NEW PHYSICS @ the LHC: **SMEFT** and **BEYOND**

Hong-Jian He

(hjhe@sjtu.edu.cn)

CLHCP, Shanghai, November 16-20, 2023

Collaborators:

John Ellis

Rui-Qing Xiao

Based on:

PRD Letter (2023), in press, arXiv:2308.16887

PRD (Editors' Suggestion, 2022) arXiv:2206.11676.

Science China (2021), Cover Article, arXiv:2008.04298

New Physics = New Particles

New Physics = New Phenomena !

New Physics = New Principles !!

E.g., Special Relativity, Photo-electronic Effect, GR, P and CP Violations,

H.-J. He

Implications of Non-Discovery

- ➢ Michelson-Morley Exp → No Aether!
 But, it leads to New Revolation: → Special Relativity!
- ➢ Discrepancy in Procession of Mercury's Perihelion
 Using known Newton gravity Le Verrier postulated:
 → New Planet "Vulcan" (祝融星), but No Discovery of it !
 → Real Solution: General Relativity !
- Question and Challenge today:
 After h(125), what does the Non-discovery of LHC imply ???

I am moderately (non) optimistic.....

Particle Physics in the Post-Higgs Era

 $\overline{f_{4}} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^{2}} W^{a}_{\mu\nu} W^{\mu\nu a} - \frac{1}{4g^{2}_{s}} G^{a}_{\mu\nu} G^{\mu\nu a}$ $\overline{f_{4}} \overline{f_{4}} \overline{f_{4}$ $\left(Y_u^{ij}\bar{Q}_i u_j\tilde{H} + Y_d^{ij}\bar{Q}_i d_jH + Y_l^{ij}\bar{L}_i\ell_jH + c.c.\right)$ $(H^{\dagger}H)^2 + \lambda v^2 H^{\dagger}H + (D^{\mu}H)^{\dagger}D_{\mu}H$

Higgs Boson h(125GeV) opens a Key Window for New Physics!

★ h is the Unique Spin-0 Fundamental Scalar Particle in SM.
★ h joins 2 New Forces: Self-Interaction & Yukawa Forces.
★ h determines Vacuum SSB & Stability, generates All Masses.

SM spoils it at Loop

H.-J. He

5

Making of the Standard Model (123)

 $\frac{1}{q'^4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4g^2} W^a_{\mu\nu} W^{\mu\nu a} - \frac{1}{4g^2_s} G^a_{\mu\nu}$ $\bar{Q}_i i D Q_i + \bar{u}_i i D u_i + \bar{d}_i i D d_i + \bar{L}_i i D L_i + \bar{\ell}_i i D \ell_i$ $\begin{pmatrix} Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i \ell_j H + c.c. \\ (H^{\dagger} H)^2 + \lambda v^2 H^{\dagger} H + (D^{\mu} H)^{\dagger} D_{\mu} H \end{pmatrix}$

SM Structure seems complete, but Recall: situation around 1900 –

No Dark Energy !

No DM !

 \rightarrow What is *Missing* in the SM ???

Composition of the Universe

Making of the Standard Model (123)

 $\frac{1}{4g'^4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4g^2}W^a_{\mu\nu}W^{\mu\nu a} - \frac{1}{4g^2_s}G^a_{\mu\nu}G^{\mu\nu a}$ $\bar{Q}_ii \not\!\!D Q_i + \bar{u}_ii \not\!\!D u_i + \bar{d}_ii \not\!\!D d_i + \bar{L}_ii \not\!\!D L_i + \bar{\ell}_ii \not\!\!D \ell_i$ $\begin{pmatrix} Y_u^{ij}\bar{Q}_i u_j\tilde{H} + Y_d^{ij}\bar{Q}_i d_jH + Y_l^{ij}\bar{L}_i\ell_jH + c.c. \\ (H^{\dagger}H)^2 + \lambda v^2 H^{\dagger}H + (D^{\mu}H)^{\dagger}D_{\mu}H \end{pmatrix}$ No DM ! SM Structure seems complete, but **Recall:** situation around 1900 **No Dark Energy ! No Gravity!**

→ What is *Missing* in the SM ??
 → → No full understanding on Quantum Gravity !!!

Particle Physics in the Post-Higgs Era !

Higgs Boson h(125GeV) opens a Key Window for New Physics!

- **★** h is the Unique Spin-0 Fundamental Scalar in the SM.
- ★ h joins 2 New Forces: Self-Interaction Force & Yukawa Force.
- ★ h determines Vacuum SSB & Stability, and generates All Masses.

SM cannot ensure at Loop

LHC gives partial probe

Higher Sensitivity !

- **★ New Physics in Higgs-Gauge Boson Couplings ?**
- **★ New Physics in Gauge Boson Self-Couplings ?**

★ Pure Gauge Couplings are connected to Higgs-Gauge Couplings, and to some Higgs-self-couplings as well.

