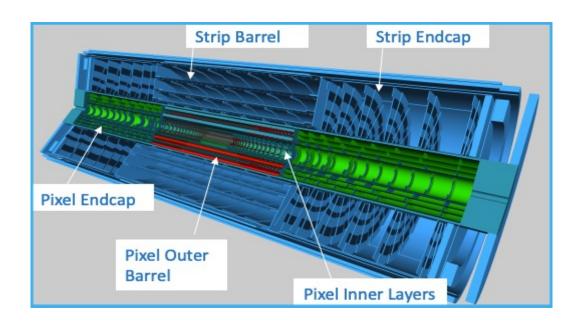




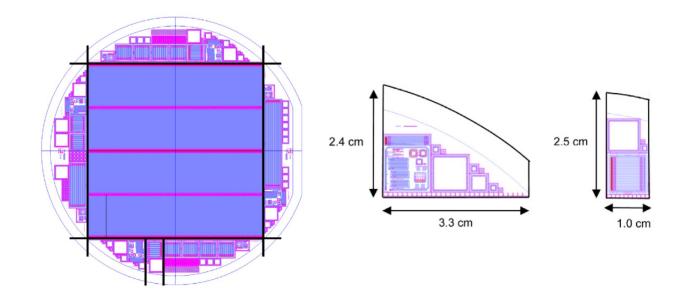
A study on the feasibility of CSNS becoming an ATLAS ITk sensor QA irradiation site

Speaker: Hui Li 李晖 On behalf of China ATLAS ITk Group


- Introduction
- ITk Quality Assurance strategy
- CSNS irradiation
- Measurements
- Conclusion

Introduction

- Nearly 22,000 large area silicon strip sensors will be produced by Hamamatsu Photonics K.K. (HPK) for HL-LHC upgrade
- In order to monitor these sensors production for the ATLAS Inner Tracker (ITk), a Quality Assurance (QA) strategy has been prepared
- QA aims to flag the issues due to the fabrication process
- A detailed irradiation and testing plan has been prepared by the ATLAS-ITk Collaboration

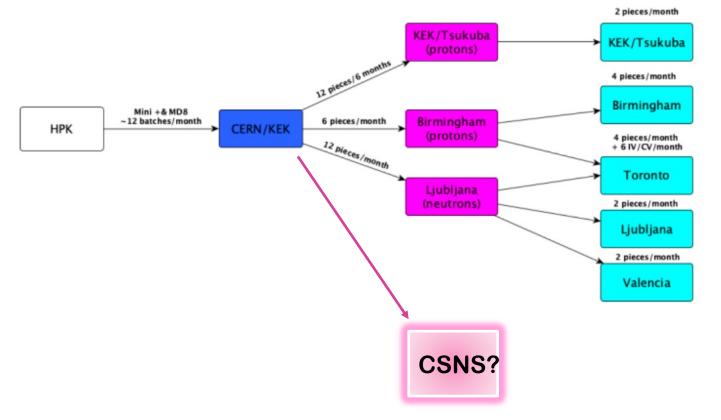


ITk Quality Assurance strategy

The main devices that are used for QA purposes are the miniature strip sensors with 1×1 cm² dimensions; the monitor diodes of 8×8 mm² size (MD8); and the ATLAS test chip.

Dicing scheme for the wafers (left), Testchip & MD8 (center) and Mini & MD8 (right).

Test samples


- For Mini sensor, focus on CCE (charge collection efficiency) at 1.6x10¹⁵ neq/cm²
- For MD8, focus on V_{FD}. MD8 is used for IV and CV measurements

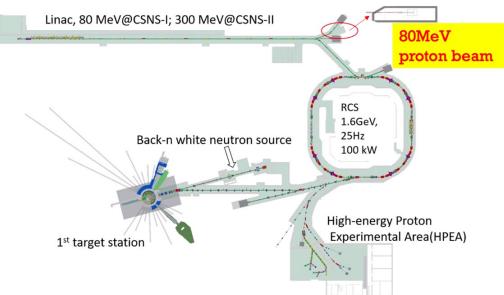
ITk Quality Assurance strategy

Mini & MD8

The feasibility needs to be verified first!

