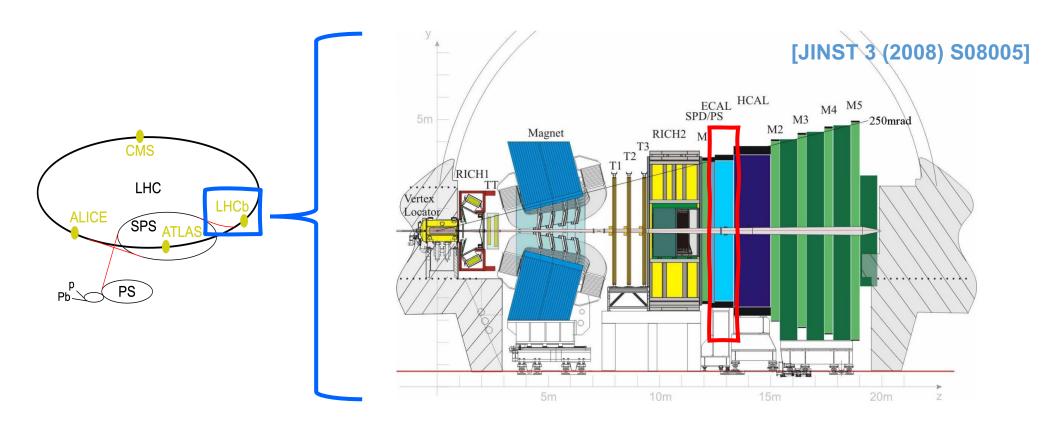


Performance of the GAGG crystal for LHCb Upgrade II ECAL

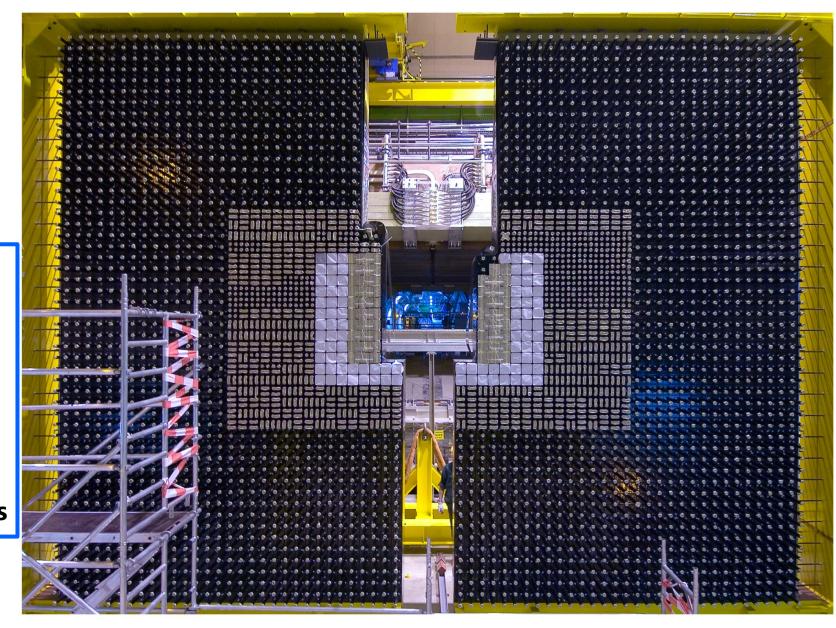
Zhiyang Yuan (Peking University)


on behalf of the China LHCb ECAL Upgrade II R&D group

Outline

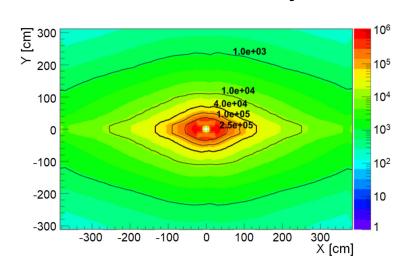
- **≻**Background and Motivation
- **≻**Performance of GAGG crystal
- **≻Summary and Outlook**

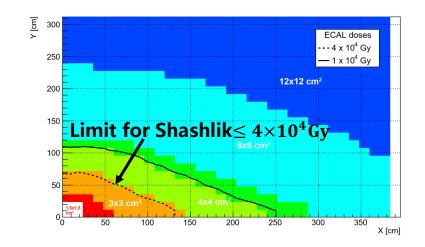
LHCb detector

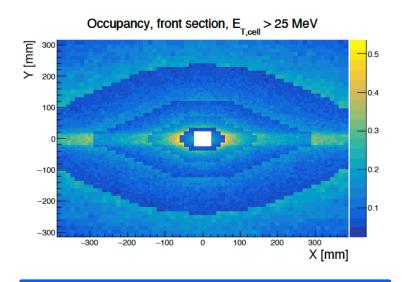

- > A single-arm forward region detector covering $2 < \eta < 5$
- > Designed for heavy flavour physics

ECAL: essential to all measurements involving neutrals and electrons

Current LHCb ECAL


- Shashlik technology with 4×4, 6×6 and 12×12 cm² cell size
- > Radiation hard up to 40 kGy
- > Energy resolution: $\sigma(E)/E \approx 10\%/\sqrt{E} + 1\%$
- > Large array of $\approx 50 \text{ m}^2$ with 3312 modules and 6016 channels




The current ECAL and motivation to upgrade

Upgrade II to be installed at LS4: operation at 1~2×10³⁴cm⁻²s⁻¹

Accumulated radiation dose [Gy] after 300 fb⁻¹

Radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq/cm² in the centre for $300 fb^{-1}$

New technologies required for the center

Pile-up mitigation crucial

- \rightarrow Timing O(10 ps) precision
- Increased granularity
- > longitudinal segmentation

