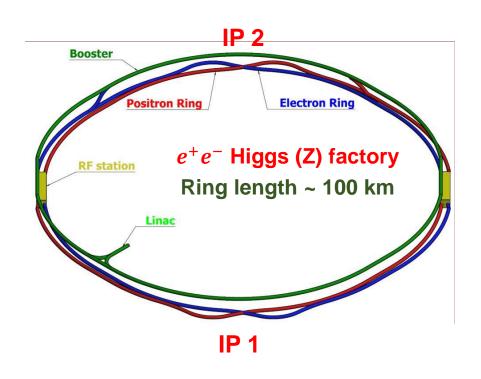
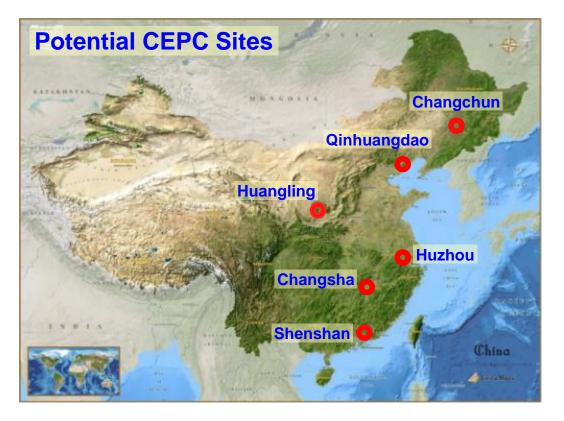

Status and Perspective of the CEPC

Jianchun Wang (IHEP, CAS) For the CEPC Study Group

The 9th China LHC Physics Workshop Nov 16-20, 2023, Shanghai





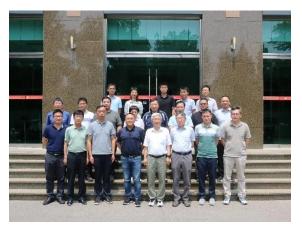
The Circular Electron Positron Collider (CEPC)

- ☐ The CEPC was proposed by Chinese HEP community in 2012 right after the Higgs discovery. It aims to start operation in 2030s, as a Higgs / Z / W factory in China.
- ☐ To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- ☐ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

Major Milestones

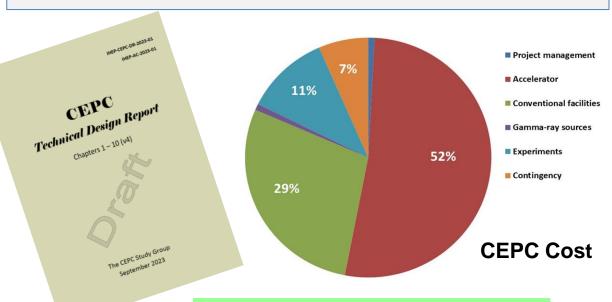
Editorial Team: 43 people / 22 institutions/ 5 countries

CEPC Accelerator TDR



International Technical Review @ HK, Jun 12-16, 2023

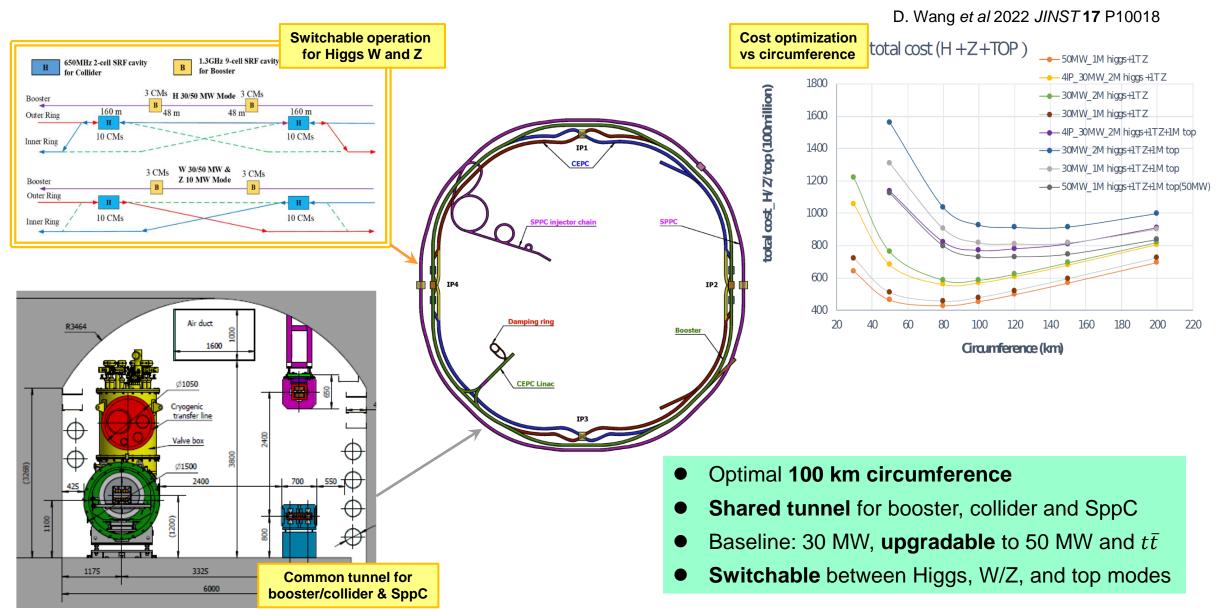
International Cost Review @ HK, Sept 11-15, 2023


Domestic Civil Engineering Cost Review, June 26, 2023

Endorsed by CEPC IAC Oct 29-31, 2023

The CEPC Accelerator TDR covers

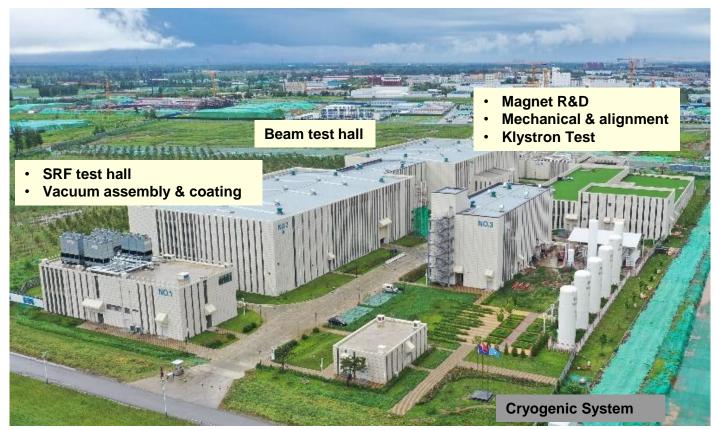
- Design, knowledge and progress of the CEPC
- Advancement of technologies that CEPC depends upon, delivered through a comprehensive R&D program, HEPS experience, international contributions and cooperation
- Innovative ideas and future upgrades to make the CEPC state-ofthe-art as time moves forward
- Cost of the CEPC



