

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Novel photon energy calibration method and Higgs mass measurement

Mingxu He @ CLHCP 2023

IHEP, CAS

ATLAS

Phys. Lett. B 784 (2018) 345

Introduction

- Optimal energy reconstruction and calibration of the electromagnetic calorimeter
 - necessary for all analyses involving electrons and photons
 - especially for precise measurements of the masses and properties of the Higgs, W and Z bosons
- In the last round Higgs mass measurement:
 - Partial Run 2, $H \rightarrow \gamma \gamma$ channel only
 - Systematic uncertainties (±0.34) became larger than statistical uncertainty (±0.21)
- Vital to increase the precision of *e*/γ energy calibration

Run 1 + partial Run 2 Higgs mass measurement

Systematic uncertainties in $H \rightarrow \gamma \gamma$ channel

Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
EM calorimeter cell non-linearity	± 180
EM calorimeter layer calibration	± 170
Non-ID material	± 120
ID material	± 110
Lateral shower shape	± 110
$Z \to ee$ calibration	± 80
Conversion reconstruction	± 50
Background model	± 50
Selection of the diphoton production vertex	± 40
Resolution	± 20
Signal model	± 20

ATLAS

ATLAS

ATLAS

ATLAS

ATLAS

ATLAS

ATLAS

ATLAS

ADC correction

• The energy reconstruction in a LAr calorimeter cell

- linear conversion from ADC counts to current
- an additional factor converting current into energy
- In practice, the energy response of each cell is determined during dedicated electronics calibration runs
 - Non-zero residuals: caused by intrinsic non-linear behavior of the electronics

• A non-linearity ADC correction is implemented for the first time

- separately for each cell of the calorimeter
- built to not modify the cluster energies of electrons for final in-situ scale
- Cluster energies are increased by about 0.4% at low E_T, and decreased by about 0.2% at high E_T

Energy response in high and medium gain

Non-linearities in the ADC-to-current conversion affect comparisons of the energy response in different readout gains

- Standard configuration: high gain (HG) readout is the majority in $Z \rightarrow ee$ decays
 - → The transition to medium gain (MG) for a cell energy of about 25 GeV, for 2nd layer
- Use standard runs and special runs (lower threshold to MG)
- The energy response difference between HG and MG
 - $\frac{\Delta E}{E} = \alpha_G \cdot \frac{1}{\delta_Z} \cdot \delta_G^{e,\gamma}$

ATLAS

- α_G : difference of total energy between two runs from fit
- $\Delta E/E$: a systematic uncertainty in the energy measurement
 - typically 0.1% in barrel, 0.4% in endcap

For a given change in the energy recorded in MG

- δ_Z : fractional change in energy for electrons between two runs
- $\delta_G^{e,\gamma}$: the fractional change in total energy for electron / photon

arXiv:2309.05471

Intercalibration of the first and second calorimeter layers

- The intercalibration of the first and second calorimeter layers
 - paramount in controlling the linearity of the electron and photon responses
- In the previous calibration
 - Intercalibration is preformed with muons
 - Electron probes were used only as a cross-check
- In full Run 2 calibration: combine the electron-based and

muon-based measurements

- Better constrain the layer intercalibration
- The uncertainty reduced by a factor of ~1.8 in the first half of the barrel

TLAS

Photon-specific calibration

- Electrons and photons deposit energy outside of the cluster used in the reconstruction: 1~6%
 - The global energy scale correction is performed based on electrons
 - ➡ absorbs any potential discrepancy on lateral leakage modeling for electrons
- Lateral energy leakage in the calorimeter outside the area of the cluster is specifically estimated for electrons and photons
 - In the previous calibration, the leakage difference between e/γ was a systematic uncertainty
- The statistical power of the Run 2 data allows an correction depending on η and E
 - Decrease the corresponding calibration uncertainty by a factor of ~2

ATLAS

Energy linearity and constraints on the calibration uncertainties

- The complete systematic uncertainty model
 - 64 and 67 independent uncertainty variations for the electron and photon energy scales
 - In the previous calibration, **no correlation** is considered among all the uncertainties
- New idea to further constrain the energy scale systematic uncertainties
 - Measure the residual dependency of the in-situ scale versus E_T (linearity)

arXiv:2309.05471

Energy linearity and constraints on the calibration uncertainties

 ${\ensuremath{\, \bullet }}$ Measure the residual dependency of the in-situ scale versus E_T