Technologies for ECAL Upgrade II

SpaCal technology for inner region:

- > scintillating crystal fibres + W absorber
 - → Development of radiation-hard scintillating crystals
- $ightharpoonup 40 200 \, \mathrm{kGy}$ region with scintillating plastic fibres and Pb absorber
 - → Need radiation-tolerant organic scintillators

1

Advantages:

- > Used in the harsh irradiation environment
- Flexible technology for tuning radiation length, Moliere radius, and energy resolution

Scintillators for calorimeter

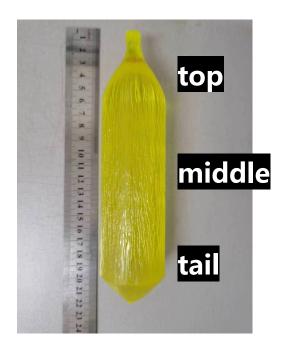
- Investigation of crystals properties
 - Good timing performances
 - Excellent energy resolution
 - Radiation tolerance

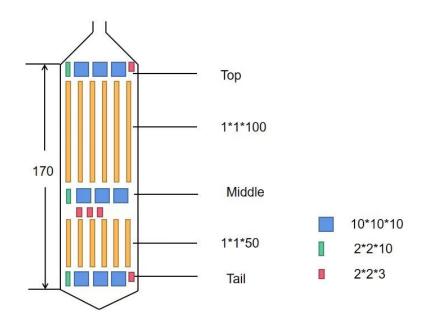
scintillator mirror light guide PMT pmt back Front back Beam direction

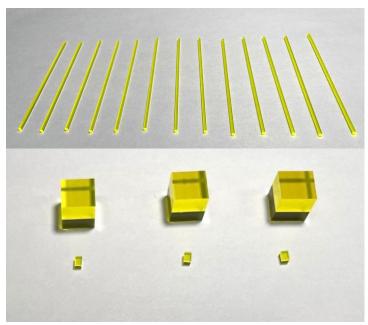
Furthermore:

longitudinal segmentation to improve timing resolution, reconstruction, particle identification and have less effect from radiation damage

Advantages of GAGG as Scintillator


- ✓ High Light Yield
- √ Fast decay
- ✓ Attractive time resolution to minimum-ionizing particles


	Density (g/cm ³)	Decay Time (ns)	Light Yield (MeV ⁻¹)	Deliquesce
NaI(Tl)	3.67	230	38,000	yes
BGO	7.17	300	8,000	no
LSO	7.4	47	25,000	weak
LuAG(Ce)	6.7	68	25,000	no
LuAG(Pr)	6.7	22	20,000	no
GAGG-F	6.6	50	30,000	no
GAGG-T	6.6	90	42,000	no
GAGG-HL	6.6	150	54,000	no


Samples

- > Naming scheme
 - Batch 1 (CN-Jan-2023): samples received in January, 2023
 - Batch 2 (CN-Apr-2023): samples received in April, 2023
 - ✓ Ingot 1 (CN-Apr-2023-1)
 - ✓ Ingot 2 (CN-Apr-2023-2)

- For the first characterization, we used only the $2\times2\times3~\text{mm}^3$ samples

Characterisation

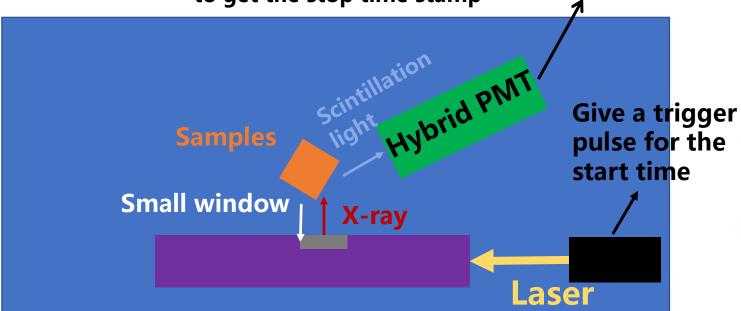
- > Photoluminescence spectrum
- >Transmission and absorbance

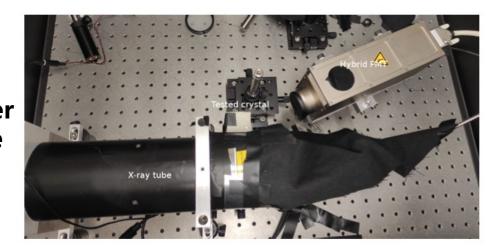
Optical properties

- >Scintillation kinetics
- >Light output
- **Coincidence time resolution (CTR) →**