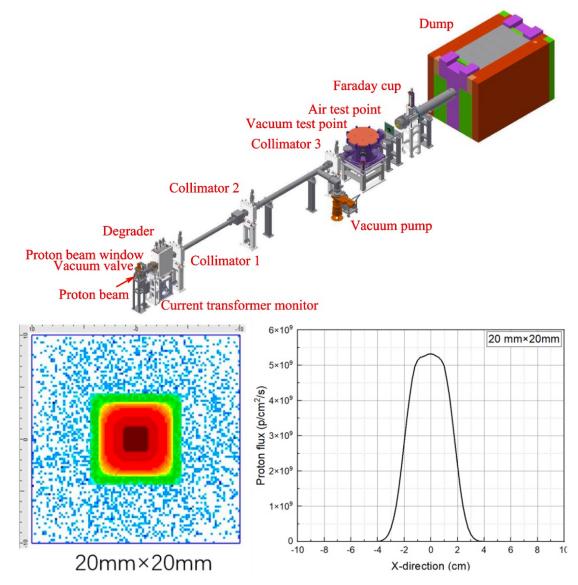
Planned irradiation

- All QA pieces are first delivered to CERN and then distributed to each irradiation site
- The ITk strip sensors need to endure a high level of radiation. They're designed to handle around a neutron-equivalent fluence of 1.6×10^{15} neq/cm²
- After irradiation, the QA pieces are sent to test sites for measurements


China Spallation Neutron Source

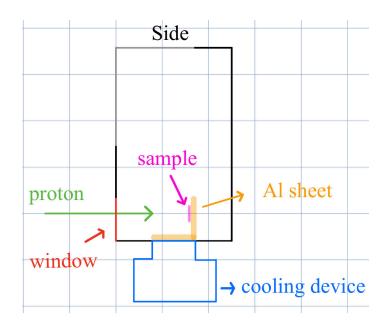
CSNS

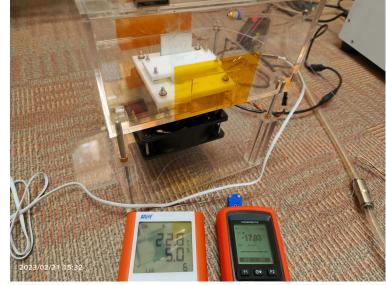
- Located in Dongguan city
- It is the first pulsed neutron source facility in China.
- It now includes:
 - a powerful linear accelerator and a rapid circling synchrotron
 - a target station and three Phase I neutron instruments
- We use the Associated Proton Experiment Platform (APEP) in CSNS to irradiate the test samples. APEP locates at the end of the CSNS linear accelerator



Associated Proton Experiment Platform

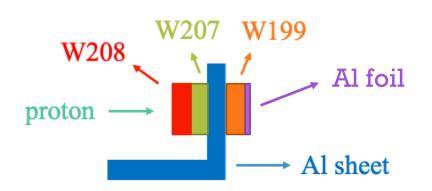
- Energy range: 10-80 MeV
- > We use the 80 MeV proton beam energy.
- Beam size: 10mm x 10mm ~ 50mm x 50mm
- ➤ We use a 20 mm × 20 mm (flat top of flux) beam spot.
- The flux intensity at the sample location for a beam spot of this size is about 3.04 \times 10⁹ p/cm²/s
- It would take around 102.3 hours to reach 1.6×10^{15} neq/cm²




Low temperature irradiation setup

QA irradiation should be conducted at less than -15°C to avoid the sample annealing. To meet this requirement:

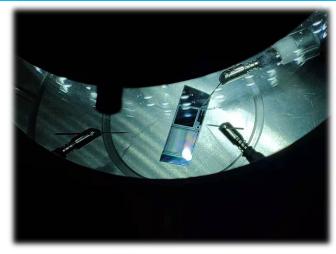
- ✓ Temperature (T ~ -15 °C) control: Semiconductor refrigeration sheet + aluminum sheet
- ✓ Humidity (RH ~ 5%) control: Air compressor + dryer
- ✓ **Temperature monitoring:**Thermocouple + Thermometer
- ✓ Humidity monitoring:
 Electronic hygrometer