- $E^{\text{data,corr}} = E^{\text{data}} / [(1 + \alpha_i)(1 + \alpha'_i)]$
- α_i in-situ scale, α'_i energy dependence of the energy scale
 - → Vary α' to get best agreement between the *Z*→*ee* invariant mass distributions in data and simulation
- Each uncertainty can be calculated from the minimization on

$$\chi^{2} = \sum_{j_{1}, j_{2}} \left[\alpha_{j_{1}}' - \alpha_{mod, j_{1}}'(\theta) \right] C_{j_{1}, j_{2}}^{-1} \left[\alpha_{j_{2}}' - \alpha_{mod, j_{2}}'(\theta) \right] + \sum_{k} \theta_{k}^{2}$$

- α'_{mod} is total effect of all systematic variations
- \rightarrow θ is the impact of each source, C is the covariance matrix
- With few exceptions, the measured values of α'_j are well

within the initial calibration uncertainties

Higgs mass measurement with di-photon decay mode

• A measurement of the mass of the Higgs boson in

 $H \rightarrow \gamma \gamma$ decay channels is performed with Run 2 data

- Events are classified into 14 mutually exclusive categories
 - → according to photon properties: conversion status, η_{S_2} and $p_{T_t}^{\gamma\gamma}$

• The E_T-dependence of the energy scale correction

- Linearity fit to constrain the systematic uncertainties
 - reducing the corresponding uncertainty by a factor of four
- Propagated to the mass measurement
 - multivariate Gaussian constraint term with covariance from linearity fit
- Higgs mass: 125.17 ± 0.14 (± 0.11 stat., ± 0.09 syst.) GeV

arXiv:2308.07216

Source	Impact [MeV]
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \rightarrow \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

Higgs mass measurement

- Combining Run 1 + Run 2, $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4l$ channels
 - 125.11±0.11 (±0.09 stat., ±0.07 syst.) GeV
 - Most precise Higgs mass measurement so far!

For detailed information: <u>Yangfan's talk</u>

Latest ATLAS Higgs mass results: <u>arXiv:2308.04775</u> Latest CMS Higgs mass: <u>CMS-PAS-HIG-21-019</u>

ATLAS

- The energy calibration is extracted for electrons and photons reconstructed in 140 fb⁻¹ of 13 TeV proton–proton collision data recorded by ATLAS during Run 2 of the LHC
- New methods are introduced to reduce the impact of major uncertainties
 - The overall calibration uncertainty is reduced by a factor of 2–3
- With the new calibration, the precision of Higgs mass measurement is greatly improved using di-photon decay mode

Thank you for listening!

Backup

Total relative systematic uncertainty in the energy scale

Intercalibration of the first and second calorimeter layers

arXiv:2309.05471

• Intercalibration using muons

• Measure $\langle E_i \rangle$ in intervals of $\langle \mu \rangle$, extrapolate to 0 and extract the final α_{12}

• Intercalibration using electrons

- Calibrate the ratio of estimators $(E/p \text{ or } m_{ee})$ in data and the simulation to be constant
 - Rescaling E_1 in data by adjusting α_{12}

• The combination of muon and electron measurements

• The uncertainty reduced by a factor of ~1.8 in the first half of the barrel

$\langle E_i \rangle$ measurement using muons

Calibrate the estimator using electrons

Photon lateral energy leakage calibration

- The lateral energy leakage: $l = E_{7 \times 11}^{L2} / E_{nom}^{L2} 1$
 - E_{nom}^{L2} : the energy collected in the second-layer cells belonging to the supercluster
 - $E_{7\times11}^{L2}$: the energy deposited in second-layer cells in a larger rectangular window of size 7 × 11 in $\eta \times \phi$ around it
- The double difference is used to corrected the photon energy scale
 - $\alpha_l = (l_e l_\gamma)^{data} (l_e l_\gamma)^{MC}$
- Decrease the corresponding calibration uncertainty by a factor of about two

The systematic uncertainty of the calibration is estimated from the reconstruction and classification of photon conversions

ATLAS

Calibration cross-checks with $J/\psi \rightarrow ee$

Calibration cross-checks with $Z \rightarrow ll\gamma$