Detector properties

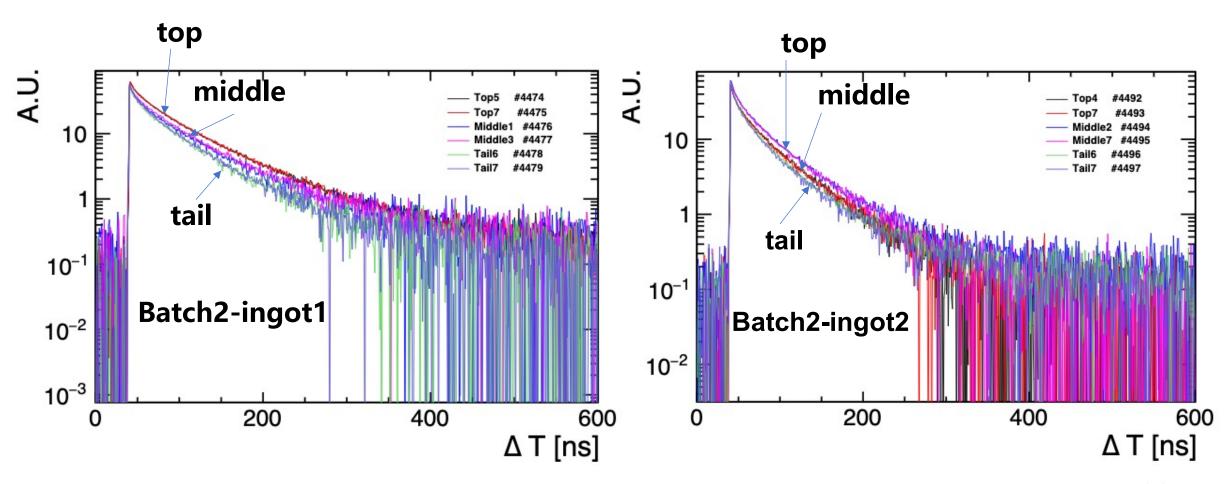
Part 1

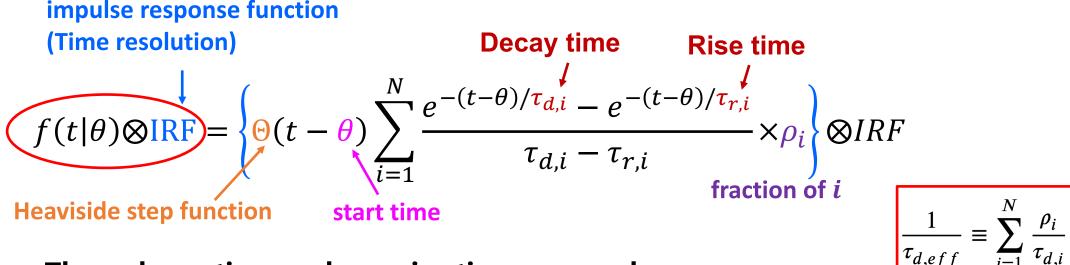

- > Scintillation kinetics
- > Light output



Scintillation kinetics: bench diagram

- ➤ Scintillation kinetics refers to the study of the time-dependent behavior of the scintillation light
 - Measure $\Delta T = \text{stop time } \text{start time}$
- > The bench:


CFD (Constant Fraction Discriminator) to get the stop time stamp


Scintillation kinetics: raw data

Decay time decreases from the top to the tail

Scintillation kinetics: fit method

\triangleright Fit ΔT distribution with

- Three decay time and one rise time are used

Scintillation kinetics: result

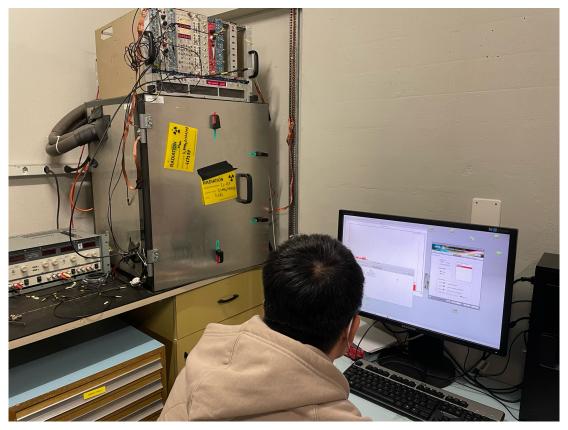
Decay time decreases from the top to the tail

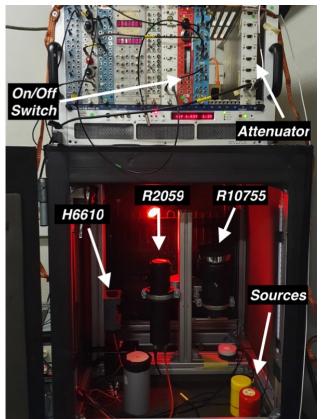
Table 2: Scintillation rise time (τ_r) , three decay times $(\tau_{d1}, \tau_{d2}, \tau_{d3})$, and relative intensities of the corresponding components R_1 , R_2 , R_3 . The uncertainty is 25 ps and 5%, for the rise and decay times, respectively. The first three rows in the table were taken from reference [3].

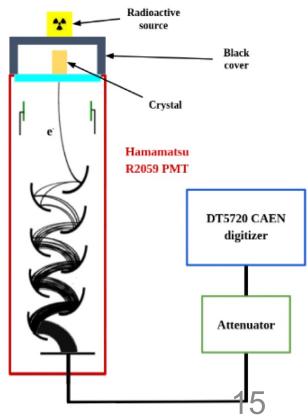
Decay time:
https://doi.org/10.1039/d2ma00626j