H.-J. He 9

Indirect Probe of Higgs related New Physics by Model-Independent Effective Operators @ Dimension-6

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{c_{j}}{\tilde{\Lambda}^{2}} \mathcal{O}_{j} = \mathcal{L}_{\text{SM}} + \sum_{j} \frac{\pm 1}{\Lambda_{j}^{2}} \mathcal{O}_{j}$$

Higgs	EW Gauge Bosons	Fermions
$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} H ^{2})^{2}$	$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a\mu\nu}$	$\mathcal{O}_{L}^{(3)} = (iH^{\dagger}\sigma^{a} \overset{\leftrightarrow}{D}_{\mu}H)(\overline{\Psi}_{L}\gamma^{\mu}\sigma^{a}\Psi_{L})$
$\mathcal{O}_T = \frac{1}{2} (H^\dagger \stackrel{\leftrightarrow}{D}_\mu H)^2$	$\mathcal{O}_{BB} = g^2 H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{LL}^{(3)} = (\overline{\Psi}_L \gamma_\mu \sigma^a \Psi_L) (\overline{\Psi}_L \gamma^\mu \sigma^a \Psi_L)$
	$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^{a} H W^{a}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_L = (i H^\dagger \overset{\leftrightarrow}{D}_\mu H) (\overline{\Psi}_L \gamma^\mu \Psi_L)$
Gluon	$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_R \!= (i H^\dagger \stackrel{\leftrightarrow}{D}_\mu H) (\overline{\psi}_R \gamma^\mu \psi_R)$
$\mathcal{O}_g = g_s^2 H ^2 G^a_{\mu\nu} G^{a\mu\nu}$	$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_y^u = H ^2 \overline{\Psi}_L^q \tilde{H} u_R$
	$\mathcal{O}_W = \frac{ig}{2} (H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H) D_{\nu} W^{a \mu \nu}$	$\mathcal{O}_y^d = H ^2 \overline{\Psi}_L^q H d_R$
	$\mathcal{O}_B = \frac{ig'}{2} (H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) D_{\nu} B^{\mu\nu}$	$\mathcal{O}_y^\ell = H ^2 \overline{\Psi}_L^\ell H \ell_R$

Effective Higgs Couplings: Gauge & Yukawa

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H$$

Note:

Effective Higgs-Gauge Couplings & Pure Gauge Couplings are *connected* **At dim-6 and beyond due to EW gauge-invariance.**

→ Example: neutral Triple Gauge Couplings (nTGC), such as ZZZ, ZZγ, Zγγ may arise from dim-8 Higgs-related operators !

What beyond the LHC?

HL-LHC (up to 3/ab): more precise measurements, but not enough!

- Circular Higgs Factory CEPC (up to 250GeV):
 - → Will surpass the precision of HL-LHC
 - → Will be complementary to HE-LHC-28TeV (if built at all)...
 - \rightarrow 2nd-Phase SPPC will surpass LHC⁺ and fully explore TeV Scales

Testing Higgs Coupling: CEPC vs LHC

Ge, HJH, Xiao, JHEP 10(2016)007 [arXiv:1603.03385]

CEPC Sensitivity from EWPO+HO+Z-Pole

(Operators of dim-6)

Ge, HJH, Xiao, JHEP 10(2016)007 [arXiv:1603.03385]

Probing New Physics Scales: Higgs Observables Alone

Yukawa-type Dim-6 Operators cannot be probed by (EWPO, Z-pole, M_W).
 Yukawa-type Dim-6 Operators can only be probed at Higgs Factory!!

$$\begin{split} \mathcal{O}^u_y &= |H|^2 \, \overline{\Psi}^q_L \tilde{H} u_R \\ \mathcal{O}^d_y &= |H|^2 \, \overline{\Psi}^q_L H d_R \\ \mathcal{O}^\ell_y &= |H|^2 \, \overline{\Psi}^\ell_L H \ell_R \end{split}$$

$$\frac{\Lambda}{\sqrt{|c_f|}} \, \geqslant \, \sqrt{\frac{v^3}{\sqrt{2} \, m_f \Delta \tilde{\kappa}_f}}$$

Probe New Physics Scales of Fermion Mass Generation!!

Ge, HJH, Xiao, JHEP 10(2016)007

Dimension-6 Constraints with **Flavour-Universal** SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised over all other operator coefficients

No significant

HME 3 Ū, 53 57

럥 령

đ

3 ing. Che CHAR 3 S. 3 E. 5 3 3

E.

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

New Physics from Effective Operators @ Dim-8

Why & When will this be Unique ?

$$\Delta \mathcal{L}(ext{dim-8}) = \sum_{j} rac{ ilde{c}_{j}}{ ilde{\Lambda}^{4}} \mathcal{O}_{j} = \sum_{j} rac{ ext{sign}(ilde{c}_{j})}{\Lambda_{j}^{4}} \mathcal{O}_{j}$$

Neutral Triple Gauge Couplings (nTGC):

- Absent in the SM of dimension-4.
- > Absent at dimension-6 Level.
- First appear at Dimension-8 Level.

nTGCs provide a clean Window to New Physics at Dimension-8

nTGC Operators at Dimension-8

Contains CP Conserving (CPC) & CP Violating (CPV) Operators:

