

The 9th China LHC Physics Workshop

Chunhao Tian November 15, 2023

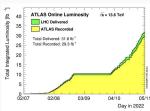
University of Science and Technology of China

Contents

- 1. Introduction
- 2. Event Selection
- 3. Background Estimation
- 4. Fiducial Cross Section Measurement
- 5. Conclusion

Introduction

Motivation


The Run 3 operations at LHC

- new world-record energy scale 13.6TeV
- · Commissioning of new detector: NSW
- \cdot 2022 dataset: $29 \mathrm{fb}^{-1}$ with muon trigger

First round of Run3 HZZ* Analysis

- · HZZ* 4l channel shows excelent S/B
- · Cross section measurement
 - $H \to ZZ^* \to 4\ell$ cross section
 - total $pp \rightarrow Higgs$ cross section
 - · Basic setup for the following Run3 analysis

Overview of Analysis Strategy

Fiducial cross section: most **model indenpendent** way to measure Higgs@LHC

Minimizing acceptance and extrapolation effects

Extraction of Fiducial XS:

• fitting binned m_{4l} spectrum

Irreducible background:

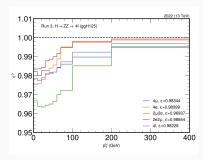
- *ZZ**: qq**ZZ,** gg**ZZ**
- · ttll, triboson

total phase space

Reducible background: 2 prompt leptons + 2 leptons from **Heavy** Flavor/fake

- · Z + $\mu\mu$
- · Z + ee

Event Selection


Object Reco and Trigger

Object definition:

- · Electron:
 - Loose identification
 - · Loose isolation
 - $E_T > 7 \text{GeV}, |\eta| < 2.47$
- Muon:
 - · Loose identification
 - · Loose pflow isolation
 - $p_T > 5 \text{GeV}$, $|\eta| < 2.5$

Trigger:

- · lowest un-prescaled triggers available
 - · single lepton threshold: 24GeV(26GeV) for μ (e)
 - multi-lepton threshold: down to 6GeV
- · trigger matching applied

Selection of Quadraplet

Same flavor opposite sign pairs of leptons: 4μ , 4e, 2μ 2e, $2e2\mu$

- p_T threshold: **20GeV**, **15GeV**, **10GeV**, **5(7)GeV** for μ (e)
- · leading lepton pair: [50GeV, 106GeV]
- · subleading: upper boundary 115GeV:
 - · dynamic lower boundary
 - 12GeV for m_{4l} <140GeV
 - linearly rise to 50GeV for m_{4l} =190GeV

if multi quads pass the selection:

- · Based on Z mass and signal efficiency
- extra lepton p_T > 12GeV: ME based selection

Selection of Quadraplet

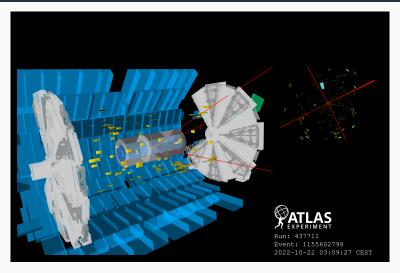
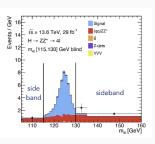


Figure 1: Candidate of an HZZ event in 4μ channel, with m_{4l} =125.6GeV

Background Estimation


Irreducible Background

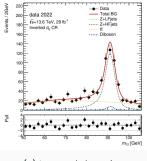
Major irreducible background process:

- ZZ^* production via $q\bar{q}$
- · ZZ* production via gluon fusion
- · triboson: from mc
- ttZ: from mc

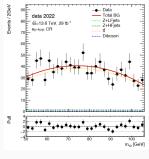
Simultaneous extraction of normalization in sideband:

- · For reduction of theoretical systematic on qqZZ and ggZZ
- sideband: [105GeV, 130GeV] and [130GeV, 160GeV]

Z + $\mu\mu$ Background Estimation


leading components: Z + Heavy Flavor, other contributions: Z+LF, ttbar, WZ Unbinned simultaneous fit on m_{12} shape in 4 orthogonal CRs(different cuts on subleading pair):

- Invert d0 in sub pair: HF enriched
- · Invert Isolation in sub pair: LF enriched
- · Same Sign in sub pair: ttbar enriched
- Different flavor in leading pair: all Bkgs


Z + $\mu\mu$ Background Estimation

Relaxed Iso/d0 CR: similar cut on SR, but without cuts on Iso, d0 and vertex.