OWBI	ii the table were taken from i	cicionec	[0].					7. 10-10-10-10-1	2000 0000 0
G	AGG SIPAT	τ_r [ps]	$\tau_{\rm d1} \; [\rm ns]$	R_1 [%]	$\tau_{\rm d2} \; [\rm ns]$	R_2 [%]	$\tau_{\rm d3} \; [\rm ns]$	R_3 [%]	$\tau_{ m d,eff}$ [ns]
C8	&A CFAG	32	6.0	4.6	45	69.2	222	26.3	41
IL	M GAGG	37	4.0	3.2	40	56.4	238	40.4	40
Fo	omos GAGG	30	2.2	0.5	53	41.7	166	57.8	73
Ba	atch1 Top2 #4424	62	9.2	6.2	54	68.7	267	25.1	49
Ba	atch1 Top7 #4425	83	7.8	5.8	54	69.1	242	25.1	47
Ba	atch1 Middle7 #4426	47	6.2	5.0	46	64.5	149	30.5	41
Ba	atch1 Middle8 #4427	16	7.3	6.5	49	68.8	180	24.7	41
Ва	atch1 Tail3 #4428	24	5.0	6.9	43	69.2	188	23.9	36
Ba	atch1 Tail8 #4429	87	7.7	5.3 5.3 6.7	46	70.3	210	21.0	36
Ba	atch2-ingot1 Top5 #4474	23	7.0	8.7%	48	66.6	162	28.1	43
Ba	atch2-ingot1 Top7 #4475	27	7.1	5.3	46	62.9	134	31.8	43
Ва	atch2-ingot1 Middle1 #4476	28	6.4	6.7	47	70.5	172	22.8	37
Ba	atch2-ingot1 Middle3 #4477	21	4.9	4.6	43	65.4	147	30.0	37
Ва	atch2-ingot1 Tail6 #4478	26	5.4	6.7	42	70.5	206	22.9	33
Ba	atch2-ingot1 Tail7 #4479	27	4.8	6.8	40	69.1	134	24.1	30
Ba	atch2-ingot2 Top4 #4492	17	3.8	6.7	30	59.5	101	33.8	25
Ba	atch2-ingot2 Top7 #4493	7	4.5	8.3	34	67.8	139	23.9	25
Ba	atch2-ingot2 Middle2 #4494	21	5.0	8.6	36	69.1	134	22.4	26
Ва	atch2-ingot2 Middle7 #4495	10	5.3	8.1	36	65.2	128	26.7	28
Ba	atch2-ingot2 Tail5 #4496	11	3.6	8.8	29	66.0	124	25.3	20
Ba	atch2-ingot2 Tail6 #4497	10	4.1	10.4	30	67.6	138	22.0	20

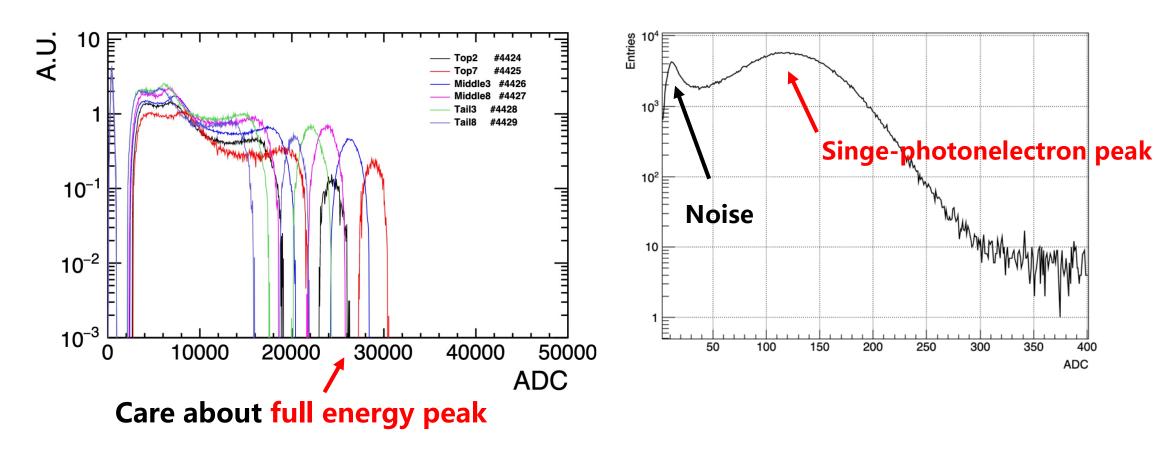
Decreasing


The uncertainty is 25 ps for rise time and 5% for decay time


Light output: bench diagram


> Definition:

- Number of photons per unit of energy deposited


> The bench:

Light output: fit method

$$Light\ output\ = \frac{peak_{full\ energy\ peak} \times ChS_{full\ energy\ peak}}{peak_{1e} \times ChS_{1e}} \times 10^{\frac{Att[db]}{20}} \times \frac{1}{Energy[MeV]} \times \frac{1}{QE}$$

Light output: result

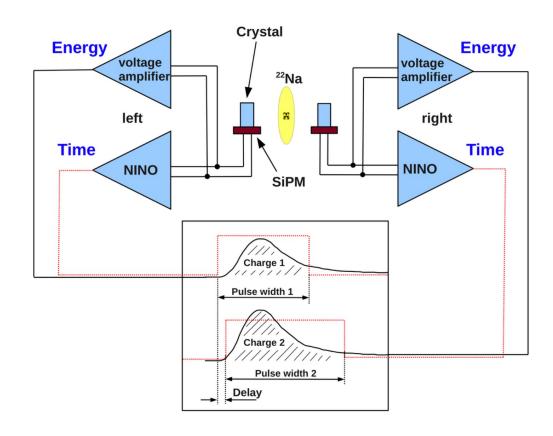
Table 1: Light yield of the smaller samples, upon 661.7 keV excitation with a 137 Cs gamma source. The relative uncertainty is $\pm 5\%$. The first three rows in the table were taken from reference [2].