Higgs related operators:

$$\begin{split} \text{CPC:} \quad & \mathcal{O}_{\widetilde{B}W} = \mathrm{i} H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H + \mathrm{h.c.}, \\ \text{CPC:} \quad & \mathcal{O}_{\widetilde{B}W} = \mathrm{i} H^{\dagger} (D_{\sigma} \widetilde{W}_{\mu\nu}^{a} W^{a\mu\sigma} + D_{\sigma} \widetilde{B}_{\mu\nu} B^{\mu\sigma}) D^{\nu} H + \mathrm{h.c.}, \\ \text{CPV:} \quad & \widetilde{\mathcal{O}}_{BW} = \mathrm{i} H^{\dagger} B_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H + \mathrm{h.c.}, \\ \text{CPV:} \quad & \widetilde{\mathcal{O}}_{WW} = \mathrm{i} H^{\dagger} W_{\mu\nu} W^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H + \mathrm{h.c.}, \\ \text{CPV:} \quad & \widetilde{\mathcal{O}}_{BB} = \mathrm{i} H^{\dagger} B_{\mu\nu} B^{\mu\rho} \{ D_{\rho}, D^{\nu} \} H + \mathrm{h.c.}, \end{split}$$

Pure Gauge operators:

$$\begin{split} \text{CPC:} & g\mathcal{O}_{G+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \\ \text{CPC:} & g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \\ \text{CPV:} & g\widetilde{\mathcal{O}}_{G+} = B_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \\ \text{CPV:} & g\widetilde{\mathcal{O}}_{G-} = B_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}), \end{split}$$

Conventional nTGC Form Factors: Inconsistent!

Conventional CPC Form Factors of V*Zγ respect only Lorentz invariance and Residual QED U(1):

$$\begin{split} \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPC})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{3}^{V} q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_{4}^{V}}{M_{Z}^{2}} q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma}\right], \\ \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPV})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{1}^{V} (q_{2}^{\alpha} g^{\mu\beta} - q_{2}^{\mu} g^{\alpha\beta}) + \frac{h_{2}^{V}}{2M_{Z}^{2}} q_{2}^{\alpha} g^{\mu\beta} (M_{Z}^{2} - q_{3}^{2})\right]. \end{split}$$

But it could be inconsistent for the EW Sector !
 Because the Fully EW Gauge Symmetry is not just QED U(1), but the

SU(2) × **U(1)** with Spontaneous Breaking

- From Complete Set of dim-8 Operators, we deduce a Complete Set of nTGC Vertices in the electroweak broken phase, with which we construct the first consistent formulation of nTGC Form Factors.
- Important Point:

The Spontaneous Breaking EW Gauge Symmetry SU(2) x U(1) plays a Key Role to determine the correct structure of nTGC Form Factors.

From a Complete Set of CPC dim-8 Operators, we deduce a Complete Set of CPC nTGC Vertices in the electroweak broken phase, with which we construct the consistent formulation of nTGC Form Factors:

$$\begin{split} \mathcal{L}_{\mathrm{nTGC}}^{\mathrm{CPC}} &= \frac{e\hat{h}_{3}^{Z}}{2M_{Z}^{2}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \left(\partial^{\nu} Z_{\rho} + \partial_{\rho} Z^{\nu} \right) \\ &- \frac{e\hat{h}_{4}}{2M_{Z}^{4}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \partial^{2} \left(Z^{\nu}{}_{\rho} + \frac{s_{W}}{c_{W}} A^{\nu}{}_{\rho} \right) \\ &+ \frac{ec_{W} \hat{h}_{3}^{2}}{2s_{W} M_{Z}^{4}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \times \\ &\left[\partial^{2} \left(\partial^{\nu} Z_{\rho} + \partial_{\rho} Z^{\nu} + \frac{s_{W}}{c_{W}} \partial^{\nu} A_{\rho} + \frac{s_{W}}{c_{W}} \partial_{\rho} A^{\nu} \right) - 2 \partial^{\nu} \partial_{\rho} \left(\partial \cdot Z + \frac{s_{W}}{c_{W}} \partial \cdot A \right) \right] \\ &+ \frac{e h_{31}^{2}}{2M_{Z}^{2}} \left(\partial_{\rho} \tilde{Z}_{\mu\nu} Z^{\mu\rho} + \partial_{\rho} \tilde{A}_{\mu\nu} A^{\mu\rho} \right) Z^{\nu} , \end{split}$$

➢ We stress: the above CPC nTGC Form Factors are Fully Off-Shell !
 → → they are the most general formulation (including all special cases)!

Fully Off-Shell CPC nTGC Form Factors at Lagrangian Level:

$$\begin{split} \mathcal{L}_{\mathrm{nTGC}}^{\mathrm{CPC}} &= \frac{e\hat{h}_{3}^{2}}{2M_{Z}^{2}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \left(\partial^{\nu} Z_{\rho} + \partial_{\rho} Z^{\nu} \right) \\ &- \frac{e\hat{h}_{4}}{2M_{Z}^{4}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \partial^{2} \left(Z^{\nu}{}_{\rho} + \frac{s_{W}}{c_{W}} A^{\nu}{}_{\rho} \right) \\ &+ \frac{ec_{W} \hat{h}_{3}^{2}}{2s_{W} M_{Z}^{4}} \left(c_{W}^{2} \tilde{A}_{\mu\nu} Z^{\mu\rho} - s_{W}^{2} \tilde{Z}_{\mu\nu} A^{\mu\rho} + c_{W} s_{W} \tilde{A}_{\mu\nu} A^{\mu\rho} - c_{W} s_{W} \tilde{Z}_{\mu\nu} Z^{\mu\rho} \right) \times \\ &\left[\partial^{2} \left(\partial^{\nu} Z_{\rho} + \partial_{\rho} Z^{\nu} + \frac{s_{W}}{c_{W}} \partial^{\nu} A_{\rho} + \frac{s_{W}}{c_{W}} \partial_{\rho} A^{\nu} \right) - 2 \partial^{\nu} \partial_{\rho} \left(\partial \cdot Z + \frac{s_{W}}{c_{W}} \partial \cdot A \right) \right] \\ &+ \frac{e h_{31}^{2}}{2M_{Z}^{2}} \left(\partial_{\rho} \tilde{Z}_{\mu\nu} Z^{\mu\rho} + \partial_{\rho} \tilde{A}_{\mu\nu} A^{\mu\rho} \right) Z^{\nu} \,, \end{split}$$

