

The Prototype Design of PEB a Component of the HGTD On-detector Electronics for the ATLAS Phase-II Upgrade

Jie Zhang¹, Lei Zhang² and **Zhenwu Ge**²

¹Institute of High Energy Physics, CAS ²Nanjing University

16 Nov, 2023

Outline

- 1. Introduction
- 2. Overview of HGTD Readout Electronics
- 3. Peripheral Electronics Boards (PEB)
- 4. Requirements in PEB Design
- 5. Conceptual Design of PEB
- 6. PEB 1F Design
- 7. Conclusion and Outlook

Introduction

□ High Granularity Timing Detector (HGTD)

- Silicon detector with coarse spatial resolution but precise timing
- > ~3.6 million 1.3×1.3 mm2 pixels with Low-Gain Avalanche Detector (LGAD) technology
- ➢ 6.4 m² active area
- Pileup rejection
 - Time resolution at the start (end): 30 (50) ps per track / 35 (70) ps per hit
- Luminosity measurement
 - Count number of hits at 40 MHz (bunch-by-bunch)
 - Goal for HL-LHC: 1% luminosity uncertainty
- Detector structure
 - Two end-caps
 - $z \approx \pm 3.5$ m from the nominal interaction point
 - 110 < r < 1000 mm
 - Active detector region: $2.4 < |\eta| < 4.0$

Global view of the HGTD

Overview of HGTD Readout Electronics

On detector

- Front-end modules
- Flex tail cables
- Peripheral Electronics Boards
 - Contains 4 types of chips: bPol12V, MUX64, lpGBT and VTRX+ (<u>REF. CLHCP2022</u>)
- Off-detector
 - Data Acquisition System (DAQ)
 - Luminosity System
 - ➤ Timing, Trigger and Control (TTC)
 - Detector Control System (DCS)
 - Low Voltage (LV)/High Voltage (HV) system
 - Interlock system

HGTD electronics architecture

Peripheral Electronics Boards(PEB)

- □ Six types of PEB (front and back side)
- □ Board 1F, 2F, 1B and 2B are used on both sides
- Each board connects a similar number of modules
- □ The front-end modules are connected via flex tails, arranged in rows, to the PEB @ 660 < r < 920 mm
- □ 80 boards per end-cap, thus 160 boards in total
- Basic functions of PEB
 - Control, monitoring & data aggregation and transmission
 - Power-supply distribution: LV & HV
 - Thermistor connection between the front-end modules and the interlock system
- Design and production
 - Designed by IHEP, NJU and Morocco group. Produced by IHEP (50%) and NJU(50%)

One quadrant of the two instrumented disks

PEB	Front side	Back side	Quantity
1F	54 modules	55 modules	32
2F	52 modules	56 modules	32
3F	39 modules	-	16
3B	-	39 modules	16
2B	52 modules	48 modules	32
1B	54 modules	53 modules	32

Requirements in PEB Design

- □ Area and height restrictions
 - Limited surface area for thousand of components and nets
 - ➤ Height < 10 mm</p>
- □ Connecting 8032 front-end modules
 - Up to 50k analog monitoring
 - ➤ Up to 10 Tbps to TDAQ, on average, 63 Gbps per PEB
- LV & HV power-supply distribution
 - Low noise, heat dissipation, system level shielding and grounding considerations
- □ Thermistor connection between the front-end modules and the interlock system
 - > 896 Negative Temperature Coefficient (NTC) sensors to monitor disk temperature

One quadrant of the two instrumented disks

Requirements in PEB Design

□ Radiation tolerance for PEB

	From simulation	Safety factor	Design requirement
Si 1 MeV neutron equivalent	< 1.4 x 10 ¹⁵ neq /cm ²	1.5 x 1.3	2.73 x 10 ¹⁵ neq /cm ²
Fluence of hadrons > 20 MeV	< 0.32 x 10 ¹⁵ neq /cm ²	1.5 x 1.3 x 2	1.25 x 10 ¹⁵ neq /cm ²
TID	< 36 Mrad (0.36 MGy)	1.5	54 Mrad (0.54 MGy)

