $\sqrt{s} = 13.6 \, \mathrm{GeV}, \ p_T \ge 20 \, \mathrm{GeV}$

where p_T is the transverse momentum of the Higgs boson.

- excellent convergence of the large top quark mass expansion in the region $m_{jh} \leq 2m_t$.
- the relative errors of [4/2] are smaller than 1%.

Figure 4: The m_{jh} distributions of $pp \rightarrow H + j$ at LO. The lower plot shows the ratios to the LO exact values.

- 47 ▶

Numerical results

Summary and Outlook

The p_T distributions at LO

Padé approximations

- agreement with the exact results in the small p_T region.
- about 10% relative errors in the large *p_T* region.
- The Padé approximation works better in the large m_{jh} region than in the large p_T region.

Figure 5: The p_T differential cross sections. The lower plot shows the ratios to the LO exact values.

The total cross sections at LO

Table 1: The LO integrated cross sections (in pb) for $p_T \ge 20$ GeV. The error of each number from Monte Carlo integration is given in parentheses.

	σ_{exact}	$\sigma_{ m LP}$	$\sigma_{\rm N^3LP}$	$\sigma_{[4/2]}$	$\sigma_{[6/6]}$
LO	13.651(5)	13.304(5)	13.089(5)	13.647(3)	13.652(5)

• The [4/2] and [6/6] Padé approximations show precise estimations of the exact result.

(日)

The differential C₁ parameter for m_{jh}

The [4/2] Padé approximation

- agreement with N⁶LP results in the region $m_{jh} \le 2m_t$
- *C*₁ values being around 0.6%
- the small humps near $2m_t$ threshold region

Figure 6: The C_1 parameters with respect to m_{jh} .

The differential C_1 **parameter for** p_T

18/22

- The [4/2] Padé approximation
 - The deviation from those of the [3/2] and [3/3] approximations are within the relative errors 10%.
 - Across the whole range, the values of *C*₁ is around 0.6%.

Figure 7: The C_1 parameters with respect to p_T .

The *C*¹ **parameter for total corrections**

19/22

Table 2: Values of C_1 for total corrections. The relative error of each number from Monte Carlo integration is less than 0.5%.

	$C_1^{ m LP}$	$C_1^{ m N^3LP}$	$C_1^{[3/3]}$	$C_1^{[4/2]}$
LO	0.0036	0.0067	0.0066	0.0066

Our best prediction at NLO gives $C_1 = 0.66\%$.

Bin Zhou (SJTU)

(日)

Outline

1 Introduction

2 Methods

3 Numerical results

4 Summary and Outlook

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production Nover

November 17, 2023 20

3

イロト イポト イヨト イヨト

20/22

Summary and Prospects

Summary

- In this work, we give analytic expressions up to $O[1/(m_t^2)^6]$ (N⁶LP) for two-loop amplitudes of H+jet with a λ_{HHH} coupling.
- The prediction is then extended to high energy regions by applying the Padé approximation.
- We use the [4/2] Padé approximation as our best prediction at the NLO. We find the values of C_1 at the differential level have a mild dependence on the kinematic variables m_{jh} and p_T , and are around 0.6%. As for the C_1 parameter for total corrections, the value is 0.66%.

Outlook

- Employing more efficient method, for example, the high energy expansion, or the small mass expansion
- Using our results as an additional channel to set extra constraints on λ_{HHH} from the experimental data

Bin Zhou (SJTU)

Probing the Higgs trilinear self-coupling through Higgs+jet production

November 17, 2023 21 / 22

Thank you for listening!