Matching Form Factors with CPC Dim-8 Operators:

$$\begin{split} \hat{h}_4 &= \frac{\hat{r}_4}{[\Lambda_{G+}^4]} \,, \quad \hat{h}_3^Z = \frac{\hat{r}_3^Z}{[\Lambda_{\widetilde{B}W}^4]} \,, \quad \hat{h}_3^\gamma = \frac{\hat{r}_3^\gamma}{[\Lambda_{G-}^4]} \,, \quad h_{31}^\gamma = \frac{r_{31}^\gamma}{[\Lambda_{\widetilde{B}\widetilde{W}}^4]} \,, \\ \hat{r}_4 &= -\frac{v^2 M_Z^2}{s_W c_W} \,, \quad \hat{r}_3^Z = \frac{v^2 M_Z^2}{2s_W c_W} \,, \quad \hat{r}_3^\gamma = -\frac{v^2 M_Z^2}{2c_W^2} \,, \quad r_{31}^\gamma = -\frac{v^2 M_Z^2}{s_W c_W} \,, \end{split}$$

From a Complete Set of CPV dim-8 Operators, we deduce a Complete Set of CPV nTGC Vertices in the electroweak broken phase, with which we construct the consistent formulation of nTGC Form Factors:

$$\begin{split} \mathcal{L}_{\mathrm{nTGC}}^{\mathrm{CPV}} &= \frac{e\hat{h}_{1}^{Z}}{M_{Z}^{2}} \left(A_{\mu\nu} Z^{\mu\rho} + Z_{\mu\nu} A^{\mu\rho} \right) \partial^{\nu} Z_{\rho} + \frac{eh_{11}^{\gamma}}{M_{Z}^{2}} A_{\mu\nu} A^{\mu\rho} \partial^{\nu} Z_{\rho} - \frac{e\hat{h}_{2}}{2M_{Z}^{4}} A_{\mu\nu} Z^{\mu\rho} \partial^{2} \left(Z^{\nu}_{\ \rho} + \frac{s_{W}}{c_{W}} A^{\nu}_{\ \rho} \right) \\ &- \frac{e\hat{h}_{1}^{\gamma}}{M_{Z}^{4}} \left[c_{2W} \left(A_{\mu\nu} Z^{\mu\rho} + Z_{\mu\nu} A^{\mu\rho} \right) + s_{2W} \left(A_{\mu\nu} A^{\mu\rho} - Z_{\mu\nu} Z^{\mu\rho} \right) \right] \\ &\times \left[\partial^{2} \partial^{\nu} \left(\frac{c_{W}}{s_{W}} Z_{\rho} + A_{\rho} \right) - \partial^{\nu} \partial_{\rho} \partial \cdot \left(\frac{c_{W}}{s_{W}} Z + A \right) \right]. \end{split}$$

We stress: the above CPV nTGC Form Factors are Fully Off-Shell !

Fully Off-Shell CPV nTGC Form Factors at Lagrangian Level:

$$\begin{split} \mathcal{L}_{\mathrm{nTGC}}^{\mathrm{CPV}} &= \frac{e\hat{h}_{1}^{Z}}{M_{Z}^{2}} \left(A_{\mu\nu} Z^{\mu\rho} + Z_{\mu\nu} A^{\mu\rho} \right) \partial^{\nu} Z_{\rho} + \frac{eh_{11}^{\gamma}}{M_{Z}^{2}} A_{\mu\nu} A^{\mu\rho} \partial^{\nu} Z_{\rho} - \frac{e\hat{h}_{2}}{2M_{Z}^{4}} A_{\mu\nu} Z^{\mu\rho} \partial^{2} \left(Z^{\nu}_{\ \rho} + \frac{s_{W}}{c_{W}} A^{\nu}_{\ \rho} \right) \\ &- \frac{e\hat{h}_{1}^{\gamma}}{M_{Z}^{4}} \left[c_{2W} \left(A_{\mu\nu} Z^{\mu\rho} + Z_{\mu\nu} A^{\mu\rho} \right) + s_{2W} \left(A_{\mu\nu} A^{\mu\rho} - Z_{\mu\nu} Z^{\mu\rho} \right) \right] \\ &\times \left[\partial^{2} \partial^{\nu} \left(\frac{c_{W}}{s_{W}} Z_{\rho} + A_{\rho} \right) - \partial^{\nu} \partial_{\rho} \partial \cdot \left(\frac{c_{W}}{s_{W}} Z + A \right) \right]. \end{split}$$