The CEPC accelerator TDR will be released on **Dec 15**, **2023**, when the author list is finalized

CEPC Layout and Design Essentials

High Energy Photon Source under Construction

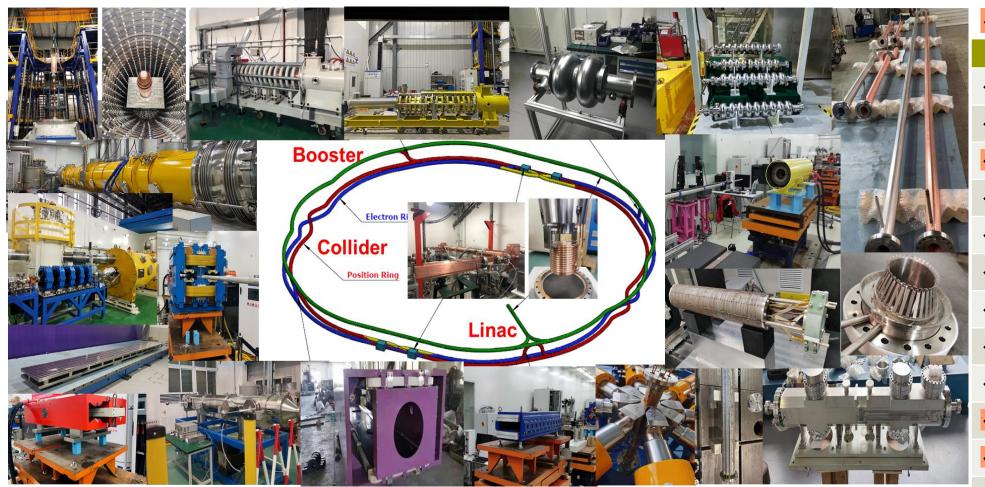


Platform for Key Technology R&D

Accelerator key technology R&D platform was established:

- > SRF cavity and module
- ➤ High precision magnet
- Vacuum assembly & coating

- > High efficiency Klystron
- Mechanics and alignment
- ➤ Beam test facility



Key Components and Prototype R&D

Key technology R&D spans over all components listed in the CEPC CDR

✓ Specification Met

✓ Prototype Manufactured

1 Tololy	pe manuraci	uica
Accel	erator	Fraction
✓ Magnets		27.3%
✓ Vacuum		18.3%
✓ RF power	source	9.1%
✓ Mechanic	s	7.6%
Magnet p	ower supplies	7.0%
✓ SC RF		7.1%
Cryogenic	cs	6.5%
✓ Linac and	sources	5.5%
✓ Instrumer	ntation	5.3%
✓ Control		2.4%
✓ Survey ar	nd alignment	2.4%
Radiation	protection	1.0%
✓ SC magn	ets	0.4%
✓ Damping	ring	0.2%
		R

Key Technology Readiness

- □ CEPC received ~ 260 Million CNY for R&D from MOST, CAS, NSFC, ...
- □ Large amount of key technologies validated in other projects by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 40% cost of acc. components

- High efficiency klystron
- SRF cavities
- Positron source
- High performance accelerator

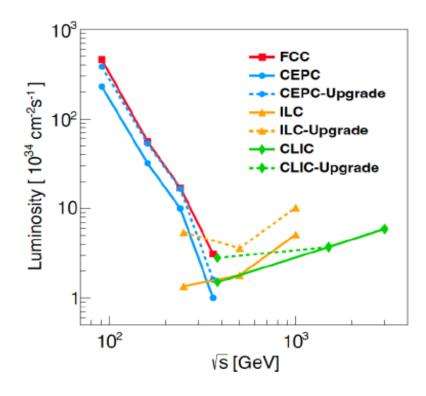
- Novel magnets: Weak field dipole, dual aperture magnets
- Extremely fast injection/extraction
- Electrostatic deflextor
- MDI

BEPCII / HEPS~ 50% cost of acc.components

- High precision magnet
- Stable magnet power source
- Vacuum chamber with NEG coating
- Instrumentation, Feedback system

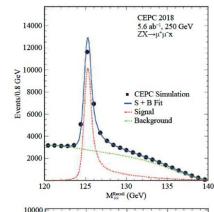
- Survey & Alignment
- Ultra stable mechanics
- Radiation protection
- Cryogenic system
- MDI

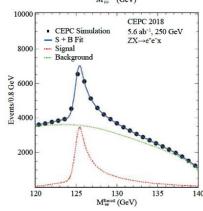
~10% missing items consist of anticipated challenges in the machine integration, commissioning etc to be completed by 2026, and the corresponding international contributions.

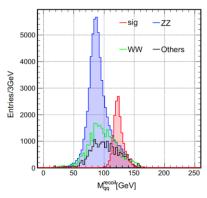

CEPC Operation Plan

Operation mode		ZH	Z	W+W-	$tar{t}$	
	\sqrt{s} [GeV]		~240	~91.2	~160	~360
	Run	time [years]	7	2	1	-
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
(3	CDR 80 MW)	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
(00 11111)		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
	Run Time [years]		10	2	1	~5
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
Latest		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
Lat	50 MW	$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
	1	Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

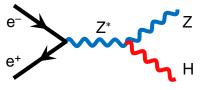
Both 50 MW and $t\bar{t}$ modes are currently considered as upgrades.


