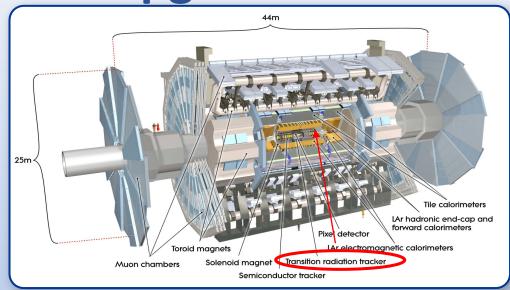
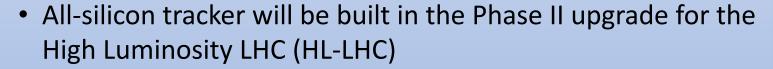
Irradiation test of ABCStar ASICs in CSNS

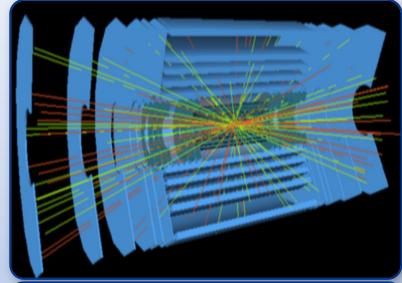
Shaogang Peng

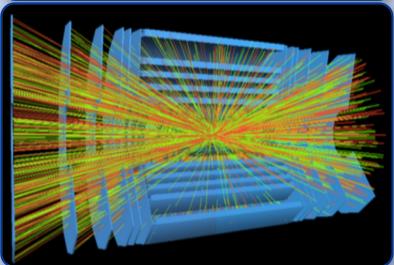
On behalf of ATLAS ITk Chinese group

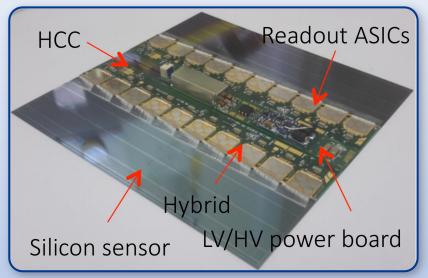

CLHCP 2023, Shanghai

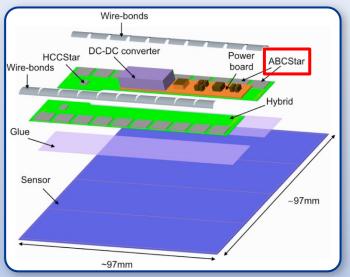


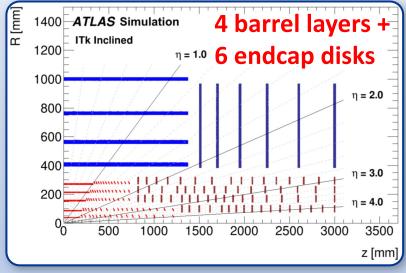
Outline


- Introduction
- ABCStar V1 chip, SEEs and TID
- CSNS irradiation
- Results from proton tests
- Preliminary conclusion

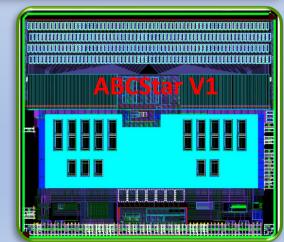

Phase II upgrade of ATLAS Inner Tracker for HL-LHC

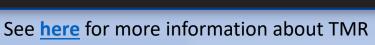

 The new detector will maintain or improve the current ATLAS tracking performance (ITk) to cope with the irradiation levels of the HL-LHC

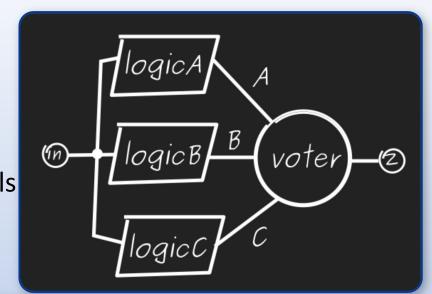


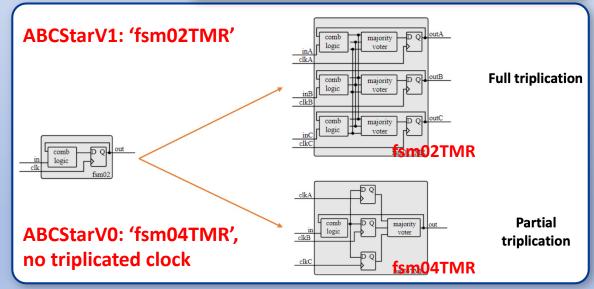


Inner Tracker (ITk)