Matching Form Factors with CPV Dim-8 Operators:

$$\begin{split} \hat{h}_{1}^{Z} &= v^{2} M_{Z}^{2} \bigg(-\frac{1}{4[\Lambda_{WW}^{4}]} + \frac{c_{W}^{2} - s_{W}^{2}}{4c_{W} s_{W}[\Lambda_{WB}^{4}]} + \frac{1}{[\Lambda_{BB}^{4}]} \bigg) \\ h_{11}^{\gamma} &= v^{2} M_{Z}^{2} \bigg(-\frac{s_{W}}{4c_{W}[\Lambda_{WW}^{4}]} + \frac{1}{2[\Lambda_{WB}^{4}]} - \frac{c_{W}}{s_{W}[\Lambda_{BB}^{4}]} \bigg) \\ \hat{h}_{1}^{\gamma} &= \frac{v^{2} M_{Z}^{2}}{4c_{W}^{2}[\Lambda_{\widetilde{G}-}^{4}]} , \\ \hat{h}_{2} &= -\frac{v^{2} M_{Z}^{2}}{2s_{W} c_{W}[\Lambda_{\widetilde{G}+}^{4}]} \end{split}$$

Form Factors for Singly Off-Shell nTGV V*Z*γ*

Conventional CPC Form Factors for Singly Off-Shell nTGVs:

$$\begin{split} \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPC})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{3}^{V} q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_{4}^{V}}{M_{Z}^{2}} q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma}\right], \\ \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPV})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{1}^{V} (q_{2}^{\alpha} g^{\mu\beta} - q_{2}^{\mu} g^{\alpha\beta}) + \frac{h_{2}^{V}}{2M_{Z}^{2}} q_{2}^{\alpha} g^{\mu\beta} (M_{Z}^{2} - q_{3}^{2})\right]. \end{split}$$

Our New CPC Form Factors for Singly Off-Shell nTGVs:

$$\begin{split} \Gamma_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPC})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \bigg[\left(h_{3}^{V} + h_{5}^{V} \frac{q_{3}^{2}}{M_{Z}^{2}}\right) q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_{4}^{V}}{M_{Z}^{2}} q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} \bigg], \\ \Gamma_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPV})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \bigg[\left(h_{1}^{V} + h_{6}^{V} \frac{q_{3}^{2}}{M_{Z}^{2}}\right) (q_{2}^{\alpha} g^{\mu\beta} - q_{2}^{\mu} g^{\alpha\beta}) + \frac{h_{2}^{V}}{2M_{Z}^{2}} q_{2}^{\alpha} g^{\mu\beta} (M_{Z}^{2} - q_{3}^{2}) \bigg] \end{split}$$

Our New Relations:

$$\begin{split} \frac{h_4^V = 2h_5^V}{h_4^Z = \frac{c_W}{s_W} h_4^\gamma} \,, & \frac{h_2^V = 2h_6^V}{h_2^Z} \,, \\ h_4^Z = \frac{c_W}{s_W} h_4^\gamma \,, & h_2^Z = \frac{c_W}{s_W} h_2^\gamma \end{split}$$

Form Factors for Singly Off-Shell nTGV V*Zγ

Conventional CPC Form Factors for Singly Off-Shell nTGVs:

$$\begin{split} \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPC})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{3}^{V} q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_{4}^{V}}{M_{Z}^{2}} q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma}\right], \\ \widetilde{\Gamma}_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPV})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{1}^{V} \left(q_{2}^{\alpha} g^{\mu\beta} - q_{2}^{\mu} g^{\alpha\beta}\right) + \frac{h_{2}^{V}}{2M_{Z}^{2}} q_{2}^{\alpha} g^{\mu\beta} \left(M_{Z}^{2} - q_{3}^{2}\right)\right]. \end{split}$$

Our New CPC Form Factors for Singly Off-Shell nTGVs:

$$\begin{split} \Gamma_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPC})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[\left(h_{3}^{V} + h_{4}^{V} \frac{q_{3}^{2}}{2M_{Z}^{2}}\right) q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{h_{4}^{V}}{M_{Z}^{2}} q_{2}^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} \right] \\ \Gamma_{Z\gamma V^{\star}}^{\alpha\beta\mu(\text{CPV})} &= \frac{e\left(q_{3}^{2} - M_{V}^{2}\right)}{M_{Z}^{2}} \left[h_{1}^{V} (q_{2}^{\alpha} g^{\mu\beta} - q_{2}^{\mu} g^{\alpha\beta}) + h_{2}^{V} \frac{M_{Z}^{2} q_{2}^{\alpha} g^{\mu\beta} - q_{3}^{2} q_{2}^{\mu} g^{\alpha\beta}}{2M_{Z}^{2}} \right]. \end{split}$$

Form Factors for Singly Off-Shell nTGV V*Zγ

According to EW Equivalence Theorem:

 $\mathcal{T}[Z_L, \gamma_T] = \mathcal{T}[-\mathrm{i}\pi^0, \gamma_T] + B,$

$$\begin{split} B &= \mathcal{T}[v^{\mu}Z_{\mu}, \gamma_T] \\ v^{\mu} &\equiv \epsilon_L^{\mu} - q_Z^{\mu}/M_Z = O(M_Z/E_Z) \end{split}$$