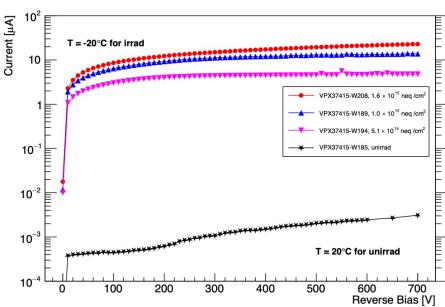

CSNS irradiation

	beam energy [MeV]	proton fluence [p/cm ² /s](10mA)		total proton fluence[p/cm ²]	neutron fluence[neq/cm ²]	run time[h]
Target	80	3.04E+09	1.427	1.12E+15	1.60E+15	102.3

The neutron equivalent fluence measured from Al foil behind W199 is 1.64E+15 neq/cm², calculated by beam simulated parameters is 1.47E+15 neq/cm².

proton

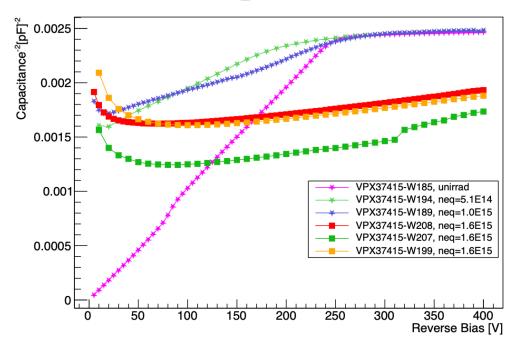

The temperature of the Al sheet is -15.4 °C The humidity of the cold box $\sim 5\%$



- For unirradiated diodes, the current should not exceed $0.1 \mu A/cm^2$ at 500 V (RH < 20%)
- ✓ The diodes should show a leakage current of less than 0.1 mA/cm² at 500 V (-20 °C) after irradiation to 1.6 × 10¹⁵ neq/cm²
- ✓ Onset of micro-discharge should be at V_{MD}>500 V for both unirradiated and irradiated diodes

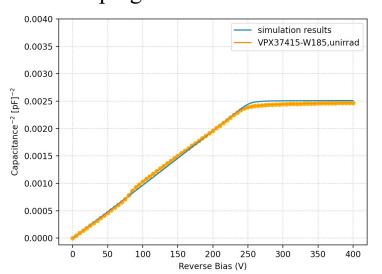
$$\frac{\Delta I}{V} = \alpha \Phi_{eq}$$
 ΔI in this formula is corresponded to 20 °C Temperature affects current $\Phi_{eq} = 1.6 \times 10^{15}, \ \alpha = 4 \times 10^{-17}, \ V = 0.0165 \ cm^3$ when T = -20 °C, $\Delta I \sim 21 \ uA$ The result looks reasonable

IV for irrad and unirrad



An LCR meter (Keysight E4980A) is used for CV test.

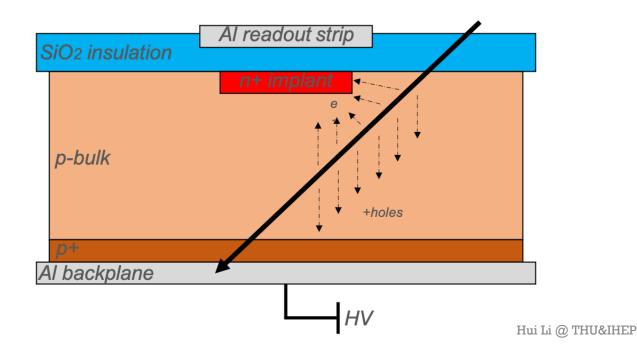
✓ For unirradiated diodes, the depletion voltage (V_{FD}) should be less than 350 V