- · validation region
- · not orthogonal to SR, not included in fitting.
- SR yields extrapolated from this region.

(a) Inverted d_0 region

(b) Different flavor region

Z + ee Background Estimation

estimate performed in 3l+X CR:

- · similar to nominal 4l selection
- · relaxed ID cut on lower pt electron in sub-lead pair
- · same sign requirement in sub-lead pair to keep orthogonality

Origin of X:

- semi-leptonic decay of heavy quark(q): from mc
- light jet faking electron (f)
- photon conversion (γ)

Fitting number of pixel layer hits to get ${\bf f}$ and γ from data Extrapolation from 3l+X CR to SR

- transfer factor evaluated from Z+X dedicated control sample
- As a function of X pT

Fiducial Cross Section

Measurement

Fiducial Definition and Fitting Strategy

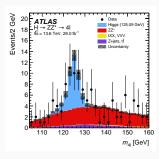
Fiducial region: defined in truth level for stable leptons, but very close to detector acceptance.

$$N_i(m_{4\ell}) = \sum_i \epsilon_i \times (1 + f_i^{nofid}) \times \sigma_i^{fid} \times \text{PDF}(m_{4\ell})_i \times \mathcal{L}_{int} + N_i^{bkg}(m_{4\ell}),$$

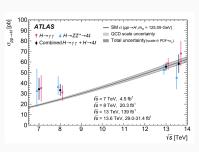
$$\sigma_i^{fid} = \sigma_i^{total} \times A_i \times Br_i$$

- **i**: 4μ , 4e, 2μ 2e, $2e2\mu$
- A_i = Acceptance = N_{fid}/N_{total} around **50%**
- ϵ_i = reco efficiency = $N_{reco\&fid}/N_{fid}$ around 25%-50%
- f_i^{nofid} = fiducial leakage = 1 $N_{reco\&fid}/N_{reco}$ around 1%
 - fraction of events outside fiducial region, but fall in reco-level signal region

All channels fitted simultaneously

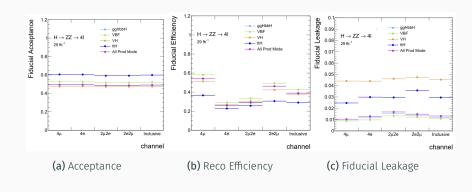

Post-fit Result

 $H \rightarrow ZZ^* \rightarrow 4\ell$ cross-section:


- σ_{fid} = 2.80 \pm 0.70 (stat.) \pm 0.21 (syst.) fb
- $\sigma_{\rm fid,SM}$ = 3.67 \pm 0.19 fb

Total $pp \rightarrow H$ cross-section:

- σ_{total} = 46 \pm 12 pb
- Combination with $H\gamma\gamma$: σ_{total} = 58.2 \pm 8.7 pb


(b) Combination with $H\gamma\gamma$

Conclusion

Summary

Fiducial cross section of $H \to ZZ^* \to 4\ell$ measure@13.6TeV Extrapolated to total phase space to measure total $pp \to Higgs$ cross section All values compatible with standard model prediction

Acceptance, Efficiency and Fiducial

Backup

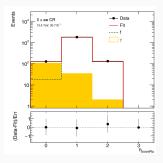


Table 1: Fit result for Zee bkg yields with statistical errors

type	data fit	ZZ*+ HF	efficiency[%]	SR yield
f	2168.8 ± 47.6	229.6 ± 3.0	0.18 ± 0.03	$3.52 \pm 0.14 \pm 0.54$
γ	171.2 ± 16.4	18.3 ± 0.4	$\textbf{0.55} \pm \textbf{0.10}$	$0.83 \pm 0.15 \pm 0.04$
9	(MC-	2.35 ± 0.73		

type	data fit	extrapolation factor [%]	SR yield
ttbar	559 ± 21	0.28 ± 0.03	$1.54 \pm 0.06 \pm 0.15$
Z+jets (HF)	619 ± 45	0.38 ± 0.23	$2.36 \pm 0.17 \pm 1.40$
Z+jets (LF)	13 ± 10	1.5 ± 0.3	$0.19 \pm 0.14 \pm 0.04)$
Z+jets (HF+LF)	623 ± 35		$2.37 \pm 0.13 \pm 1.41$
WZ	MC-based estimation		0.26 ± 0.33