CEPC Accelerator white paper for Snowmass21, arXiv:2203.09451





Physics Opportunities @ CEPC



11/17/2023

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC

CEPC Higgs White Paper

School of Delears Science and Technology, University of South Crim. Heavy and 200240, China

"Beat Common of Physics, Naujing University of South Crim. Heavy and 20093, China

"Department of Physics, Southest University, Naujing 210090, China

"Department of Physics, Southest University, Naujing 210090, China

"Beat Common of Physics, Southest University, Naujing 210090, China

"School of Physics and Astronomy, Shanghai Jino Tong University, KLPPAC-MoE, SKLPPC, Shanghai 200240, China

"School of Physics and Astronomy, Shanghai Jino Tong University, KLPPAC-MOE, SKLPPC, Shanghai 200240, China

"Tung-Do. Lee Institute, Shanghai 200240

+ o(100) journal/arXiv papers

"School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

Received 9 November 2018, Revised 21 January 2019, Published online 4 March 2019

Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of 3000 fb^{-1} data are used for comparison. [2]

			-		
	Higgs			W,Z and top	
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV
$\sigma(ZH)$	4.2%	0.26%	M_{top}	760 MeV	O(10) MeV
B(H o bb)	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV
B(H o gg)	-	0.81%	R_b	3×10^{-3}	2×10^{-4}
$B(H \to WW^*)$	2.8%	0.53%	R_c	1.7×10^{-2}	1×10^{-3}
$B(H \to ZZ^*)$	2.9%	4.2%	R_{μ}	2×10^{-3}	1×10^{-4}
$B(H \to \tau^+ \tau^-)$	2.9%	0.42%	$R_{ au}$	1.7×10^{-2}	1×10^{-4}
$B(H o \gamma \gamma)$	2.6%	3.0%	A_{μ}	1.5×10^{-2}	3.5×10^{-5}
$B(H o \mu^+\mu^-)$	8.2%	6.4%	$A_{ au}$	4.3×10^{-3}	7×10^{-5}
$B(H o Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}
B upper $(H \to \text{inv.})$	2.5%	0.07%	$N_{ u}$	2.5×10^{-3}	2×10^{-4}

Scientific Significance quantified by CEPC physics studies, via full simulation/phenomenology studies:

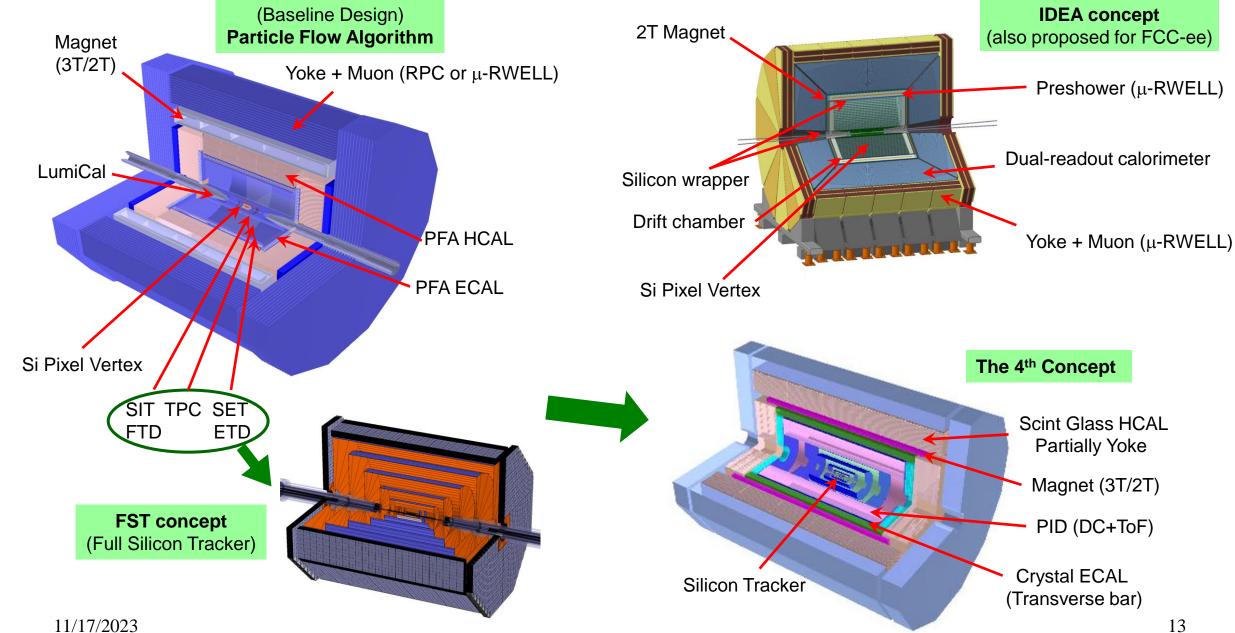
- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude
- EW: Precision improved from current limit by 1-2 orders
- Flavor Physics, sensitive to NP of 10 TeV or even higher
- Sensitive to varies of NP signal

•••

White paper on **Higgs** physics was published in 2019.

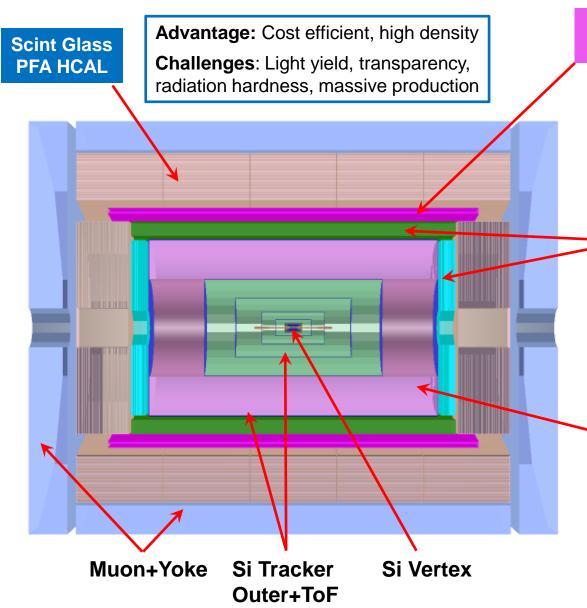
White papers on **EW**, **Flavor** physics, **NP**, **QCD** are likely to be released in year 2024

Requirements of Detector and Key Technologies


Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{\rm m}, X/X_0<0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \; \mathrm{p}s$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \ \mathrm{cm}^3$
Magnet system	Ultra-thin	Magnet field $2-3~\mathrm{T}$
	High temperature	Material budget $< 1.5X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

Requirements evolute with better understanding of the detector technologies and physics goals

Conceptual Detector Designs



The 4th Conceptual Detector Design

HTS Solenoid Magnet (3T / 2T)
Between HCAL & ECAL, or inside HCAL

Advantage: the HCAL absorbers act as part of the magnet return yoke.