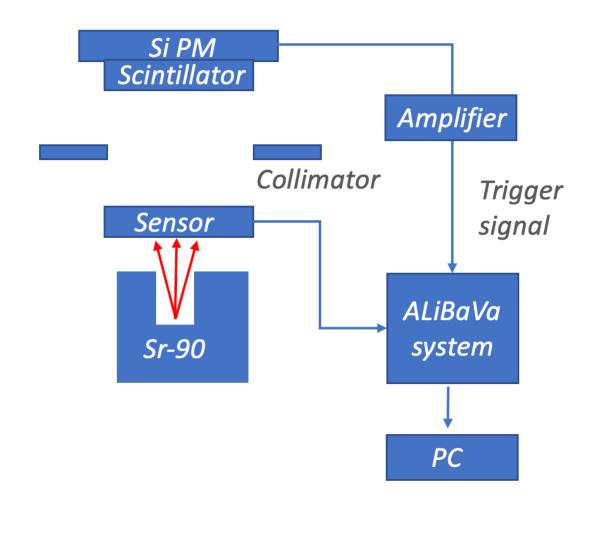


Simulation

RASER (RAdiation SEmiconductoR):
Device and Detector simulation
https://raser.team/about

- Active area of MD8: 0.74×0.74 cm²
- Sample active thickness: 300 μm
- n⁺ implants in p-type bulk
- Bulk doping concentration: 4.0×10^{12} cm⁻³



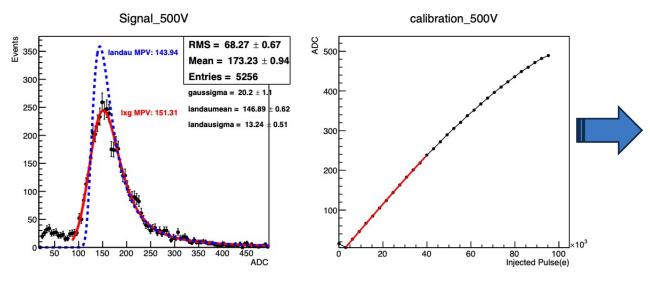


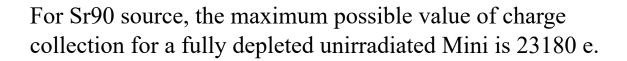
Charge collection

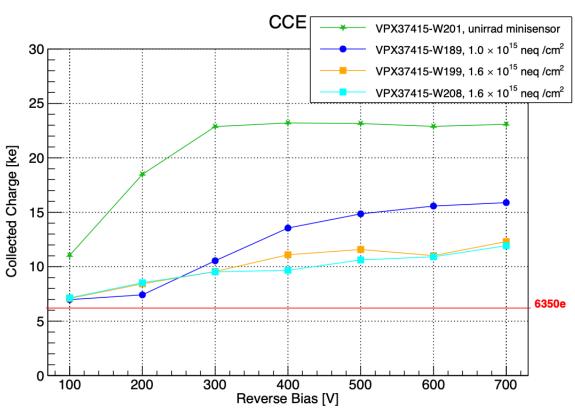
- Radioactive source: Sr-90
- **Trigger:** scintillator and silicon photomultiplier
- Sensor to be tested: ATLAS18LS miniature sensor
- Read out system: ALiBaVa system

CCE test

ALiBaVa daughter board, wire bonding with mini sensor




ALiBaVa system



- Landau convolutional Gaussian distribution of signal spectrum
- Obtain the ADC value of the Landau peak
- Combined with the calibration to get the collected charge

At 500 V, the CCE of data points for unirradiated mini sensor ~23 ke, for 1.0×10^{15} neq/cm² ~15 ke, for 1.6×10^{15} neq/cm² ~11 ke. The collaboration has established a minimum threshold of 6.35 ke

Conclusion

- Several proton irradiations have been performed at the Associated Proton Experiment Platform (APEP) in China Spallation Neutron Source (CSNS).
- We tested ITk strip Mini and MD8 sensors with controlled temperature (-15.4 °C) and humidity (5%) during irradiation.
- The fluence points used are from 5.1×10^{14} , 1.0×10^{15} , and 1.6×10^{15} neq/cm².
- The post-irradiation measurements (IV, CV, and CCE) are done, under the cold temperature (-8° C), after annealing for 80 minutes at 60° C.
- Test results are consistent with other sites, which means CSNS could be a proton irradiation site for ATLAS ITk sensor QA, after formal site qualification.