→→ It proves Energy Cancellations and impose Constraints:

$$h_4^V/h_5^V = 2$$
, $h_2^V/h_6^V = 2$,

Form Factors *for* **Doubly Off-Shell nTGV V*Z***γ

CPC Form Factors for Doubly Off-Shell nTGVs:

$$\begin{split} \Gamma_{Z^*\gamma\gamma^*}^{\alpha\beta\mu}(q_1, q_2, q_3) &= \frac{e}{M_Z^2} \left(h_{31}^{\gamma} + \frac{\hat{h}_3^{\gamma} q_1^2}{M_Z^2} \right) q_3^2 q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{e s_W \hat{h}_4 q_3^2}{2 c_W M_Z^4} \left(2 q_2^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} + q_3^2 q_{2\nu} \epsilon^{\alpha\beta\mu\nu} \right), \\ \Gamma_{Z^*\gamma Z^*}^{\alpha\beta\mu}(q_1, q_2, q_3) &= \frac{e (q_3^2 - q_1^2)}{M_Z^2} \left[\hat{h}_3^Z q_{2\nu} \epsilon^{\alpha\beta\mu\nu} + \frac{\hat{h}_4}{2M_Z^2} \left(2 q_2^{\alpha} q_{3\nu} q_{2\sigma} \epsilon^{\beta\mu\nu\sigma} + q_3^2 q_{2\nu} \epsilon^{\alpha\beta\mu\nu} \right) \right]. \end{split}$$

Matching Form Factors with CPC Dim-8 Operators:

$$\begin{split} \hat{h}_4 &= \frac{\hat{r}_4}{[\Lambda_{G+}^4]}, \quad \hat{h}_3^Z = \frac{\hat{r}_3^Z}{[\Lambda_{\widetilde{B}W}^4]}, \quad \hat{h}_3^\gamma = \frac{\hat{r}_3^\gamma}{[\Lambda_{G-}^4]}, \quad h_{31}^\gamma = \frac{r_{31}^\gamma}{[\Lambda_{\widetilde{B}\widetilde{W}}^4]}, \\ \hat{r}_4 &= -\frac{v^2 M_Z^2}{s_W c_W}, \quad \hat{r}_3^Z = \frac{v^2 M_Z^2}{2s_W c_W}, \quad \hat{r}_3^\gamma = -\frac{v^2 M_Z^2}{2c_W^2}, \quad r_{31}^\gamma = -\frac{v^2 M_Z^2}{s_W c_W}, \end{split}$$

\rightarrow > Important for Invisible Channel:

$$pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$$

Form Factors for Doubly Off-Shell nTGV V*Z*γ

CPV Form Factors for Doubly Off-Shell nTGVs:

 \succ

$$\begin{split} \Gamma_{Z^{\star}\gamma\gamma^{\star}}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= \frac{e}{M_{Z}^{2}} \left(h_{11}^{\gamma} + \frac{\hat{h}_{1}^{\gamma}q_{1}^{2}}{M_{Z}^{2}} \right) q_{3}^{2} \left(q_{2}^{\alpha}g^{\mu\beta} - q_{2}^{\mu}g^{\alpha\beta} \right) + \frac{es_{W}\hat{h}_{2}q_{3}^{2}}{2c_{W}M_{Z}^{4}} \left(q_{1}^{2}q_{2}^{\alpha}g^{\mu\beta} - q_{3}^{2}q_{2}^{\mu}g^{\alpha\beta} \right), \\ \Gamma_{Z^{\star}\gamma Z^{\star}}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) &= \frac{e\left(q_{3}^{2} - q_{1}^{2} \right)}{M_{Z}^{2}} \left[\hat{h}_{1}^{Z} \left(q_{2}^{\alpha}g^{\mu\beta} - q_{2}^{\mu}g^{\alpha\beta} \right) + \frac{\hat{h}_{2}}{2M_{Z}^{2}} \left(q_{1}^{2}q_{2}^{\alpha}g^{\mu\beta} - q_{3}^{2}q_{2}^{\mu}g^{\alpha\beta} \right) \right], \end{split}$$

Matching Form Factors with Dim-8 CPV Operators:

$$\begin{split} \hat{h}_{1}^{Z} &= v^{2} M_{Z}^{2} \bigg(-\frac{1}{4[\Lambda_{WW}^{4}]} + \frac{c_{W}^{2} - s_{W}^{2}}{4c_{W} s_{W}[\Lambda_{WB}^{4}]} + \frac{1}{[\Lambda_{BB}^{4}]} \bigg), \\ h_{11}^{\gamma} &= v^{2} M_{Z}^{2} \bigg(-\frac{s_{W}}{4c_{W}[\Lambda_{WW}^{4}]} + \frac{1}{2[\Lambda_{WB}^{4}]} - \frac{c_{W}}{s_{W}[\Lambda_{BB}^{4}]} \bigg), \\ \hat{h}_{1}^{\gamma} &= \frac{v^{2} M_{Z}^{2}}{4c_{W}^{2}[\Lambda_{\widetilde{G}-}^{4}]}, \\ \hat{h}_{2} &= -\frac{v^{2} M_{Z}^{2}}{2s_{W} c_{W}[\Lambda_{\widetilde{G}+}^{4}]}. \end{split}$$