IHEP/THU contribute to the barrel of strip detector

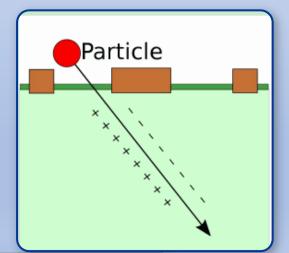

Strip detector comparisons	Current Inner strip tracker (SCT)	Future ITK strip tracker
Radial distance	300-560mm	400-1000mm
Channels	~8 millions	~100 millions
Modules	4 thousands	~20 thousands (165m² silicon)

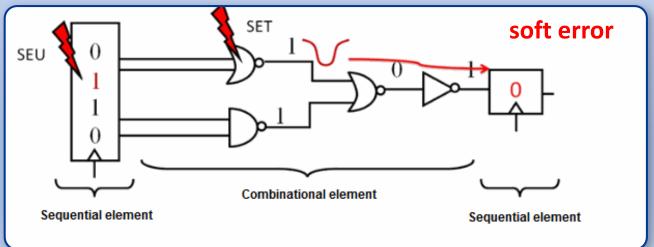



ABCStar V1 specification

- $8 \text{ mm} \times 7 \text{ mm}$
- Fabricated using 130 nm CMOS technology
- Read out signals from 256 sensor strips by binary readout channels
- Triple Modular Redundancy (TMR)
 - Protect against SEEs

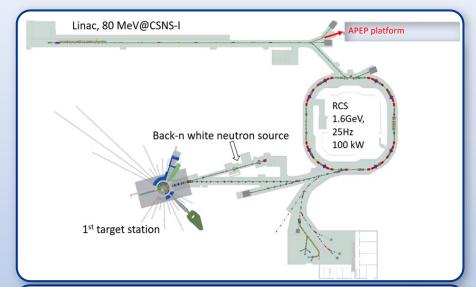
TMR Variants					
		Triplicated Registers	Triplicated Registers + clock skew	Full TMR	
Resoures (power, area)	FF	<i>x3</i>	<i>x3</i>	<i>x3</i>	
	logic	x1	x1	<i>x3</i>	
	voters	<i>x1</i>	x1	<i>x3</i>	
	clocks	x1	<i>x3</i>	<i>x3</i>	
Speed		+voter delay	+voter delay +clock skew	+voter delay	
Protection		•••	•••		

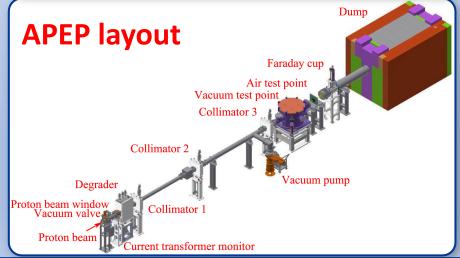




SEEs

- Single Event Effects (SEEs) electrical disturbance of an electronic device interacts with high-energy particle
 - Single Event Upset (SEU) affects both dynamic and static memory registers storing logic states by collecting charge → voltage change → bit flips happen
 - Single Event Transient (SET) a transient pulse produced by a charged particle in a circuit
 - → temporal disorder → bit flips happen




Total Ionzing Dose (TID)

- An increase in digit current when chips exposed to ionizing doses of radiation
- Up to approximately 1 Mrad
- Continued exposure gradually reduces the current back towards normal value
- Refers to the cumulative amount of radiation
- The sensitivity of microelectronics to TID can impact reliability and functionality

Proton beam at China Spallation Neutron Source (CSNS)

- We utilize the Associated Proton Experimental Platform (APEP platform) to have irradiation on ABCStar chips at the end of the CSNS linac
- To validate the performance of ABCStar ASICs V1 and V0, irradiated 2 campaigns:
 - May 2022: 80MeV, one V0 chip
 - April 2023: 20MeV ~ 80MeV, four V1 chips
- Beam spot → 20mm × 20mm
- Flux: $1.16 \times 10^7 \rightarrow 2.66 \times 10^9 \text{ p/cm}^2/\text{s}$
- Fluence: $1.24 \times 10^{14} \rightarrow 3.63 \times 10^{14} \text{ p/cm}^2$
- Dose: ~ 40 Mrad
- ~ 170 hours totally