Thank you!

Back up (Radiation)

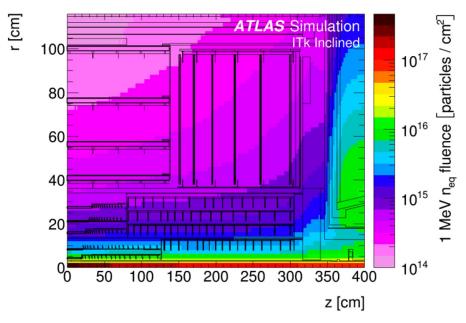


Fig1: The fluence and dose distributions for the ITk layout, use the 1 MeV neutron equivalent flux.

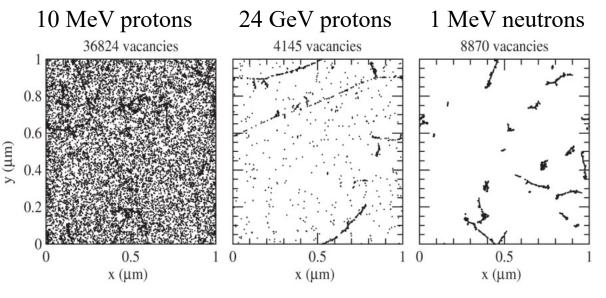
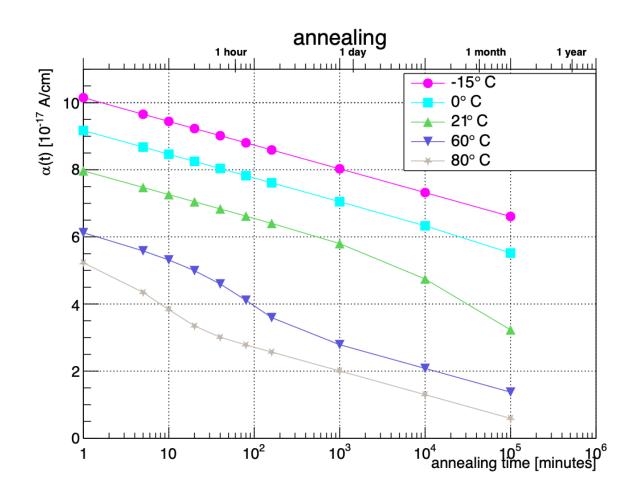


Fig2: Initial distribution of vacancies. The plots are projections over 1 μ m of depth z and correspond to a fluence of 10^{14} cm²

Layer	Radius [mm]	Maximal Fluence [n _{eq} /cm ²]	Maximal Dose [MRad]
Strips			
Long Strips	762	3.8×10^{14}	9.8
Short Strips	405	7.2×10^{14}	32.5
End-cap	385	1.2×10^{15}	50.4

Table: Overview on maximal fluences and doses. The values including a safety factor of 1.5.



Back up (Annealing)

Annealing

- At high temperatures, the diffusion of defects will happen. This process is called annealing.
- \bullet a is the current-related damage rate.
- The average α after a standard annealing scenario of 80 minutes at 60° C is 4 \times 10⁻¹⁷ A/cm.
- The collaboration uses the parameter above for annealing, to get to the minimum of the non ionizing energy loss (NIEL) damage in the bulk.

Back up (Annealing)

$$\frac{\Delta I}{V} = \alpha \Phi_{eq}$$

 ΔI : leakage current saturation value

Φeq: 1MeV neutron equivalent fluence

V: normalizes for a given volume

α is called the current-related damage rate

$$\alpha = \alpha_0 + \alpha_I e^{-\frac{t}{\tau_I}} - \beta \cdot \ln \frac{t}{t_0} \qquad \alpha_0 = -(8.9 \pm 1.3) \cdot 10^{-17} \,\text{A/cm} + (4.6 \pm 0.4) \cdot 10^{-14} \,\text{AK/cm} \cdot \frac{1}{T_\alpha}$$

$$\alpha_I \sim 1.25 \cdot 10^{-17} \text{ A/cm}, \ \beta \sim 3 \cdot 10^{-18} \text{ A/cm}$$
 $t_0 = 1 \text{ min}$