□ Magnetic field

- ➤ Amplitude: 0.382 T ~ 0.433 T
- ➤ Angle 23.1° ~ 32.3°

□ Operating Temperature:

- > On disk (with front-end modules and CO2 cooling): -35 $^{\circ}$ C \pm 5 $^{\circ}$ C
- ➤ Testing/debugging (with cooling): -40 °C to 55 °C

Conceptual Design of PEB

□ Two LV channels to dozens of bPol12V chips

- Provide 1.2V for the ALTIROCs
 - Up to 3 modules share two bPOL12v
 - One for analog power, the other for digital power
- Provide 1.2V and 2.5V for the chips on PEB
- □ One timing IpGBT and 1~2 luminosity IpGBTs share one VTRx+
 - Bi-directional slow control and monitoring communication between the FELIX and the IpGBT
 - Timing/luminosity data to FELIX
- Control
 - ➢ I2C of IpGBT
 - Each IpGBT has 3 I2C master
 - Module and VTRx+ configuration

Conceptual Design of PEB

Output to modules

- ➢ Reset
- Clock
- Fast command
- □ Input form modules
 - Timing/luminosity data
- Monitoring
 - Each IpGBT has a 8 channel multiplexed ADC
 - Module state monitoring
 - VDDA, VDDD, GNDA, PROBE0/1(internal state and temperature), NTC

- PEB state monitoring
 - IpGBT voltage, temperature
 - VTRx+ RSSI(average optical power of the received light) and NTC
 - bPOL12v temperature
 - bPOL12v power good signal
 - On board NTC
- > an external 64-to-1 MUX is required: MUX64

PEB 1F Design

PEB	Modules	IpGBT	MUX64	bPOL12v	VTRx+
1F	55	9+3	9	52	9

Key dimensions

- PCB thickness: 2.5 mm
- ➢ 55 FPC connectors
 - Center to center distance: 6.5 mm
- ➢ 52 bPOL12v power blocks
 - Size: 24 mm x 14.5 mm
 - Height above PCB: 5 mm
 - Height under PCB: 2 mm

ΗV

LV

NTC

HV

GND

9 VTRx+ with clips and heat sinks

52 bPOL12v with shielding

55 FPC connectors

for modules

cage

PEB 1F Design

□ Complex PCB

- ➤ High speed, low loss material
 - Impedance control
- ➤ Halogen free
 - EM-890 or IT-170/988 or R-5375(E)
- Symbols and nets
 - 3386 components, 12996 connections
- ➢ 22 layers PCB for PEB 1F, includes:
 - 8 layers for signals
 - 2 layer for HV and HV return ground
 - 4 layers for ground
 - 8 layers for power
- HDI (High Density Interconnector)
 - Micro via

tatus					
tatus					
Sym	bols and nets				
	Unplaced symbols:		0/3386	0%	
	Unrouted nets:		0/3702	0%	
	Unrouted connections	: C	/12996	0%	
Shaj	Des				
	Isolated shapes:		0		
	Unassigned shapes:		0		
	Out of date shapes:		0/397	Update	to Smooth
Dyr	namic fill:	Smooth	ORo	ugh 🤇) Disabled
DRC	Ìs				
	DRC errors: Up To D	ate	0	Upda	ite DRC
	Shorting errors:		0	🗹 On-lir	ne DRC
	Waived DRC errors:		0		
	Waived shorting e	errors:	0		
Stati	stics				
Las	t saved by:		palzh		
Edi	ting time:	947 hours 3	minutes	R	eset
OK		Refresh			He

VIPPO / POFV: Via-in-Pad Plated Over PCB

Conclusion and Outlook

□ PEB 1F prototype is under production

□ HGTD on-detector electronics moving towards the FDR phase

- □ Focus on the full demonstrator
 - Electronics : 54 modules mounted on 4 support units + flex tails + PEB 1F + LV + HV

Many challenges ahead, but remarkable technical progress achieved

remarkable technical progress achieved

Thank you!