V*Z*γ : Comparison with LHC Exp Analysis

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$, ATLAS Exp Limits with 36.1/fb at LHC(13TeV):

$$\begin{array}{ll} h_3^{\gamma} \in (-3.7,\,3.7) \times 10^{-4} \,, & h_3^Z \in (-3.2,\,3.3) \times 10^{-4} \,, \\ h_4^{\gamma} \in (-4.4,\,4.3) \times 10^{-7} \,, & h_4^Z \in (-4.5,\,4.4) \times 10^{-7} \,. \end{array}$$

Our New Predictions with the same inputs and kinetic cuts:

$$|h_{31}^{\gamma}| < 3.5 \times 10^{-4} \,, \quad |\hat{h}_{3}^{\gamma}| < 2.3 \times 10^{-4} \,, \quad |\hat{h}_{3}^{Z}| < 3.1 \times 10^{-4} \,, \quad |\hat{h}_{4}| < 1.4 \times 10^{-5} \,.$$

Differences:

→ Our h_3^{γ} sensitivity is enhanced by (50-60)% by Off-Shell Z* Effects. → Atlas Exp Bounds on (h_4^{γ}, h_4^Z) are too large by a factor of 32.

LHC Sensitivity to nTGCs

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC(13TeV): $P_T(\gamma)$ Distributions

Probing nTGCs at LHC + pp(100TeV)

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC and pp(100TeV) Collider:

- → Our h_3^{γ} sensitivity is enhanced by (50-60)% at LHC and by factor ~10 at pp(100TeV) Collider due to Off-Shell Z* Effects !
 - → Sensitivities on \hat{h}_2 and \hat{h}_4 are much higher than $\hat{h}_{3,1}^{\gamma}$. → Conventional Formula Bounds on (h_4^{γ}, h_4^Z) are too large by a factor of O(30) at LHC and O(100) at pp(100TeV).

\sqrt{s}	$13\mathrm{TeV}$				$100\mathrm{TeV}$		
$\mathcal{L}(\mathrm{ab}^{-1})$	0.14	0.3	3		3	10	30
$ \hat{h}_{4,2} \!\times\!10^6$	11	8.5	4.2	$ \hat{h}_{4,2} \!\times\!10^9$	4.5	2.9	2.0
$ \hat{h}^{Z}_{3,1} \! imes\!10^{4}$	2.2	1.7	0.90	$ \hat{h}^{Z}_{3,1} \! imes\! 10^7$	7.0	4.8	3.4
$ \hat{h}_{3,1}^{\gamma} \! imes\!10^4$	1.6	1.3	0.67	$ \hat{h}_{3,1}^{\gamma} \! imes\!10^7$	0.94	0.62	0.44
$ h_{31,11}^{\gamma} \!\times\!10^4$	2.5	2.0	1.0	$ h_{31,11}^{\gamma} \!\times\!10^7$	8.3	5.7	4.0

Probing nTGCs at LHC + pp(100TeV)

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC and pp(100TeV) Collider:

→ Sensitivities to nTGC New Physics Scales reach (1-4)TeV at LHC and (4-28)TeV at pp(100TeV) Collider.

\sqrt{s}	1	13 TeV	$100 { m TeV}$			
$\mathcal{L}\left(\mathrm{ab^{-1}} ight)$	0.14	0.3	3	3	10	30
$\Lambda_{G+}(CPC)$	3.2	3.5	4.1	23	25	28
$\Lambda_{G-}(CPC)$	1.2	1.3	1.5	7.7	8.5	9.3
$\Lambda_{\widetilde{B}W}(ext{CPC})$	1.3	1.4	1.6	5.4	5.9	6.4
$\Lambda_{\widetilde{BW}}(\mathrm{CPC})$	1.5	1.6	1.8	6.2	6.8	7.4
$\Lambda_{\tilde{G}+}(CPV)$	2.7	2.9	3.5	19	21	23
$\Lambda_{\tilde{G}-}(CPV)$	1.0	<mark>1.1</mark>	1.3	6.5	7.2	7 .8
$\Lambda_{WW}(\text{CPV})$	0.93	0.98	1 .2	3.9	4.3	4.6
$\Lambda_{WB}(\mathrm{CPV})$	1.1	1.2	1.4	4.6	5. 1	5.5
$\Lambda_{BB}(\text{CPV})$	1.3	1.4	1.7	5.6	6.2	6.8

nTGCs: Combined via Lepton + Invisible Channels

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC and pp(100TeV) Collider: $pp(q\bar{q}) \rightarrow Z\gamma \rightarrow \ell^+ \ell^- \gamma$

\sqrt{s}	$13\mathrm{TeV}$				$100 \mathrm{TeV}$		
$\mathcal{L}(ab^{-1})$	0.14	0.3	3		3	10	30
$ \hat{h}_{4,2} \! imes\! 10^6$	9.6	7.5	3.8	$ \hat{h}_{4,2} imes 10^9$	3.9	2.6	1.8
$ \hat{h}^{Z}_{3,1} imes 10^4$	1.9	1.5	0.80	$ \hat{h}^{Z}_{3,1} imes 10^{7}$	6.1	4.2	3.0
$ \hat{h}_{3,1}^{\gamma} \! imes\! 10^4$	1.6	1.2	0.65	$ \hat{h}_{3,1}^{\gamma} \! imes\! 10^7$	0.94	0.62	0.44
$ h_{31,11}^{\gamma} imes 10^4$	2.2	1.8	0.94	$ h_{31,11}^{\gamma} imes 10^7$	7.1	4.9	3.5

nTGCs at LHC + pp(100TeV): Correlations

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC and pp(100TeV) Collider:

Unitarity Bounds on nTGCs: Safe

For $pp(q\bar{q}) \rightarrow Z^* \gamma \rightarrow \nu \bar{\nu} \gamma$ at LHC and pp(100TeV) Collider:

→→ Unitarity Bounds are much weaker than our Collider Bounds.