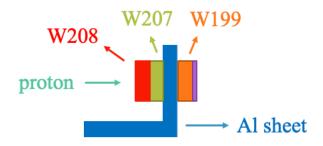
[1]
$$\frac{1}{\tau_I} = k_{0I} \times \exp\left(-\frac{E_I}{k_B T_a}\right) \quad \text{with} \quad \begin{array}{l} k_{0I} = 1.2^{+5.3}_{-1.0} \times 10^{13} \, \text{s}^{-1} \\ E_I = (1.11 \pm 0.05) \, \text{eV}. \end{array}$$
 This equation is very sensitive to E

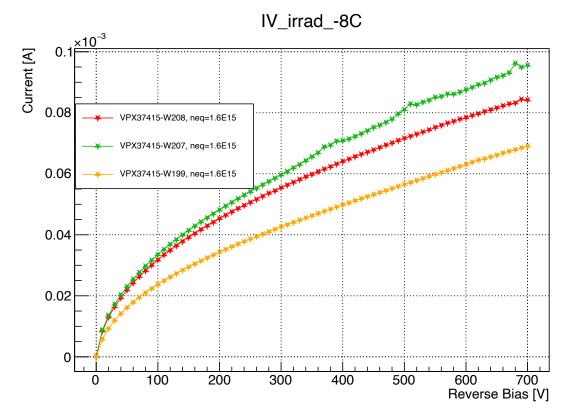
$$k_{0I} = 1.2^{+5.3}_{-1.0} \times 10^{13} \,\mathrm{s}^{-1}$$

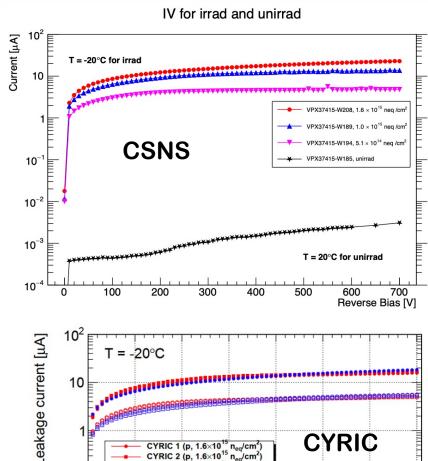
 $E_I = (1.11 \pm 0.05) \,\mathrm{eV}.$

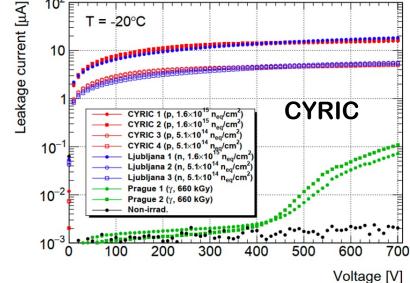
annealing temperature T_{α} K_B=1.38e-23 J/K

$$K_B = 1.38e - 23 \text{ J/K}$$

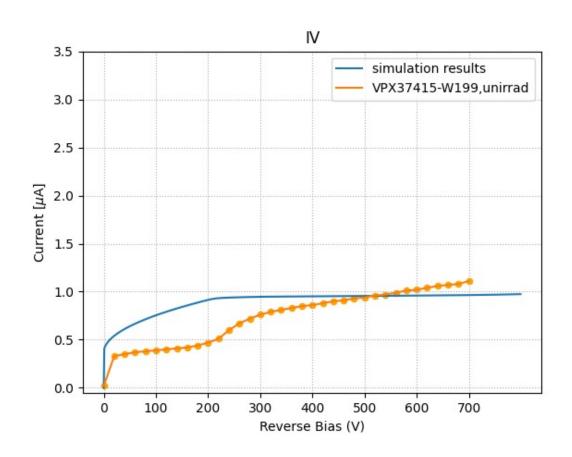

e.g. $\tau_I \approx 10$ days at room temperature.


[1] Moll M. Radiation damage in silicon particle detectors: microscopic defects and macroscopic properties[J]. Dec, 1999.


