

Unveiling Time-Varying Signals of Ultralight Bosonic Dark Matter at Collider and Beam Dump Experiments

The 9th China LHC Physics Workshop (CLHCP2023)

Jinhui Guo(郭金辉) Peking University

JHG, Yuxuan He, Jia Liu, Xiao-Ping Wang and Ke-Pan Xie, Commun. Phys. 6 (2023) 225

Contents

- Introduction
- Time-varying Mass of Dark Photon
- Experiments Recast and Reanalysis
- Time-dependent Method Analysis
- Conclusion

Introduction

- Time varying physical constants Dirac, Nature 139 (1937) 323
- Ultralight dark matter

EOM:
$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^{2}\phi = 0$$

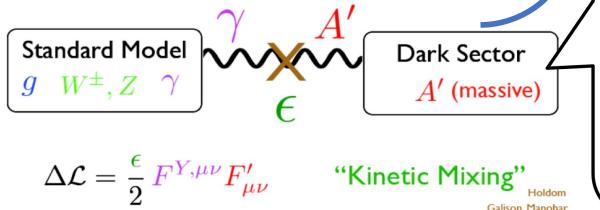
And misalignment mechanism

$$\phi(t) \approx \phi_0 \cos(m_\phi t)$$
 $\rho_{\rm DM} = m_\phi^2 \phi_0^2 / 2$

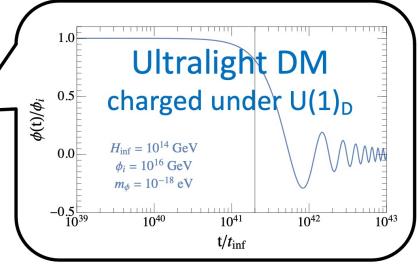
Ultralight dark matter and varying constants

Stadnik et al, 1412.7801, 1503.08540

$$\mathcal{L} \supset -\sum_{f=e,p,n} rac{m_f}{\Lambda_f} \phi \bar{f} f + rac{\phi}{4\Lambda_\gamma} F_{\mu
u} F^{\mu
u}$$


$$m_f \to m_f \left(1 + \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f} \right), \quad \alpha \to \frac{\alpha}{1 - \phi_0 \cos(m_\phi t)/\Lambda_\gamma}$$

Introduction



The classic dark U(1)_D model

Solve the g-2 anomaly

 $\phi(t) \approx \phi_0 \cos(m_\phi t)$

DM couples to A'

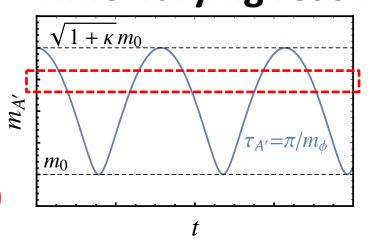
$$(D_{\mu}\phi)^* D^{\mu}\phi \supset (g'Q_{\phi})^2 \phi^* \phi A'_{\mu} A'^{\mu}$$

Obtain a time varying mass:

$$m_{A'}(t) = \sqrt{m_0^2 + 2(g'Q_\phi)^2 |\phi_0|^2 \cos^2(m_\phi t)}$$

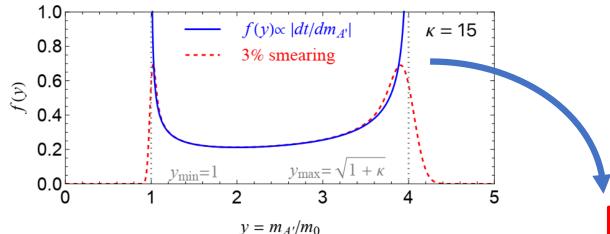
 $\equiv m_0 \sqrt{1 + \kappa \cos^2(m_\phi t)}$

$$\kappa \equiv 2(g'Q_{\phi})^{2} \rho_{\rm DM} / \left(m_{\phi}^{2} m_{0}^{2}\right) = 10 \left(\frac{\rho_{\rm DM}}{0.3 \, {\rm GeV/cm^{3}}}\right) \times \left(\frac{g'Q_{\phi}}{1.5 \times 10^{-8}} \frac{10^{-19} {\rm eV}}{m_{\phi}} \frac{0.1 {\rm GeV}}{m_{0}}\right)^{2},$$


Time-varying Mass of Dark Photon

Varying dark particle mass:

$$m_{A'}(t) = \sqrt{m_0^2 + 2(g'Q_\phi)^2 |\phi_0|^2 \cos^2(m_\phi t)}$$
$$\equiv m_0 \sqrt{1 + \kappa \cos^2(m_\phi t)}$$