Challenges: thin enough not to affect the jet resolution (e.g. BMR); stability.

Transverse Crystal bar ECAL

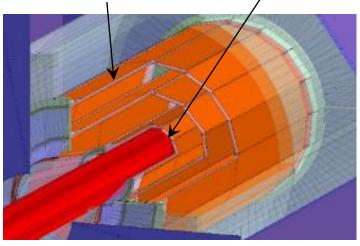
Advantage: better π^0/γ reconstruction

Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

A Drift chamber that is optimized for PID

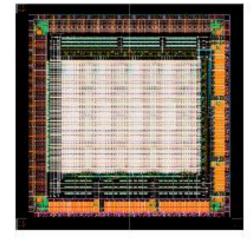
Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough not to affect the moment resolution. Need a


supplementary ToF detector

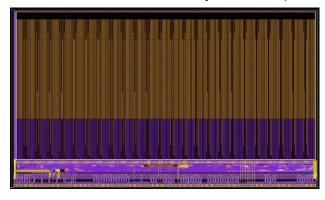
Silicon Pixel Chips for Vertex Detector

2 layers / ladder R_{in~16} mm


Goal: $\sigma(IP) \sim 5 \mu m$ for high P track.

CDR design spec:

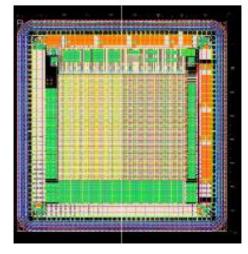
- Single point resolution ~ 3 μm.
- Low material (0.15% X₀ / layer),
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)


Silicon pixel sensor develops in 3 series: JadePix / MIC, TaichuPix, CPV

CPV4 (SOI-3D), 64×64 array ~21×17 µm² pixel size

Upper chip

JadePix4 356×498 array of $20 \times 29 \mu m^2$



TowerJazz 180nm CIS process $\sigma_{\text{x/y}} \sim$ 3-4 $\mu\text{m},~\sigma_{\text{t}} \sim$ 1 $\mu\text{s},~\sim$ 100 mW/cm²

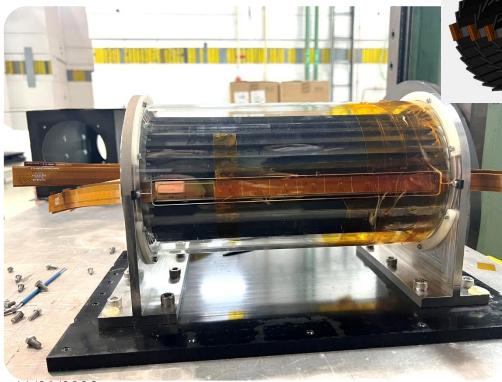
TaichuPix3 1024×512 array of 25×25 μ m²

Lower chip

LAPIS 200nm SOI process

Prototyping Vertex Detector

FPGA board


Ladder readout system

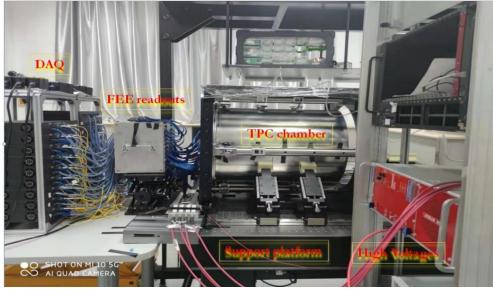
6 double-sided ladders

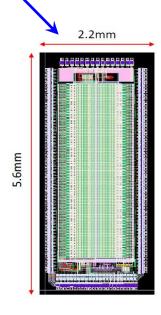
FPGA board

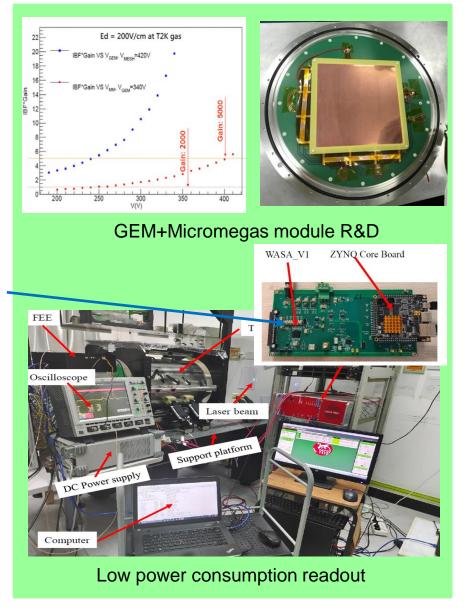
TaichuPix-based prototype detector tested at DESY in April 2023

Spatial resolution ~ 4.9 μm

Pixelated TPC Tracker

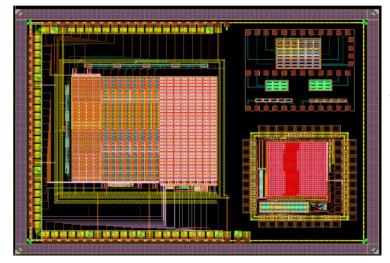

- Initial TPC design has difficulty @high luminosity Z mode due to IBF. Decide to use pixelated TPC
- R&D roadmap:
 - From a module to a prototype
 - Low power consumption FEE ASIC


Goal:

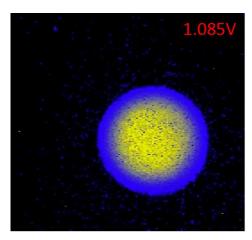

 $\sigma(r-\Phi) \sim 100 \mu m$

- Achievement so far:
 - Hybrid GEM+Micromegas module: IBF×Gain ~1 at G=2000
 - Spatial resolution of $\sigma_{r\phi} \le 100 \ \mu m$, dE/dx for PID: <4%
 - WASA chip: ~3 mW/ch with ADC, 32 channels/chip

