

Buildd an Unified framewors for SU(N) Confinement Phase transition and thermodynamics with quasigluon

Jiang Zhu

Based on: 1. Zhao-Feng Kang, Shinya Matsuzaki, Jiang Zhu.JHEP09(2021)060 2. Jun Guo and Zhao-Feng Kang, Jiang Zhu. PRD(2023) 107,076005.

The 9th China LHC Physics Workshop (CLHCP2023)

11/26/2022

TDLi institution

Motivation

Pure Yang-Mills Theory

History of the Universe

Spacetime description breaks down

EW-like Phase Transition based on Perturbation Calculation

• QCD-like Phase Transition which are highly Non-perturbation

Study the most Simplest FOPT in QCD-like PT

Pure Yang-Mills Theory is the **GROUND BASE** for other QCD-like phase transition

So, it is Very important to understand the Confinement Phase Transition in Pure Yang-Mills Theory

Also wieldly considered in New Physics

Outline

1. Information of Confinement

2. Effective Model

3. The Quasi-Particle Model

4. Conclusion & Outlook

Information of Confinement

• Method to describe Confinement Phase Transition The free energy of static test quark placed in \vec{r}

Polyakov Polynomial model:

C. Ratti, M. A. Thaler, W. Weise. 0604025 Z. Kang, J. Zhu, S. Matsuzaki. JHEP(2021) W.-C. Huang, M. Reichert, F. Sannino, Z.-W. Wang.PRD(2021)

Haar Measure Polyakov Model: J. Kubo, M. Yamada. PRD(2004) J. Kubo, M. Yamada. PRD(2008)

S. Roessner, C. Ratti, W. Weise. PRD(2007) J. Kubo, M. Yamada. JHEP(2018)

Information of Confinement

• Summary: Challenge/Requirement

From the above information, we can sum up the conditions that a good and effective model should meet.

So, to what extent has the existing model been achieved?

Effective Model

Model for Confinement Phase Transition: Polynomial Model

A Natural thinking: **Polynomial Potential**

Central Ideal: Landau-Ginzburg Phase Transition Theory

$$a(T) = a_0 + a_1 \left(\frac{T_c}{T}\right) + a_2 \left(\frac{T_c}{T}\right)^2$$
 Potential should have Z_n symmetry

For
$$N = 3^{[1]}$$
 $V(l,T) = T^4 \left[-\frac{a(T)}{2} ll^{\dagger} - \frac{b}{6} \left(l^3 + l^{\dagger 3} \right) + \frac{c}{4} \left(ll^{\dagger} \right)^2 \right]$

Only 3 term allowed by Z_3 symmetry

Well describe phase structure at any given temperature

But it is hard to directly generate into SU(N) case

To get model for any $N \ge 3$, one have to consider charge 2 PL $l_2^{[2]}$

Modified PLM
for
$$N \ge 3^{[3]}$$
 $V(l,T) = T^4 U(l,T) = T^4 \left[-\frac{a(T)}{2} |l|^2 + b|l|^4 + c|l|^n \right]$

But how about N = 2?

[1] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D73 (2006) 014019, [arXiv:0506234 [hep-ph]]
[2] R. D. Pisarski, Nucl. Phys. A 702, 151-158 (2002) [arXiv:0112037 [hep-ph]].
[3] Z. Kang, J. Zhu and S. Matsuzaki, JHEP 09, 060 (2021), [arXiv:2101.03795 [hep-ph]].

Effective Model

• Model for Confinement Phase Transition: Haar-Type

Different directions: Haar-Type Potential

Also a more theoretical based model

For
$$N = 3^{[1]}$$
 $V(l,T) = T^4 \left\{ -\frac{a(T)}{2} ll^{\dagger} + b(T) \log \left[1 - 6ll^{\dagger} - 3(ll^{\dagger})^2 + 4(l^3 + l^{\dagger}) \right] \right\}$
 $a(T) = a_0 + a_1 \left(\frac{T_c}{T} \right) + a_2 \left(\frac{T_c}{T} \right)^2 \quad b(T) = b_3 \left(\frac{T_c}{T} \right)^3.$ Haar-measure of SU(3) come from the functional integrate

Can be generating to describe any N^[2]

$$\mathcal{V}_{\mathrm{Haar},1}(L,T) = -\frac{a(T)}{2}ll^{\dagger} + b(T)\log H_N[L], \rightarrow$$
 Haar-measure of SU(N)

Naturally get crossover for N = 2 and FOPT for $N \ge 3$

But the latent heat and thermal quantities can not be both agree with lattice data for any N in this frameworks^[3]

Data Consistent in N = 3 Data Incononsistent for N = 4,5,6...

[1] S. Roessner, C. Ratti, and W. Weise, Phys. Rev. D75 (2007) 034007, [arXiv:0609281 [hep-ph]].
[2] J. Kubo and M. Yamada, JHEP 10, 003 (2018), [arXiv:1808.02413 [hep-ph]].