Time-varying resonant spectrum

$$m_{\rm res}^2(t) = m_{\rm res}^2(t+\tau)$$

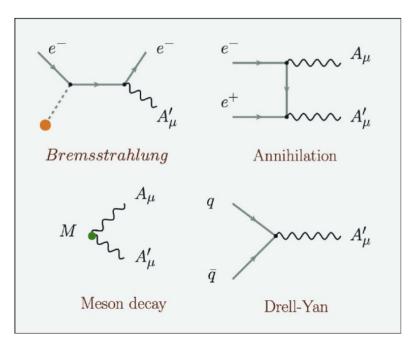
 $m_{\phi} \gtrsim 2 \times 10^{-20} \text{ eV}$
 $t_{\rm exp} \gg \tau$

We focus on: $m_0 \sim {\rm MeV}, \kappa \sim 10$

DP mass probability density function (pdf)

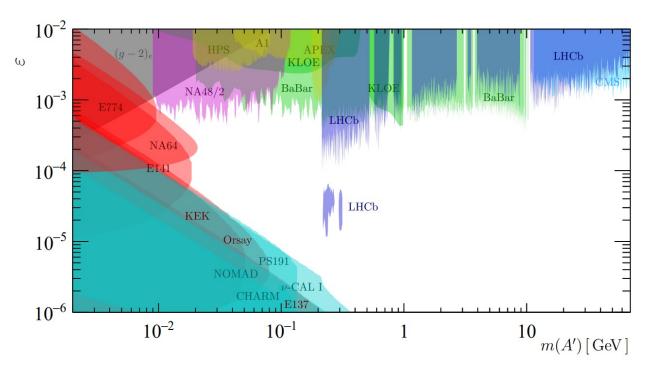
Number of events per bin:

$$N_i = \sigma_{A'}^{(i)} \epsilon_i \mathcal{L} \times \frac{1}{\tau_{A'}} \int_{m_i}^{m_{i+1}} \left| \frac{dt}{dm_{A'}} \right| dm_{A'}$$


$$\left| \frac{dt}{dm_{A'}} \right| = \frac{\tau}{m_0} f(y)$$

Double peak feature!!

Time-varying Mass of Dark Photon


The existing constraints on dark photon mixing

$$\mathcal{L} \supset \epsilon e A'_{\mu} J^{\mu}_{\mathrm{em}}$$

Constraints on mixing

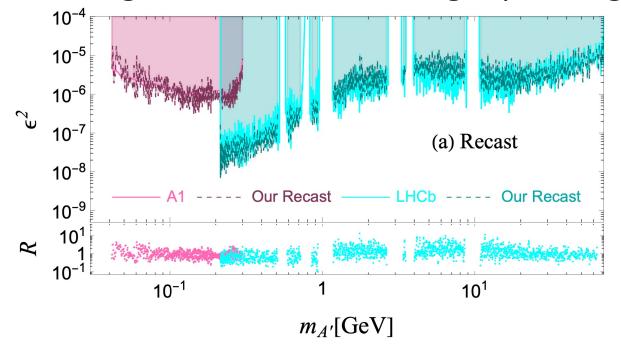
$$\sigma_{
m production} \propto \epsilon^2$$

> Reanalyzing of existing experiments

Collaboration	Production mode	Experimental environment	Spectrum	Resolution $\sigma_{\rm re}$	Fit window
BaBar [1406.2980]	$e^+e^- \to \gamma A'$	$\sqrt{s} \approx 10 \text{ GeV}, 514 \text{ fb}^{-1}$	$m_{ee},m_{\mu\mu}$	[1.5, 8] MeV	$m_{A'} \pm 10\sigma_{ m re}$
LHCb [1910.06926]	$pp \to A'$	$\sqrt{s} = 13 \text{ TeV}, \sim 5 \text{ fb}^{-1}$	$m_{\mu\mu}$	[0.12, 380] MeV	$m_{A'} \pm 12.5\sigma_{ m re}$
A1 [1404.5502]	$e^-Z \rightarrow e^-ZA'$	$E_e \in [0.180, 0.855] \text{ GeV}$	m_{ee}	$0.5~{ m MeV}$	$m_{A'} \pm 3\sigma_{ m re}$
NA48/2 [1504.00607]	$\pi^0 \to \gamma A'$	$1.69 \times 10^7 \ \pi^0 \rightarrow \gamma e^+ e^- \text{ events}$	m_{ee}	[0.16, 1.33] MeV	single bin

➤ Log likelihood ratio (LLR)