TPC prototype with integrated 266nm UV laser



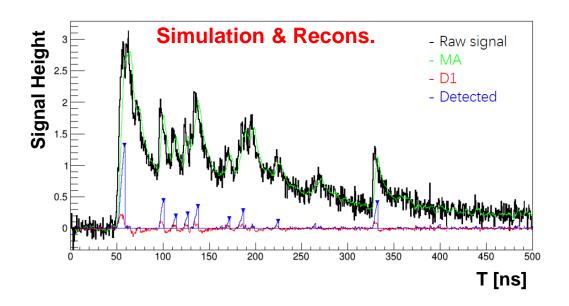
Silicon Pixel Tracker


- □ Large area: ~140 m² in Full SiTrk, or ~70 m² in TPC+SiTrk

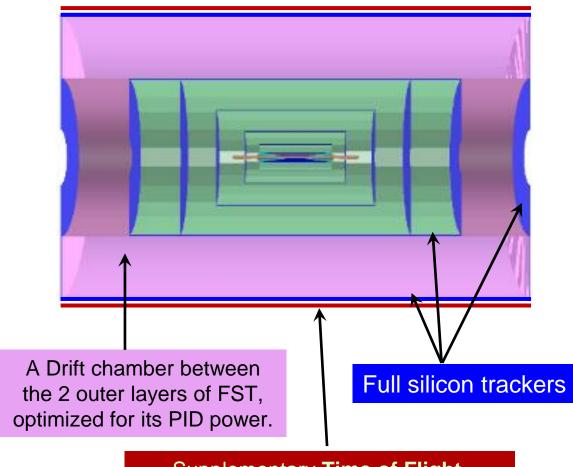
 → Cost effectiveness
- ☐ Focus on MAPS pixel tracker, also started SSD for outer layers
- Joint efforts on an ATLASPix3 based demonstrator
- □ ATLASPix & MightyPix use TSI 180nm HV process→ Long term support (?)
- Exploring SMIC 55 nm HV HR process→ Smaller feature size & alternative foundry
- ☐ Other possibilities, e.g. MALTA3, TPSCo-65nm

The 2nd design for SMIC 55nm HV HR process

Hitmap with Fe55 source

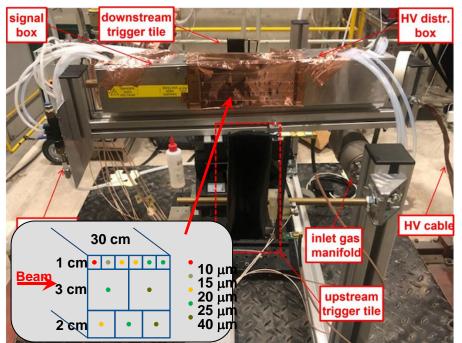


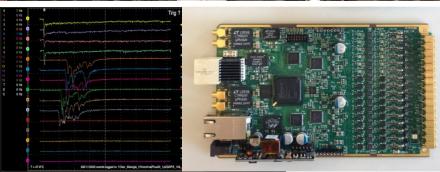
Hitmap with electron beam



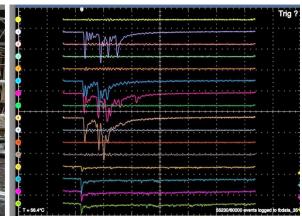
PID in The Scenario of FST

- A drift chamber optimized for PID: no stereo, larger cell, optimal gas mixture and HV
- Cluster counting algorithm (dN/dX) is more powerful than conventional dE/dx, but requires much more in the readout electronics.
- Studies: dNdX reconstruction algorithm, readout electronics, prototype test in beam


Supplementary **Time of Flight**, could be based on LGAD technology, even better if it acts as an outer SiTrk



Cluster Counting Beam Tests

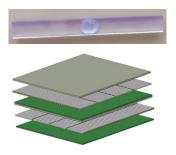


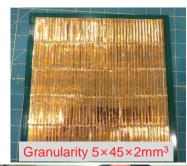
Test Beam 2021.11

TB 2022.07

- ☐ Test beam and analysis led by the Italian group
- Measure number of clusters & efficiency, study effects of configuration
- ☐ Apply clustering algorithm in the real world, obtain more realistic parameters to simulation
- ☐ Preparing a test setup in China

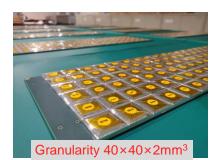
TB 2023.07





Prototype PFA Calorimeters

ECAL: scintillator(strip)+SiPM, CuW



HCAL: scintillator (tile)+SiPM, steel

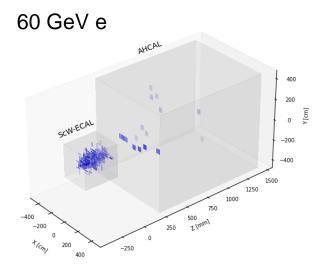
- ☐ ScW-ECAL: transverse ~20×20 cm, 32 sampling layers
 - ~6,700 channels, SPIROC2E (192 chips)
- □ AHCAL: transverse 72×72 cm, 40 sampling layers
 - ~13k channels, SPIROC2E (360 chips)

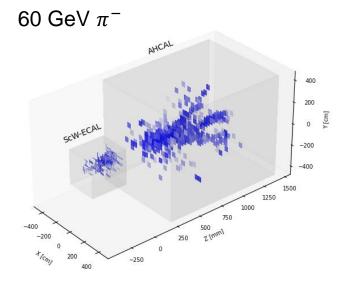
Prototypes developed within **CALICE**

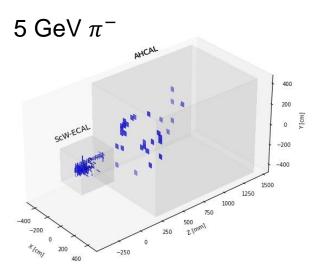

- China: IHEP, SJTU, USTC
- · Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann

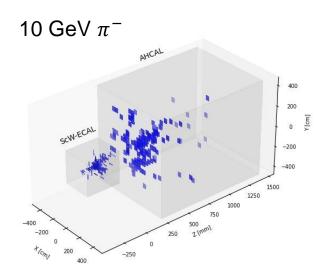
Testbeam of Prototype PFA Calorimeters

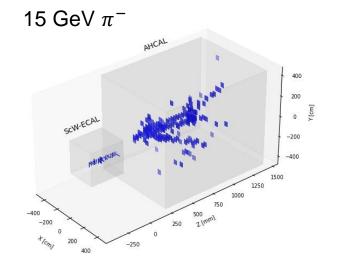
Selected Testbeam Events





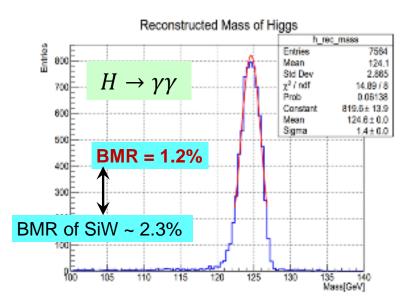


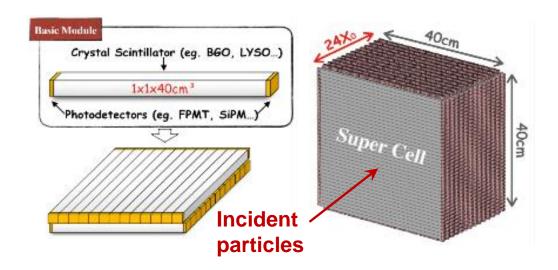


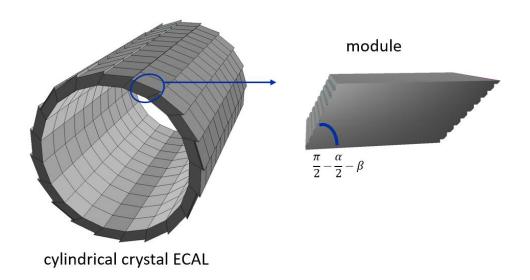


4D Orthogonal Crystal Calorimeter

Goal

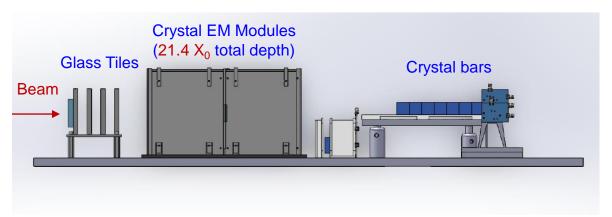

- Comparable BMR resolution as with the Si+W ECAL.
- Much better sensitivity to γ /e, EM resolution $\leq 3\%/\sqrt{E(GeV)}$

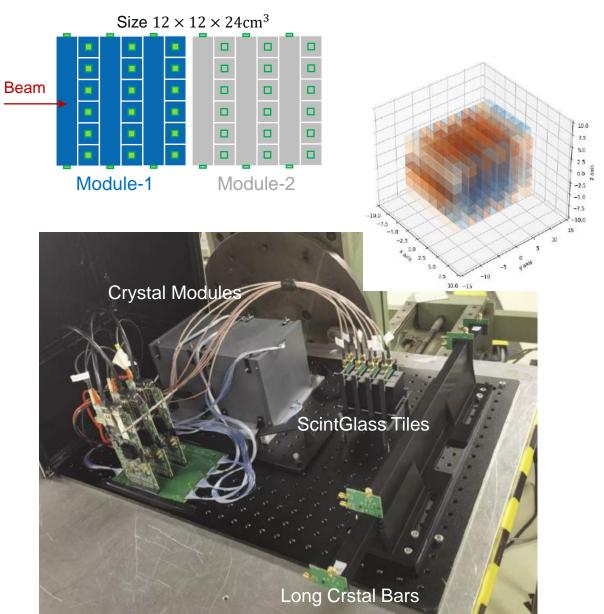

Features:


- Timing at two ends of the crystal bar
- Crossed arrangement in adjacent layers.
- High granularity with reduced readout channels

Key issues:

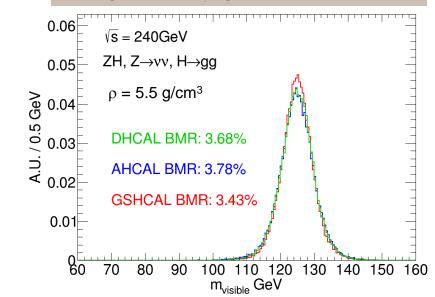
- Ambiguity caused by 2D measurements (ghost hit).
- Identification of energy deposits from particles (confusion).

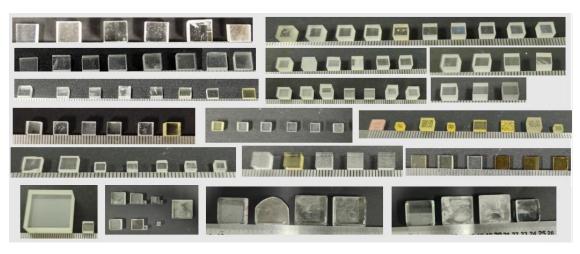




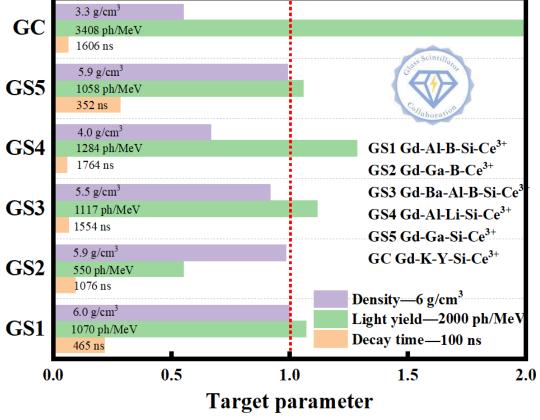
Testbeam of Prototype 4D Crystal ECAL

- A successful testbeam @ DESY, Oct 2023
- To address critical issues at system level
 - Validation: design of crystal-SiPM, light-weight mechanical structure
 - EM shower performance
- Module development
 - BGO crystal bars from SIC-CAS
 - SiPM: 3×3 mm² sensitve area, 10µm pixel pitch
 - Front-end electronics with CITIROC. An ASIC with a large dynamic range would be more desirable

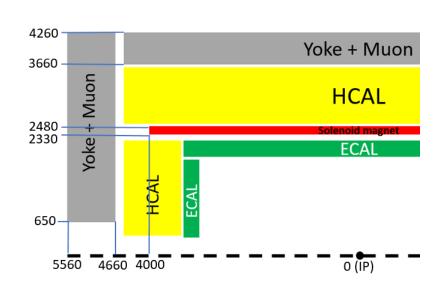




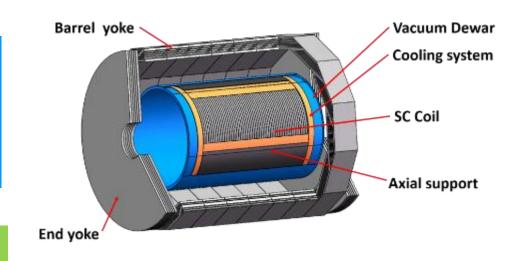
Glass Scintillator HCAL



Replacing plastic scintillator with high density glass scintillator


- □ Light yield: 1000~2000 ph / MeV
- □ Density: 5~7 g/cm³
- Scintillation time: ~100 ns
- Low cost
- Tiles in cm scale for PFA HCAL