$E_{\rm CM}({\rm TeV})$	0.25	0.5	1	3	5	25	40
Λ_{G+}	0.078	0.16	0.31	0.93	1.6	7.8	12
Λ_{G-}	0.050	0.084	0.14	0.32	0.47	1.6	2.2
$\Lambda_{\widetilde{B}W}$	0.058	0.098	0.16	0.37	0.55	1.8	2.6
$\Lambda_{\widetilde{RW}}$	0.069	0.12	0.20	0.44	0.65	2.2	3.1
$\Lambda_{\tilde{G}+}$	0.065	0.13	0.26	0.79	1.3	6.5	10
$\Lambda_{\widetilde{G}-}$	0.042	0.071	0.12	0.27	0.40	1.3	1.9
Λ_{WW}	0.041	0.069	0.12	0.26	0.39	1.3	1.8
Λ_{WB}	0.051	0.086	0.14	0.33	0.48	1.6	2.3
Λ_{BB}	0.069	0.12	0.20	0.44	0.65	2.2	3.1
$ h_{4,2} $	33	2.0	0.13	1.6×10^{-3}	2.0×10^{-4}	3.3×10^{-7}	5.0×10^{-8}
$ h_{3,1}^Z $	53	6.6	0.83	0.031	6.6×10^{-3}	5.3×10^{-5}	1.3×10^{-5}
$ h^{\gamma}_{3,1} $	53	6.6	0.83	0.031	6.6×10^{-3}	5.3×10^{-5}	1.3×10^{-5}

Ellis, HJH, Xiao, arXiv:2308.16887

nTGCs: pp Colliders vs e+e- Colliders

nTGCs: pp Colliders vs e+e- Colliders

- nTGCs provide unique probe of dimension-8 SMEFT operators
- Opportunity to look for new physics without contributions from SM or dimension-6 SMEFT operators
- Preferred form factor formalism: SM SU(2)⊗U(1) invariance

JE, He & Xiao, arXiv:2206.11676

- Extension of previous analysis to include operators contributing to offshell $Z^* \rightarrow \bar{\nu}\nu$: needed for pp colliders
- Comparisons to ATLAS analysis, combination with $Z \to \ell^+ \ell^-$
- Also extension to CP-violating operators

JE, He & Xiao, arXiv:2308.16887

- Testing Higgs Interaction Forces and Higgs-Induced Corrections to Gauge Force (Couplings) is the KEY Window to New Physics.
- New Physics in Higgs-Gauge Couplings, Pure Gauge Couplings, Higgs Self-Couplings may be connected.
- Important: Make Use of Full SU2) x U(1) EW Gauge Symmetry !
- Important to probe New Physics Scale Λ from *both* Higgs Processes and Gauge Boson Processes.

SMEFT is a Powerful Tool for Probing New Physics !

Thank You ?

nTGC related Fermionic Contact Operators

Ellis, HJH, Xiao, arXiv:2008.04298

2 Pure Gauge operators:

$$g\mathcal{O}_{G+} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} + D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}),$$

$$g\mathcal{O}_{G-} = \widetilde{B}_{\mu\nu}W^{a\mu\rho}(D_{\rho}D_{\lambda}W^{a\nu\lambda} - D^{\nu}D^{\lambda}W^{a}_{\lambda\rho}).$$

Eq of Motion:

$$\mathcal{O}_{G+} = \{ iH^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} [D_{\rho}, D^{\nu}] H + i 2(D_{\rho}H)^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} D^{\nu} H + \text{h.c.} \} + \mathcal{O}_{C-} ,$$

$$\mathcal{O}_{G-} = \mathcal{O}_{\widetilde{B}W} + \mathcal{O}_{C+} ,$$

Fermionic Contact Operators: (contributing to ee $\rightarrow Z\gamma$, ZZ)

$$\mathcal{O}_{C+} = \widetilde{B}_{\mu\nu} W^{a\mu\rho} \big[D_{\rho} (\overline{\psi_L} T^a \gamma^{\nu} \psi_L) + D^{\nu} (\overline{\psi_L} T^a \gamma_{\rho} \psi_L) \big],$$

$$\mathcal{O}_{C-} = \widetilde{B}_{\mu\nu} W^{a\mu\rho} \big[D_{\rho} (\overline{\psi_L} T^a \gamma^{\nu} \psi_L) - D^{\nu} (\overline{\psi_L} T^a \gamma_{\rho} \psi_L) \big].$$

• O_{G+} , O_{C-} give identical contributions to f f $\rightarrow Z\gamma$, ZZ