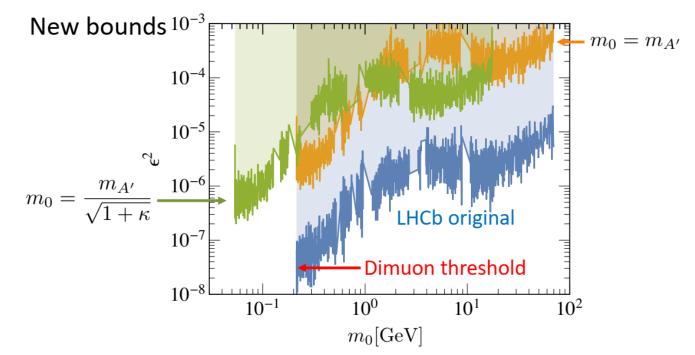
$$-2\log\left[\frac{\operatorname{Max}_{\vec{a}'}\prod_{i}\mathcal{N}(B_{i}-B(m_{i},\vec{a}')-Sf_{G}(m_{i})|B_{i})}{\operatorname{Max}_{\vec{a}}\prod_{i}\mathcal{N}(B_{i}-B(m_{i},\vec{a})|B_{i})}\right]$$


- Background fit by $B(m_i, \vec{a}) = a_0 + a_1 m_i + a_2 m_i^2$
- Constraints obtained by $S \equiv -2 \ln(\mathcal{L}/\mathcal{L}_0) = 3.84$

> Reanalyzing of existing experiments

Collaboration	Production mode	Experimental environment	Spectrum	Resolution $\sigma_{\rm re}$	Fit window
BaBar [1406.2980]	$e^+e^- \to \gamma A'$	$\sqrt{s} \approx 10 \text{ GeV}, 514 \text{ fb}^{-1}$	$m_{ee},m_{\mu\mu}$	[1.5, 8] MeV	$m_{A'} \pm 10\sigma_{ m re}$
LHCb [1910.06926]	$pp \to A'$	$\sqrt{s} = 13 \text{ TeV}, \sim 5 \text{ fb}^{-1}$	$m_{\mu\mu}$	[0.12, 380] MeV	$m_{A'} \pm 12.5\sigma_{ m re}$
A1 [1404.5502]	$e^-Z \rightarrow e^-ZA'$	$E_e \in [0.180, 0.855] \text{ GeV}$	m_{ee}	$0.5~{ m MeV}$	$m_{A'} \pm 3\sigma_{ m re}$
NA48/2 [1504.00607]	$\pi^0 o \gamma A'$	$1.69 \times 10^7 \ \pi^0 \rightarrow \gamma e^+ e^- \text{ events}$	m_{ee}	[0.16, 1.33] MeV	single bin

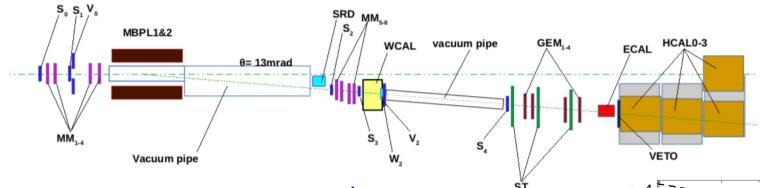
First, repeat the existing bounds with the single-peak signal



> Reanalyzing of existing experiments

Collaboration	Production mode	Experimental environment	Spectrum	Resolution $\sigma_{\rm re}$	Fit window
BaBar [1406.2980]	$e^+e^- \to \gamma A'$	$\sqrt{s} \approx 10 \text{ GeV}, 514 \text{ fb}^{-1}$	$m_{ee},m_{\mu\mu}$	[1.5, 8] MeV	$m_{A'} \pm 10\sigma_{ m re}$
LHCb [1910.06926]	$pp \to A'$	$\sqrt{s} = 13 \text{ TeV}, \sim 5 \text{ fb}^{-1}$	$m_{\mu\mu}$	[0.12, 380] MeV	$m_{A'} \pm 12.5\sigma_{ m re}$
A1 [1404.5502]	$e^-Z \rightarrow e^-ZA'$	$E_e \in [0.180, 0.855] \text{ GeV}$	m_{ee}	$0.5~{ m MeV}$	$m_{A'} \pm 3\sigma_{ m re}$
NA48/2 [1504.00607]	$\pi^0 o \gamma A'$	$1.69 \times 10^7 \ \pi^0 \rightarrow \gamma e^+ e^- \text{ events}$	m_{ee}	[0.16, 1.33] MeV	single bin