Back up (IV test)



IV for MD8 after annealing, 1.6×10^{15} neq/cm².



Back up (IV test)

$$I_{DIFF} = I_0(e^{qV_A/kT} - 1)$$
 \Longrightarrow Shockley equation

$$I_0 = qA(\frac{D_N}{L_N} \frac{n_i^2}{N_A} + \frac{D_P}{L_P} \frac{n_i^2}{N_D})$$

$$D_N = \mu_n \frac{kT}{q}, D_P = \mu_p \frac{kT}{q}$$

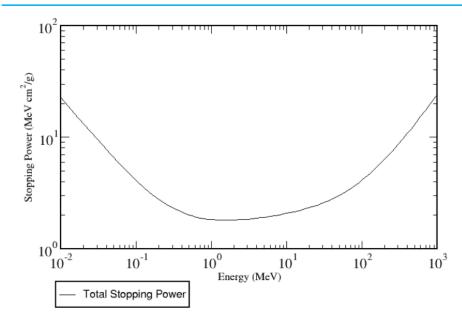
$$L_N = \sqrt{D_N \tau_n}, L_P = \sqrt{D_P \tau_p}$$

$$I_{R-G} = -\frac{qAn_i}{2\tau_0}W$$
 Recombination-Generation current

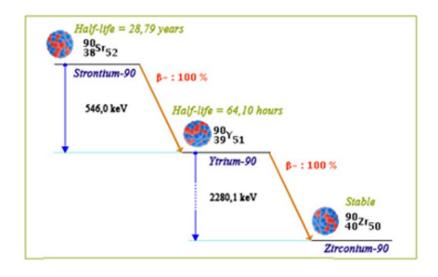
$$\tau_0 = \frac{1}{2} (\tau_p \frac{n_1}{n_i} + \tau_n \frac{p_1}{n_i})$$

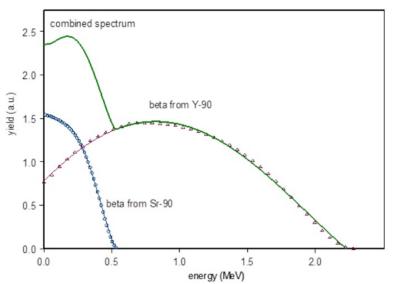
$$W = \left[\frac{2K_s\varepsilon_0}{q}\left(\frac{N_A + N_D}{N_A N_D}\right)(V_{bi} - V_A)\right]^{\frac{1}{2}}$$

$$V_{bi} = \frac{kT}{q}ln\left(\frac{N_A N_D}{n_i^2}\right)$$


$$q \qquad n_i$$

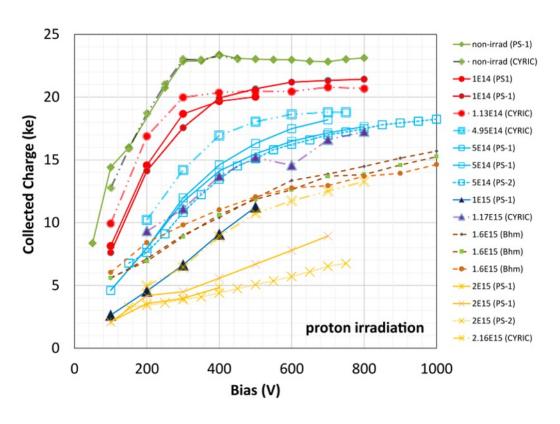
$$I = I_{DIFF} + I_{R-G}$$
 Theory total current


Back up (CCE test)



If a particle has $\beta\gamma$ around 4, its ionization energy loss in the material (dE/dx) is minimal, we call it a minimum ionization particle (MIP). Generally, particles with $\beta\gamma$ between 1 and 10 are considered to be MIPs.

The average energy of the electrons emitted by 90Sr and the daughter nucleus 90Y is about 0.7 MeV, corresponding to $\beta\gamma \sim 2.15$.



Back up (CCE test)

CSNS with 80 MeV proton beam

compare with other sites, Birmingham (MC40 27MeV-37MeV), CYRIC with 70MeV proton beam