Solenoid Magnet





Challenges

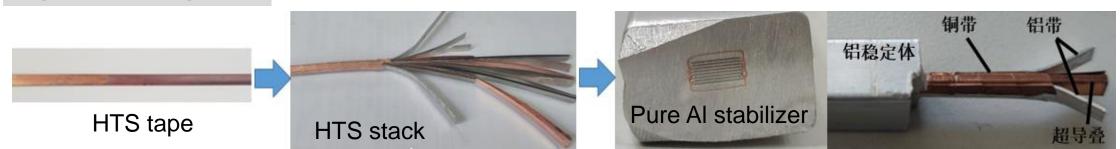
Low mass <1.5X₀ ultra-thin <150 mm high strength cable

R&D: high strength HTS cable, ultra-thin cryostat.

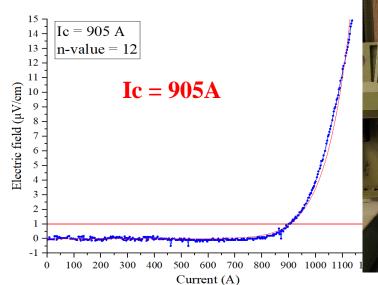
Magnetic field	3 T	Current	28000 A
Inner diameter	4660 mm	Inductance	1.27 H
Outer diameter	4960 mm	Stored energy	500 MJ
Magnet thickness	150 mm	Cold mass	27 ton
Length	8000 mm	HTS cable length	10.7 km
Total weight	48 ton	ASTC weight	16.6 ton

11/09/2023

Pure Al strips

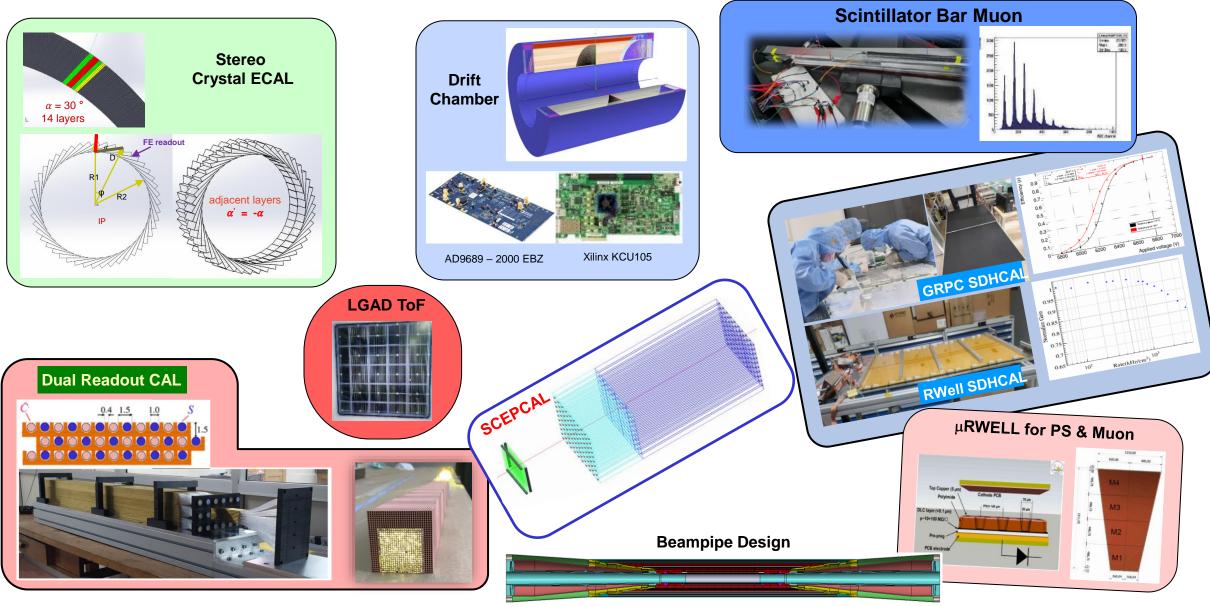

HTS cable

HTS Cable Development




Significant progress!

Object: single tape core Ic > 100 A@77K; 14-core cable Ic > 830 A@77K, self-field.



Many Other Detector R&Ds

R&D Efforts for Future Higgs Factories

Det	Technology	Det	Technology
×	JadePix		Crystal ECAL
rte	TaichuPix		Stereo Crystal ECAL
X	CPV(SOI)	_	Scint+W ECAL
Pixel Vertex	Stitching	ete	Si+W ECAL
	Arcadia	Calorimeter	Scint+Fe AHCAL
	CEPCPix	Salo	ScintGlass AHCAL
PD	Silicon Strip		RPC SDHCAL
Tracker & PID	TPC		MPGD SDHCAL
cke	Drift chamber		DR Calorimeter
Tra	PID DC	_	Scintillation Bar
	AC-LGAD ToF	Muon	RPC
-=	SiTrk+Crystal ECAL	2	μ-Rwell
Lumi	SiTrk+SiW ECAL	()	HTS / LTS Magnet
	Fast LumMoni	Misc	MDI & Integration
	CEPC SW		TDAQ scheme

- Some R&D efforts are already associated with the international collaborations: CALICE, LCTPC & RD*
- The **ECFA DRDs** cover much broader scopes, with more general supports, e.g. testbeam facilities.