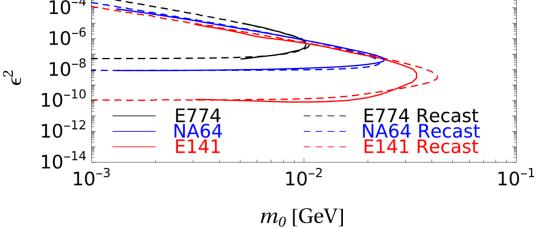
Then, obtain the new bounds:



> Reanalyzing the beam dump experiments

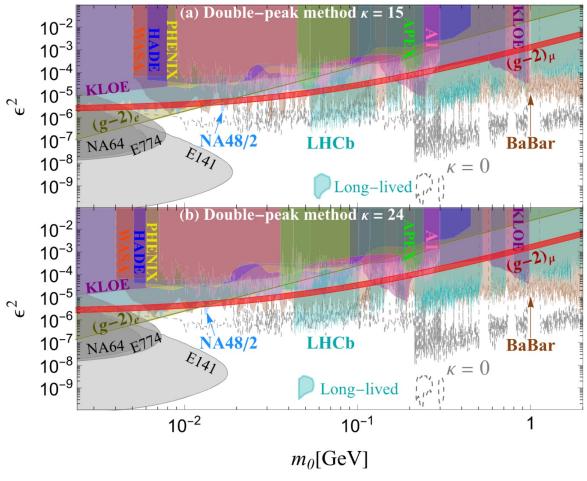
E141[PRL59(1987)755]

NA64 [1912.11839]

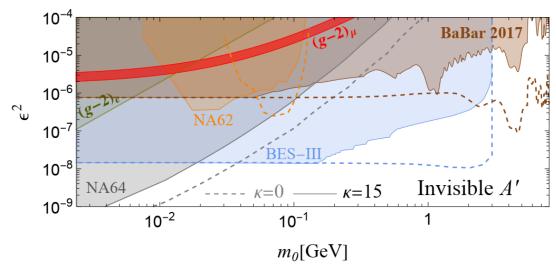

NA64: $e^-Z \rightarrow e^-ZA'$

Event number:

$$N(\epsilon, m_{A'}) = N_e \mathcal{C}' \epsilon^2 \frac{m_e^2}{m_{A'}^2} e^{-a_1 L_{\rm sh} \Gamma_{A'}} \times \left(1 - e^{-a_2 L_{\rm dec} \Gamma_{A'}}\right),$$


For our signals:

$$N(\epsilon, m_0, \kappa) = \frac{1}{\tau_{A'}} \int_{m_0}^{\sqrt{1+\kappa}m_0} N(\epsilon, m_{A'}) \left| \frac{dt}{dm_{A'}} \right| dm_{A'}.$$



➤ Obtain the new constraints:

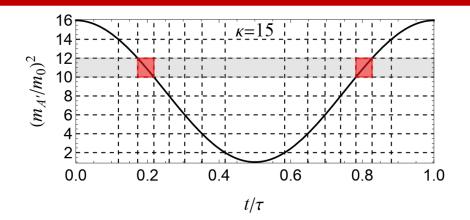
And the g-2: $\frac{1}{\tau}\int_0^{\tau}dt~\Delta a_{\mu}\left(m_{A'}(t)\right)$

\triangleright Invisible Dark Photon Searchesm $(A' \to \chi \bar{\chi})$

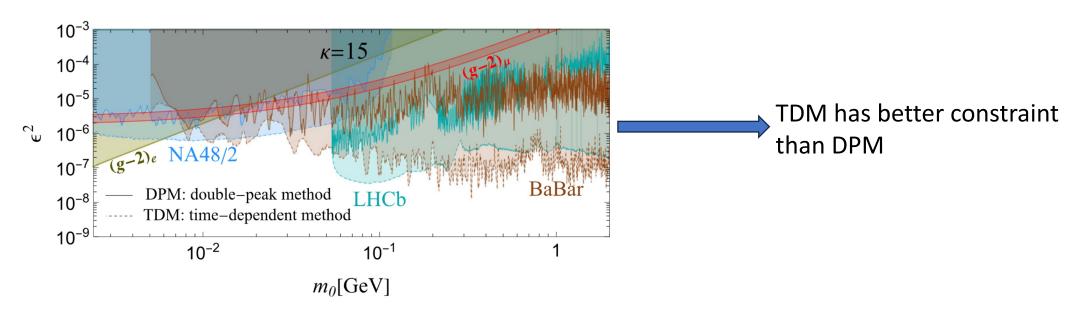
• Monophoton search $(e^+e^- \rightarrow A'\gamma)$:

$$E_{\gamma} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

Time-varying photon energy spectrum:


$$\left| \frac{dt}{dE_{\gamma}} \right| = \frac{\tau}{\pi \sqrt{(E_{\gamma} - E_{\min}) (E_{\max} - E_{\gamma})}}$$