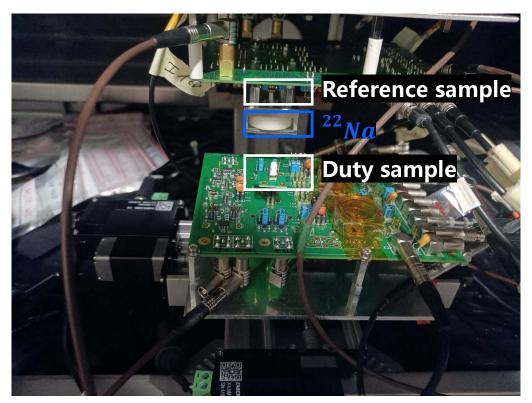
Light output: https://doi.org/10.1016/j.nima.2021.165231

➤ Light output decreases from top to the tail

	c chiece rows in the table were tal	den from reference [2].
	crystal	Light output [MeV ⁻¹]
	C&A CFAG	32140 ± 1610
	ILM GAGG	27900 ± 1400
	Fomos GAGG	37700 ± 1890
ĺ	Batch1 Top2 #4424	30810 ± 1540
	Batch1 Top7 #4425	35890 ± 1790
	Batch1 Middle3 #4426	32820 ± 1640
	Batch1 Middle8 #4427	29610 ± 1480
	Batch1 Tail3 #442	27660 ± 1380
	Batch1 Tail8 #4429	25290 ± 1260
	Batch1 Tail8 #4429 C/Batch2-ingot1 top5 #4474 Batch2-ingot1 top7 #4475 Batch2-ingot1 Middle1 #4476	27439 ± 1370
	Batch2-ingot1 top7 #4475	27739 ± 1390
	Batch2-ingot1 Middle1 #4476	25020 ± 1250
	Batch2-ingot1 Middle3 #4477	26930 ± 1350
	Batch2-ingot1 Tail6 #4478	21530 ± 1080
	Batch2-ingot1 Tail7 #4479	20650 ± 1030
	Batch2-ingot2 Top4 #4492	21320 ± 1070
	Batch2-ingot2 Top7 #4493	20190 ± 1010
	Batch2-ingot2 Middle2 #4494	21480 ± 1070
	Batch2-ingot2 Middle7 $\#4495$	22480 ± 1120
	Batch2-ingot2 Tail5 $\#4496$	15400 ± 770
	Batch2-ingot2 Tail6 $\#4497$	15600 ± 780

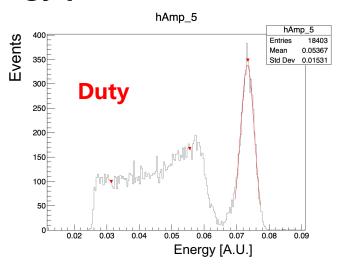
Decreasing

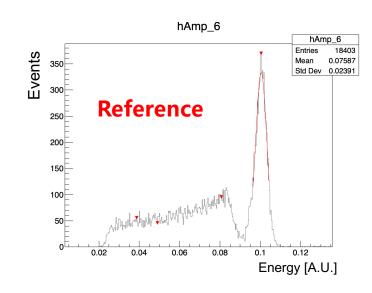


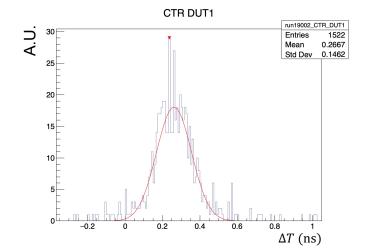

Part 2

Coincidence time resolution (CTR)

CTR: bench diagram


> CTR obtained by measuring the arrival time difference of the two 511 KeV gamma signal with leading edge discriminator



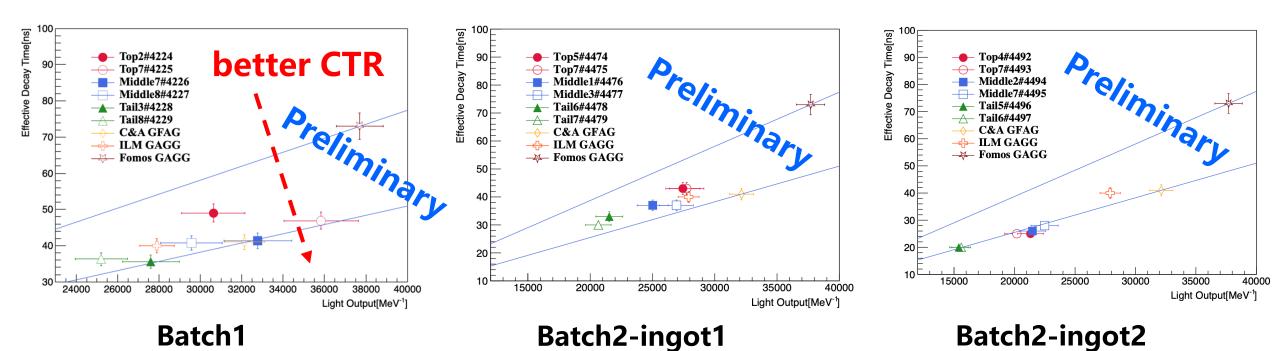

CTR: fit method

➤ Only full energy peak events used

> Gaussian used to fit the time difference

CTR: result

Table 3: CTR measurement results for the small samples. The first three rows in the table were taken from reference [2].