ABCStar beam test

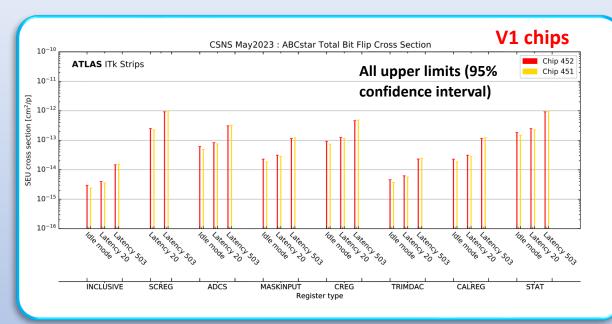
- ABCStar V1 chips under the same energy undergo different running scenarios
 - Clock disable (disabling one of the triplicated clocks)
 - Glitch Filter(delay incoming signal 1.3 ns)
 - BCID(one mode of filling the ABCStar's event data)
 - More realistic approximation of real event data
 - Idle(repeating binary data "0110" instead of "0000")
 - Latency 20/503(the data is stored in the ABCStar buffer for a period of time)
- Why we set diffent energy to have irradiation?
 - Linear Energy Transfer (LET) is not same at different energies

Cross section (XS) of SEU

$$\sigma_{SEU} = \frac{n_{0\to 1} + n_{1\to 0}}{\int d\phi}$$

 $n_{0\to 1}$ and $n_{1\to 0}$ are the number of $0\to 1$ and $1\to 0$ bit flips

The cross section is normalized to the total integrated fluence

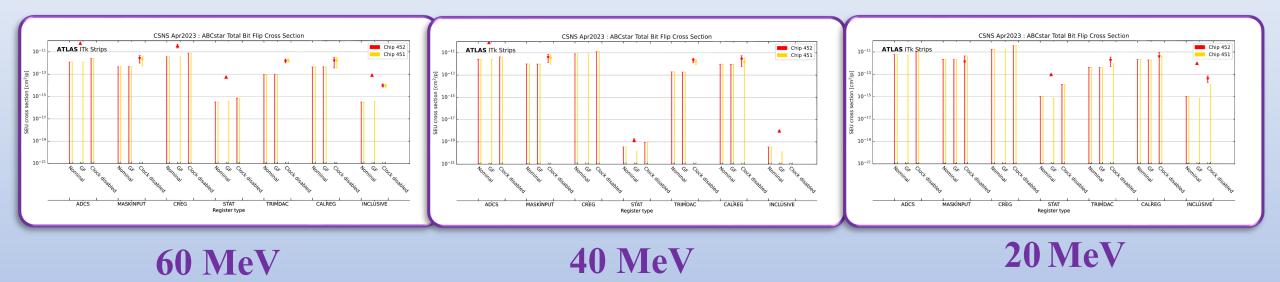

$$\Delta \sigma_{SEU} = 1.96 \times \frac{\sqrt{n_{0\to 1} + n_{1\to 0}}}{\int d\phi}$$

In the case of zero measured SEUs, 95% upper confidence bound is calculated

by assuming 3 SEUs

(Poisson statistics distribution)

SEE XS of registers with different modes



80 MeV 80 MeV

- If the cross section dependence on the data latency in buffer? No
- TMRs do enhance the irradiation hardness of ABCStar chips to SEE

SEE XS of registers at different energies

- Bit flips still happen with a certain probability when lower energy (20MeV)
- LET result in variations of the XS at different energies
- XS does not exhibit a clear pattern of variation with energy for the same register under the same mode

TID results

(1.8Mrad, 80mA) (1.40Mrad, 121.7mA) CSNS Apr 2023: FMC1701 IDDD All Chips CSNS Apr2023: FMC1701 IDDD All Chips Chip 452 (pre-irradiated) Chip 456 (pre-irradiated) 120 Chip 451 (pre-irradiated) Chip 454 (pre-irradiated) 70 100 -(1.38Mrad, 104.55mA) 60 [WM] QQQI DDD [mA] 30 40 20 dose rate = 146.5128(rads/s)dose rate = 293.0256(rads/s)80 MeV 20 dose rate=293.0256(rads/s) 10

Different dose rate is utilized at the same energy

20

Dose [Mrad]

30

40

10

• TID bump appears at around 1 Mrad as expected and pertains to the irradiation history

20

5

10

Dose [Mrad]