[3] Z. Kang, J. Zhu and S. Matsuzaki, JHEP 09, 060 (2021), [arXiv:2101.03795 [hep-ph]].

Effective Model

• Summary: Effective Model

Fortunately, there is another model which can describe the SU(N) lattice thermodynamics

Like

The Quasi-Particle Model

Quasi-Particle method

From the hard-thermal-loop perturbation theory(HTLpt), the dispersion equation of SU(N) theory is given by :

$$w^2 - k^2 - \Pi_t^*(w, k) = 0,$$

Just Like
Photon in
Plasma

Build a phenomenon theory "absorbed" strong interactions into the Quasigluon mass

$$M_g^2(T) = \frac{N}{6}G^2(T)T^2, \quad G^2(T) = \frac{48\pi^2}{11N\log\left(\frac{T}{T_c/\lambda} + \frac{T_s}{T_c}\right)^2}$$

Explain lattice QCD thermodynamics successfully by QPM pressure [1,2]:

$$p(T) = \frac{g(T)}{6\pi^2} \int_0^\infty f_B(E_k) \frac{k^4}{E_k} dk - B(T)$$

Thermodynamics is ok **BUT** How about the Phase Transition?

[1] V. Goloviznin and H. Satz, Z. Phys. C 57, 671-676 (1993) [2] A. Peshier, B. Kampfer, O. P. Pavlenko and G. Soff, Phys. Rev. D 54, 2399-2402 (1996).

The Quasi-Particle Model

• The Unified Frameworks from the First Principle with Quasi-Particle method

We will add a thermal mass for gluon and this should contain all the non-perturbation effect

The Lagrangian:
$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr}(F_{\mu\nu}F^{\mu\nu}) + \bar{D}_{\mu}\bar{c}^a D^{\mu}c^a + ih^a \bar{D}_{\mu}\hat{A}^{\mu,a} + \frac{1}{2}m_g^2(T)\hat{A}^a_{\mu}\hat{A}^{a,\mu},$$
Ghost field Landau-DeWitt gauge Fix term QPM Mass
Background Field Method:
$$A_{\mu} = \bar{A}_{\mu} + \hat{A}_{\mu}$$
Background field Fluctuation field
Temporal Background Field:
$$\bar{A}^a_{\mu} = \bar{A}^a_0 \delta_{\mu 0}$$

$$\mathcal{L} = \frac{1}{2}\hat{A}^a_{\mu}(D^{-1})_{ab}\hat{A}^{\mu,b} + ih^a \bar{D}_{\mu}\hat{A}^{\mu,a} + \bar{D}_{\mu}\bar{c}^a \bar{D}^{\mu}c^a$$
Separate the action into $S = S_{A,h} + S_c$

$$S_{A,h} = \int d^4x \left[\frac{1}{2}\hat{A}^a_{\mu}(D^{-1})_{ab}\hat{A}^{\mu,b} + ih^a \bar{D}_{\mu}\hat{A}^{\mu,a}\right] \qquad S_c = \int d^4x [\bar{D}_{\mu}\bar{c}^a \bar{D}^{\mu}c^a],$$

 N^2

 N^4

The Quasi-Particle Model

The Effective Potential

One can compute the effective potential $V = T \log Z / V$ by finite temperature field theory

The Quasi-Particle Model

Phase Transition Behavior

Color number	N=3	N = 4	N = 5	N = 6	N = 7	N = 8	$N ightarrow \infty$
s_d	0.5605	0.5186	0.5073	0.5033	0.5016	0.5009	0.5004
l_d	0.5910	0.6300	0.6380	0.6398	0.6400	0.6396	0.6367
$M_g(T_c)/T_c$	2.7499	2.7203	2.7126	2.7099	2.7088	2.7083	2.7077
$dM_g(T_c)/dT_c$	-5.7727	-7.9951	-9.2891	-10.0965	-10.6261	-10.9954	-12.3376
$L_N/(N^2-1)T_c^4$	0.2091	0.2874	0.3236	0.3433	0.3551	0.3628	0.3880

The Quasi-Particle Model

• The Unified Frameworks from the First Principle with Quasi-Particle method

Conclusion

• The Summary

- 1. We Build a Quasi-gluon model from Lagrangian and this model can describe the SU(N) thermodynamics and confinement phase transition in a unified frameworks.
- 2. We found this model we only need one parameter $M_g(T)$ to give the confinement phase transition and this function have a unified behavior for different color number.

This Model								
N	Lattice Data	Latent Heat	FOPT	Z_n				
2	void	void	~	~				
3	 ✓ 	✓	~	~				
4	 ✓ 	✓	~	~				
6	 ✓ 	✓	~	✓				