If you **forgot to submit** your proposal somehow, or if you **did not fill in the survey** that we sent around, please contact Haijun Yang or Jianchun Wang

We plan for TDR of a reference detector

Start preparation in January of 2024

A draft version by December of 2024

Official release by June 30, 2025

You are welcome to join

Collaboration With Industry

CERN HL-LHC CCT SC magnet

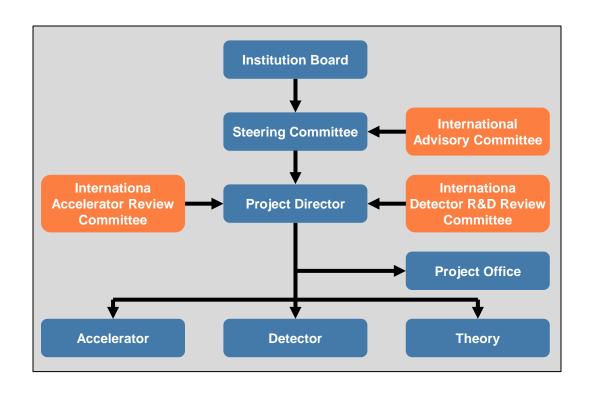
CEPC SC QD0 coil winding at KEYE Co.

CEPC 650MHz Klystron at Kunshan Co.

CIPC (CEPC Industrial Promotion Consortium) was established in Nov 2017. So far 70+ companies have joined.

CEPC long magnet measurement coil

- 1) Superconduting materials (for cavity and for magnets)
- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Magnet technology
- 7) Vacuum technologies
- 8) Mechanical technologies


- 9)Electronics
- 10) SRF
- 11) Power sources
- 12) Civil engineering
- 13) Precise machinery

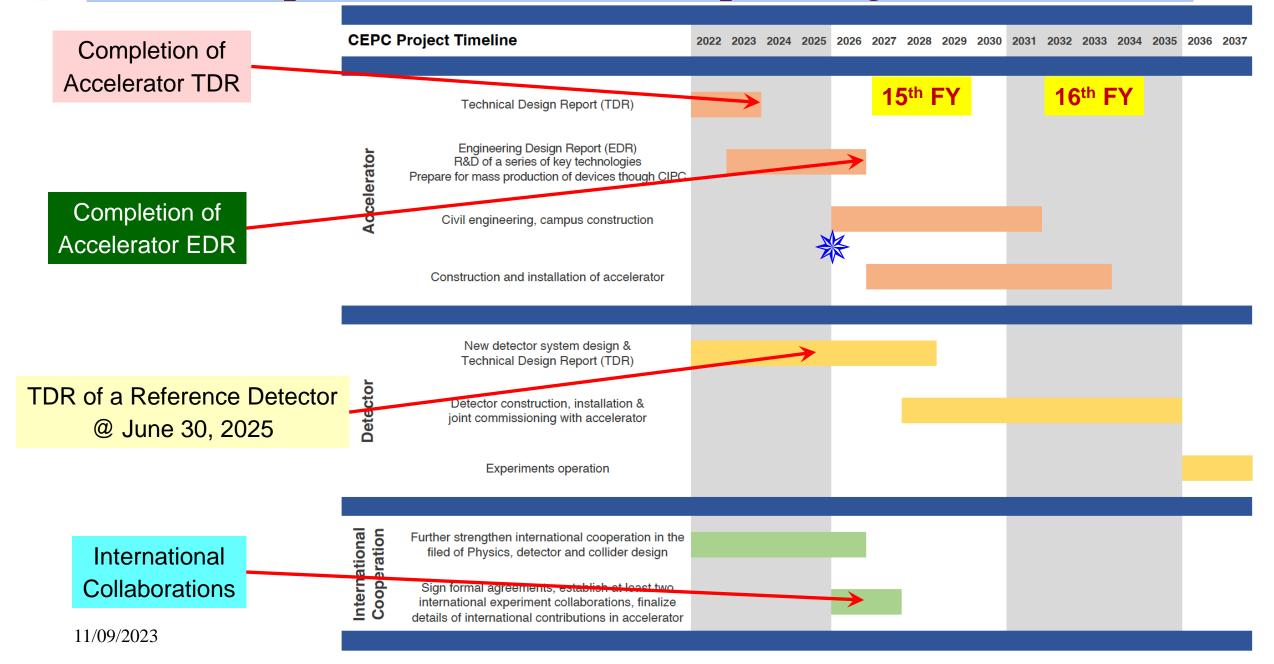
More than 40 companies joined in first phase of CIPC, 31 and 70 companies now.

International Efforts Towards Collaborative Experiments

Table 7.2: Team of Leading and core scientists of the CEPC				
Name	Brief introduction	Role in the CEPC team		
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC		
	tor of IHEP			
Xinchou Lou	Professor of IHEP	Project manager, member of the SC		
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC		
	of physics school of PKU			
Jie Gao	Professor of IHEP	Convener of accelerator group, vice		
		chair of the IB, member of the SC		
Haijun Yang	Professor of SJTU	Deputy project manager, member of		
		the SC		
Jianbei Liu	Professor of USTC	Convener of detector group, mem-		
		ber of the SC		
Hongjian He	Professor of USTC	Convener of theory group, member		
		of the SC		
Shan Jin	Professor of NJU	Member of the SC		
Nu Xu	Professor of IMP	Member of the SC		
Meng Wang	Professor of SDU	Member of the SC		
Qinghong Cao	Professor of PKU	Member of the SC		
Wei Lu	Professor of THU	Member of the SC		
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group		
Jianchun Wang	Professor of IHEP	Convener of detector group		
Yuhui Li	Professor of IHEP	Convener of accelerator group		
Chenghui Yu	Professor of IHEP	Convener of accelerator group		
Jingyu Tang	Professor of IHEP	Convener of accelerator group		
Xiaogang He	Professor of SJTU	Convener of theory group		
Jianping Ma	Professor of ITP	Convener of theory group		

- Institution Board: 32 top universities / institutes in China
- The International Advisory Committee (IAC) started in 2015, and held meeting yearly.
- Two international review committees for accelerator and detector R&D: (IARC, IDRC) started operating since 2019.
- Currently the CEPC study group consists of ~1/4 international members. We hope to boost up international participation.

International Workshops



- International workshops (with emphasis on the CEPC):
 - In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10 / hybrid), Nanjing (2021.11 / online, 2022.11 / online, 2023.10 / in-person), TBD (2024.10-11)
 - In Europe: Rome (2018.05), Oxford (2019.04), Edinburgh (2023.07), Marseille (2024.04.08-12)
 - In USA: Chicago (2019.09), DC (2020.04 / online)
 - Annual IAS program on HEP (HKUST) since 2015, (2024.01.18-25)
- Various topic-specific workshops at different sites. Let us know if you are interested to host.

Optimal Timeline and Upcoming Events