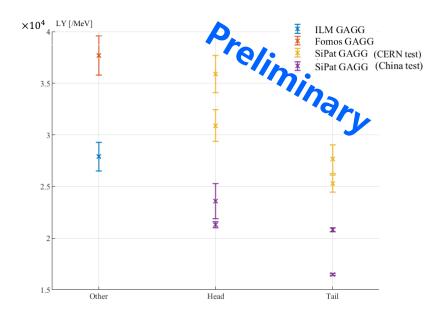

CTR: https://doi.org/10.1016/j.nima.2021.165231

> The CTR for different parts are close to each other

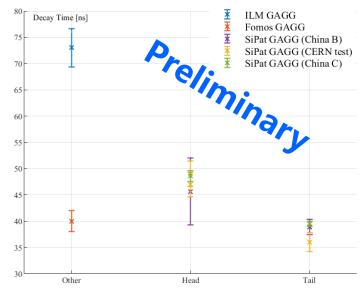
crystal	CTR [ps]
C&A CFAG	109 ± 3
ILM GAGG	116 ± 3
Fomos GAGG	129 ± 3
Batch1 Top2 #4424	121 ± 3
Batch1 Top7 #4425	120 ± 3
Batch1 Middle3 #4426	118 ± 3
Batch1 Middle8 #4427	134 ± 3
Batch1 Tail3 #4428	124 ± 3
Batch1 Tank #4429	113 ± 3
Batch2-ingot Plop5 #4474	118 ± 3
Batch2-ingot1 Top7/44475	123 ± 3
Batch2-ingot1 Middle1 94476	118 ± 3
Batch2-ingot1 Middle3 #4417	113 ± 3
Batch2-ingot1 T6 #4478	119 ± 3
Batch2-ingot1 T7 #4479	117 ± 3
Batch2-ingot2 Top4 #4492	117 ± 3
Batch2-ingot2 Top7 #4493	112 ± 3
Batch2-ingot2 Middle2 #4494	111 ± 3
Batch2-ingot2 Middle7 #4495	111 ± 3
Batch2-ingot2 Tail5 #4496	118 ± 3
Batch2-ingot2 Tail6 #4497	117 ± 3

Effective decay times vs. light output(LO)

> Timing performance for different part are close to each other



The blue lines represent constant ratios(CTR): moving along them grants the same decay time-light output ratio and thus same timing resolution


$$CTR \propto \sqrt{\frac{\tau_{decay}}{LO}}$$

Result Comparison

Light output

Decay time

China B: TCSPC method

China C: Average waveform method

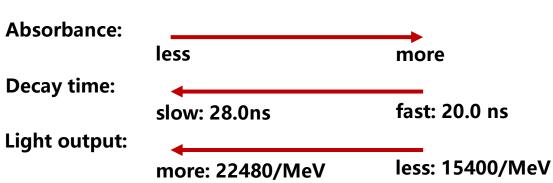
- > Setup a scintillator performance testing system @THU
- > Compared with CERN results for Batch 1 (CN-Jan-2023)
- > The results have a good consistency
- > Need to take different slight of different methods into account

Summary and Outlook

Chinese group has very close collabration with Chinese institution of scintlator.

Very good results have obtained - High-quality large samples

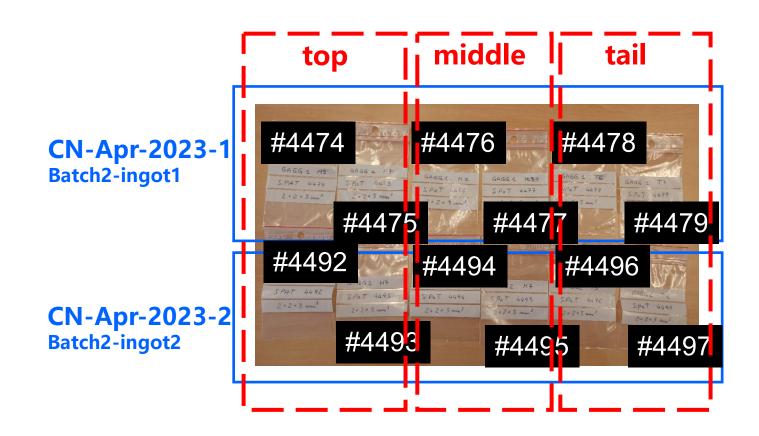
For current GAGG samples:


- > Light output reaches ~15000 per MeV
- > Decay time reaches the level of ~20 ns
- Competitive with the GAGG from C&A, ILM, and Fomos

Ongoing R&D has the Chinese group optimistic about results.

> The Chinese scintlator institution's improvement direction is clear, with hopes to reach the target in upcoming crystal batches.

The test platform has been setup in China to improve the progress of R&D.



Thanks for your attention!

Back up

Samples

Samples (cont.)

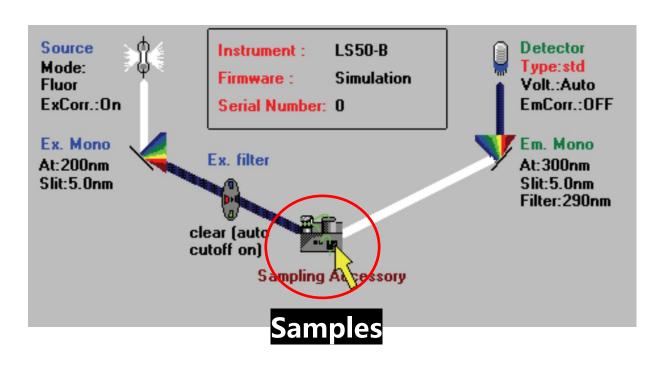
> Numbering correspondence

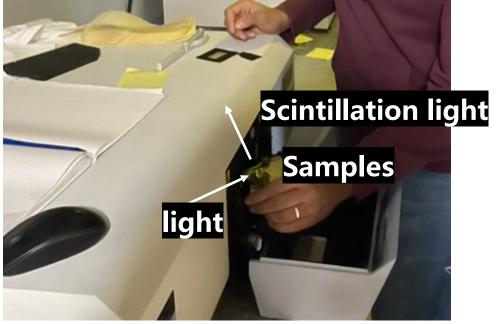
Sipat	CERN
GAGG1 H5 $2\times2\times3~\text{mm}^3$	Top5 #4474
GAGG1 H7 $2\times2\times3~\text{mm}^3$	Top7 #4475
GAGG1 M1 $2\times2\times3$ mm ³	Middle1 #4476
GAGG1 M3 $2\times2\times3$ mm ³	Middle3 #4477
GAGG1 T6 $2\times2\times3~\text{mm}^3$	Tail6 #4478
GAGG1 T7 $2\times2\times3~\text{mm}^3$	Tail7 #4479