Time-dependent Method Analysis



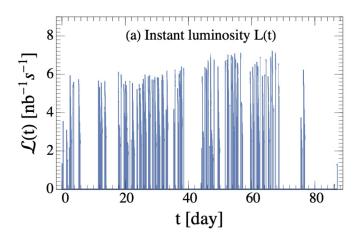
➤ Using the time information:

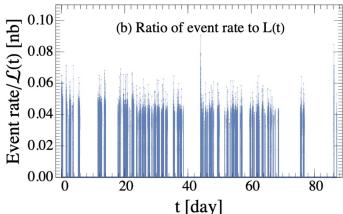
$$N_i^{
m red} = N_i \frac{1}{\tau} \int_{m_i}^{m_{i+1}} \left| \frac{dt}{dm_{A'}} \right| dm_{A'}$$
 $N_{i,j} = N_i \Delta t_j / au$

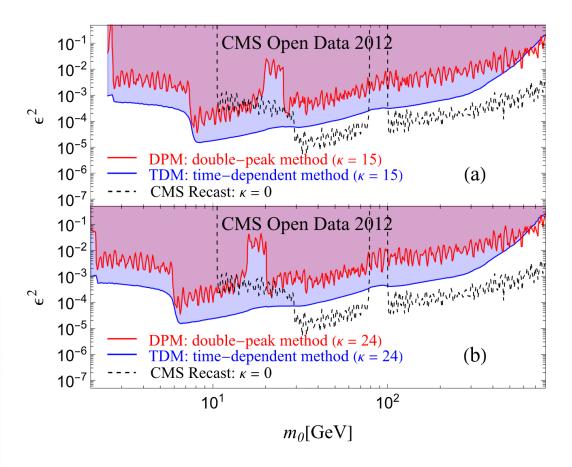
Signal not changed, while background suppressed!

Time-dependent Method Analysis

➤ Analyzing CMS Open Data


We choose 2012 dimuon events from CMS Open Data to verify the two methods: DPM and TDM


$$\frac{dN_S}{dm_{\ell\ell}} = \int_{t_1}^{t_2} dt \mathcal{L}(t) \frac{d\sigma_S}{dm_{\ell\ell}}$$

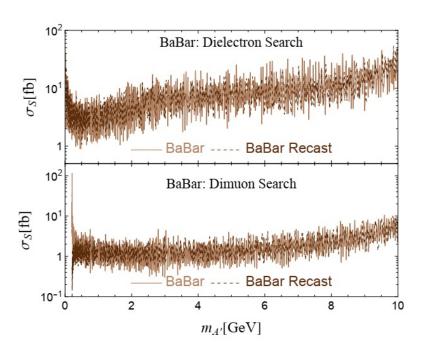

$$= \epsilon_S(m_{\ell\ell}) \sigma_0(m_{\ell\ell}) \frac{f(y)}{m_0} \frac{\tau}{2} \left[\sum_i \mathcal{L}(t_i^+) + \mathcal{L}(t_i^-) \right],$$

$$\bar{f}(m_{\ell\ell}/m_0) \equiv \frac{1}{\text{L}\epsilon_S(m_{\ell\ell}) \sigma_0(m_{\ell\ell})} \frac{a_{\ell}N_S}{d(m_{\ell\ell}/m_0)}$$

$$= f(y) \frac{\tau}{2\text{L}} \left[\sum_i \mathcal{L}(t_i^+) + \mathcal{L}(t_i^-) \right].$$

Conclusion

Dark photon can have a time varying mass by coupling with ultralight scalar DM:


- > The existing bounds are significantly weakened;
- > The muon g-2 solution becomes viable again;
- > Including time information of experiments can improve sensitivity;
- > CMS Open Data shows the validity of these two methods;
- > If we find this time-varying signature, it can be used to unveil the ultralight DM.

Thank You

Backup

➤ Repeating of existing constraints

Backup

≻Other constraints

Varying SM fermion mass

$$\frac{\Delta m_f}{m_f} \simeq \frac{3 (e \epsilon Q_f)^2}{16 \pi^2} \log \left(\frac{m_0^2 + 2 (g' Q_\phi)^2 \phi^* \phi}{m_0^2} \right)$$

Early universe:

- 1. Thermalization: small coupling $g'Q_{\phi} \sim 10^{-6}-10^{-10}$, $m_{\phi} \sim 10^{-20}-10^{-17} \, {\rm eV}$, $\kappa \sim 10$; frozen scalar field gives a large DP mass;
- 2. Black hole super-radiance.