15

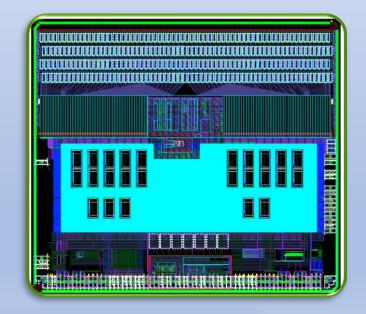
Preliminary conclusion

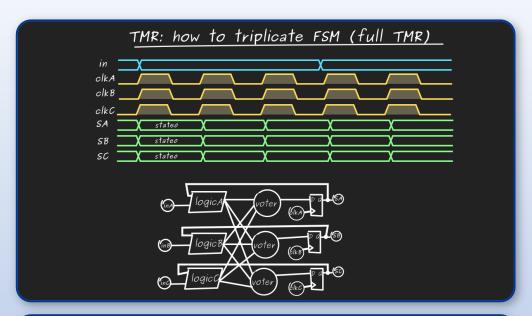
- SEE irradiation test about ABCStars have been performed at the APEP in CSNS.
- ABCStar V1 in which more TMR are implemented are more radiation hard as expected.
 - Register, logic of data transition, clocks
- The analysis of SEE cross section in physics packets is ongoing

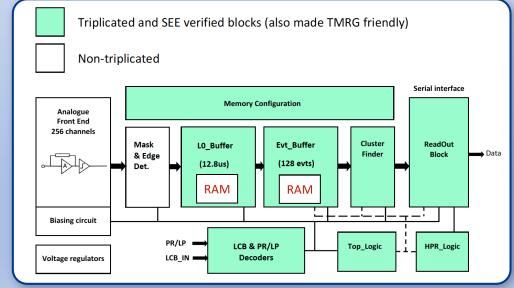
Thank you!

backup

- The binary outputs produced by each front-end channel are captured and retained in the chip's Level 0 Buffer(LO_Buffer)
- The ABCStar architecture supports a multi-trigger data flow
 - L0 trigger (L0A, with L0tag added): event data from the beam crossing synchronous pipeline (L0Buffer) is copied to the EventBuffer memory
 - LP (Low Priority) trigger: a first asynchronous readout request with priority and low latency for fast processing of track information
 - PR (Priority Request) trigger: A second asynchronous readout request intended for a global readout


ABCStar V1(compared to V0) new modes


- SEU counter (8-bit)
 - Increases when a SEU is encountered in the registers: ADCS0, ADCS1, ADCS2, CREG0, CREG1
 - Not indicate register errors, but the occurrence of an upset and a subsequent corrective action
- Clock disabling
 - Disabling one of the triplicated clocks effectively increases the cross-section by a factor of 2
- Glitch filter
 - Delay a copy of the incoming signal by 1.3 ns and compares the copy with the original
 - The signal is not propagated further if they do not match
- Idle pattern
 - Programmable pattern (repeating "0110", default "0000")
- Latency setting(Latency 20/503, more SEUs)
 - Data is stored for some period of time awaiting a trigger
- Programmable multiplexer
 - Allows external output pin ("TESTOUT") to reflect internal signals inside ASICs
- Packet structure
 - 68 bits
 - Difference exists between V1 and V0, see here



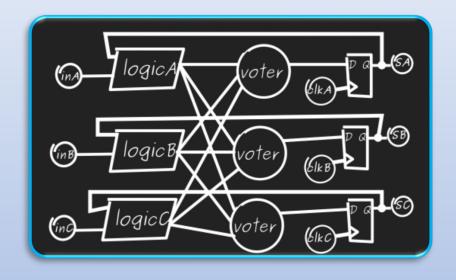
ABCStar V1 specification

- 8 mm × 7 mm
- Fabricated using 130 nm CMOS technology
- Designed to read out signals from 256 sensor strips through binary readout channels
- Triple Modular Redundancy (TMR)

ABCStar beam test

Cross-section (XS) of SEE

XS = (total number of occurences) / (total integrated fluence)


• For a nonzero number of occurences, a 95% confidence interval can be determined as follows:

 $\sigma(XS) = 1.96 \times \sqrt{\text{(total number of occurences)}} / \text{(total integrated fluence)}$

Register read XS

- Registers store configuration and counters
 - V1 chips have fully triple modular redundancy (TMR) (mitigate SEUs)
 - V0 chips don't have fully TMR
- Bit flips can be counted by comparing the expected register bits with the measured during repeatly readout

More information about TMR see here, the image is from Stefan Biereigel and Szymon Kuli