Batch2-ingot1

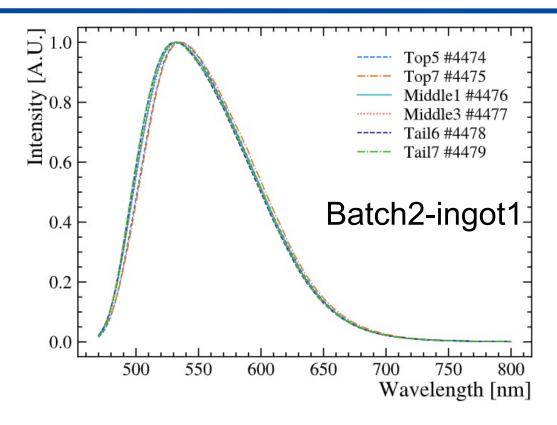
Sipat	CERN
GAGG2 H4 $2\times2\times3~\text{mm}^3$	Top4 #4492
GAGG2 H7 $2\times2\times3~\text{mm}^3$	Top7 #4493
GAGG2 M2 $2\times2\times3$ mm ³	Middle2 #4494
GAGG2 M7 $2\times2\times3$ mm ³	Middle7 #4495
GAGG2 T5 $2\times2\times3$ mm ³	Tail5 #4496
GAGG2 T6 $2\times2\times3$ mm ³	Tail6 #4497

Batch2-ingot2

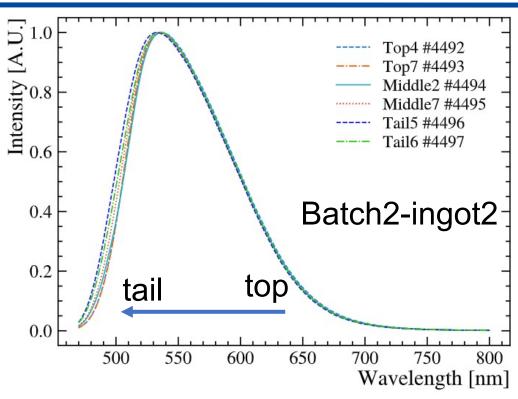


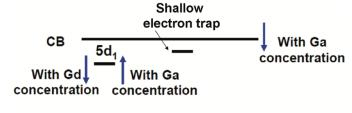

Photoluminescence spectrum

- **▶ Perkin Elmer LS55 Luminescence spectrometer**
- > The sample is excited with 450nm light
- > Scan the wavelength of scintillation light

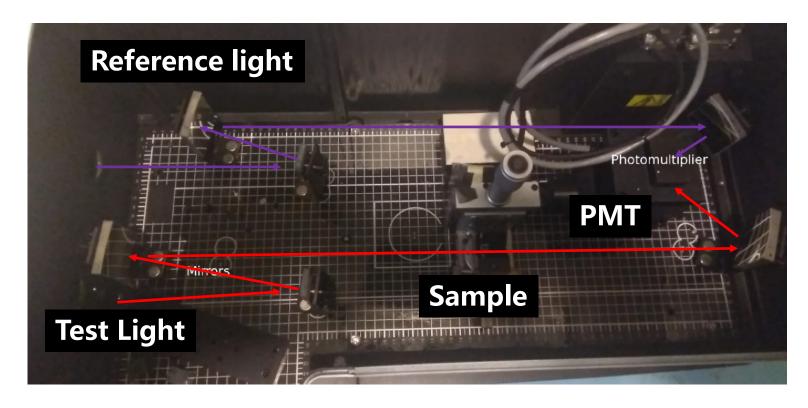



Perkin Elmer LS55 Luminescence spectrometer




Photoluminescence spectrum

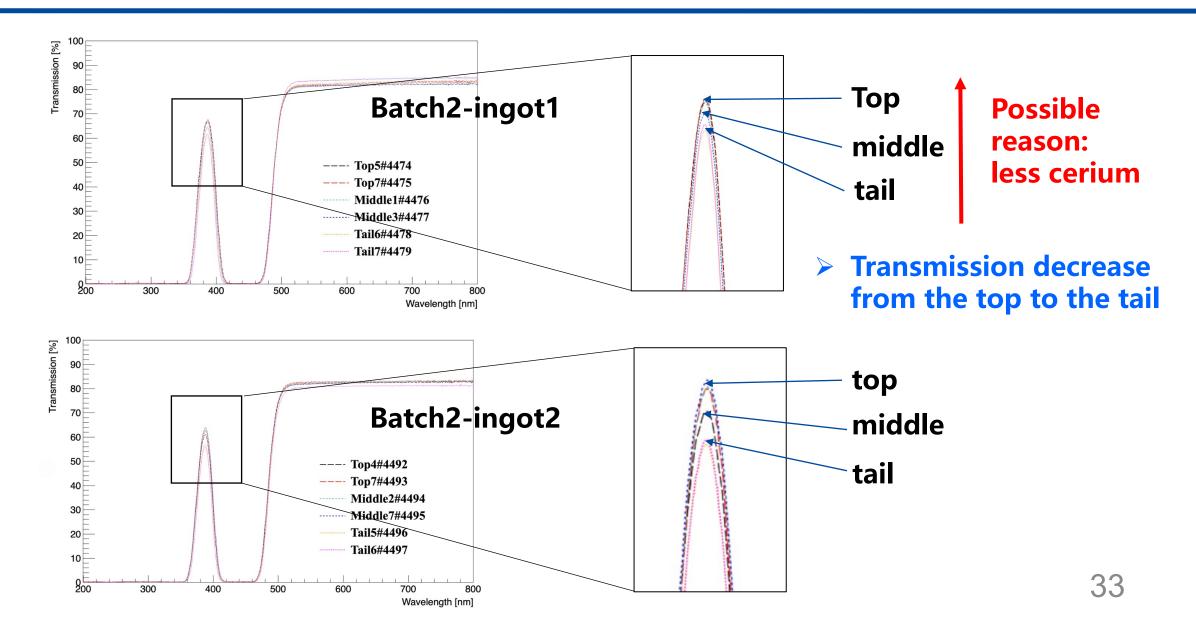
Probably larger Ga concentration from the top to the tail

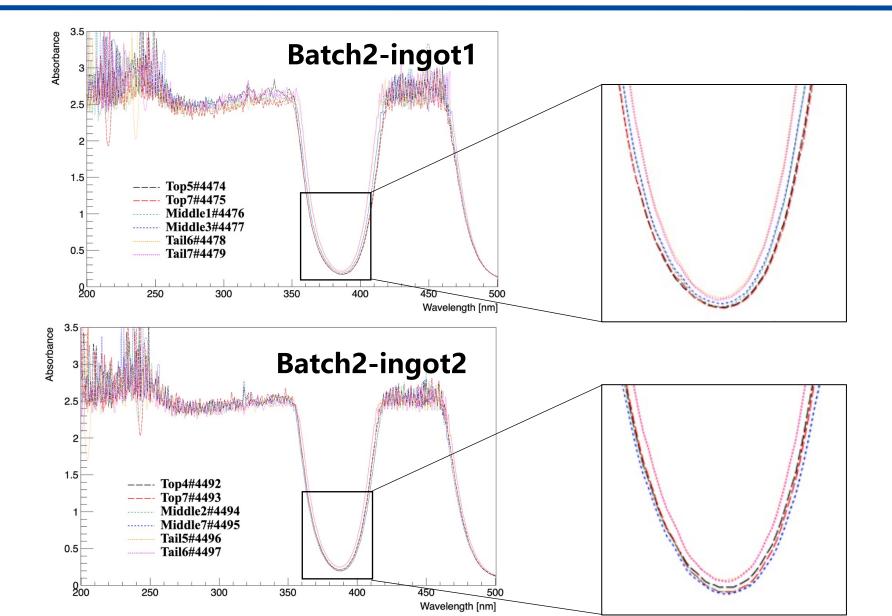

Transmission (T) and Absorbance (A)

- > Measured with Perkin Elmer Lambda 650 spectrophotometer
- > Transmission

$$T=\frac{P_1}{P_2}$$

> Absorbance

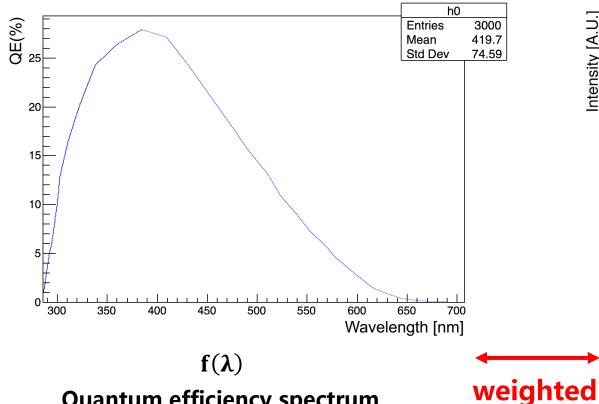

$$A = -\log_{10} T$$

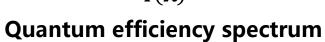

 P_2

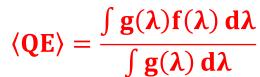
 P_1

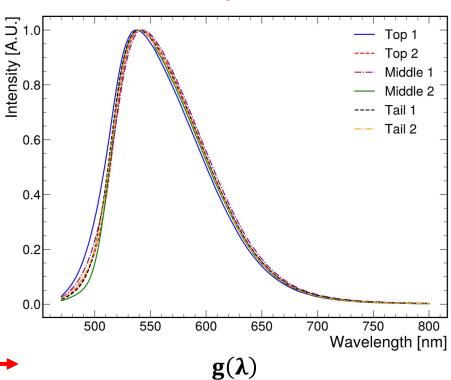
Transmission (T)

Absorbance (A)


$$A = -\log_{10} T$$

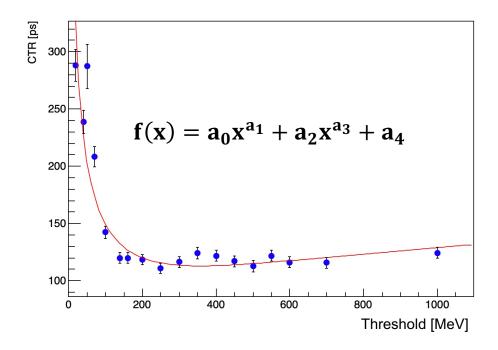

Similar results for absorbance


Quantum efficiency (QE)


> Definition:

$$QE = \frac{\text{# of photoelectrons}}{\text{# of photons}}$$

Photoluminescence spectrum


CTR: fit method

- > Threshold scan performed to the optimal setting
- > CTR of reference sample is measured firstly

$$\begin{aligned} \text{CTR}_{meas1} &= \sqrt{\text{DTR}_{ref1}^2 + \text{DTR}_{ref2}^2} \\ &\text{Detector time resolution} \end{aligned}$$

> CTR of duty samples are measured with

$$CTR_{dut} = \sqrt{2} \times \sqrt{CTR_{meas2}^2 - DTR_{ref}^2}$$
78 ps

