
Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV at CMS

Qianying GUO

(Beihang University and Institute of High Energy Physics, Beijing)
On behalf of CMS Collaboration

Overview

- Fiducial cross section measurement [JHEP08(2023)040] in $H \to ZZ^* \to 4l$ channel with 138fb⁻¹ of Run II samples with latest objects calibration
- Extend the measurement with respect to the previous Run II analysis [EPJC81(2021)488]
- Inclusive fiducial cross section measurement
- Differential fiducial cross section measurements
 - Revised binning and extended set of variables (4 ⇒ 32)
 - Compared with POWHEG, MADGRAPH5, and NNLOPS predictions
 - 1D measurements
 - Production observables
 - Decay observables
 - Matrix-Element discriminants
 - 2D measurements
 - Enhance sensitivity to specific phase space regions
- Interpretations
 - Higgs boson trilinear self-coupling κ_{λ}
 - Higgs boson couplings modifier κ_b, κ_c

Overview

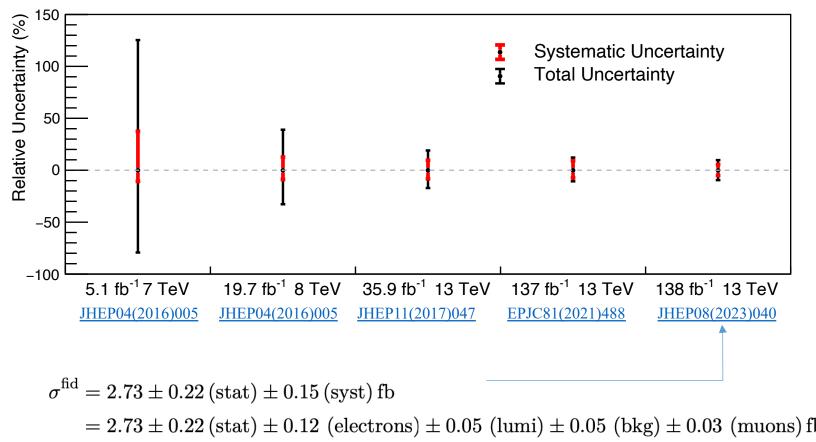
- Fiducial cross section measurement [JHEP08(2023)040] in $H \to ZZ^*$ $\to 4l$ channel with 138fb⁻¹ of Run II samples with latest objects calibration
- Extend the measurement with respect to the previous Run II analysis [EPJC81(2021)488]
- Inclusive fiducial cross section measurement
- Differential fiducial cross section measurements

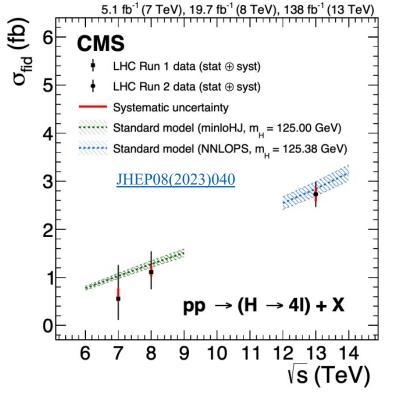
Requirements for the ${ m H} o { m ZZ} o 4\ell$ fiducial phase space				
Lepton kinematics and isolation				
Leading lepton p_{T}	$p_{ m T} > 20{ m GeV}$			
Sub-leading lepton p_{T}	$p_{\mathrm{T}} > 10\mathrm{GeV}$			
Additional electrons (muons) p_{T}	$p_{\mathrm{T}} > 7(5)\mathrm{GeV}$			
Pseudorapidity of electrons (muons)	$ \eta < 2.5$ (2.4)			
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\mathrm{T}}$			
Event topology				
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above				
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$			
Inv. mass of the \mathbb{Z}_2 candidate	$12 < m_{Z_2} < 120\text{GeV}$			
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$			
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4 ext{GeV}$			
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 160{ m GeV}$			

Its definition matches closely the experimental acceptance after the reconstruction-level selection.

Fiducial Cross Section of 4l channel

 Number of events of different final state f and different year y in the given bin i are expressed as a function of 4l invariable mass

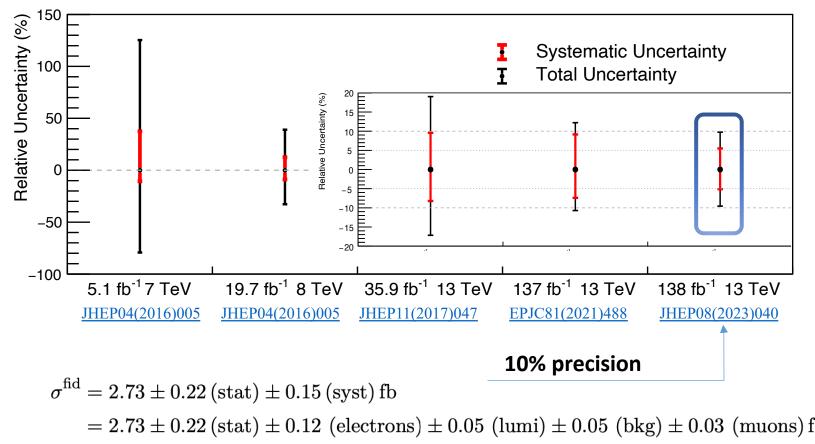

$$\begin{split} N_{\text{obs}}^{f,i,y}(m_{4\ell}) &= N_{\text{fid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonfid}}^{f,i,y}(m_{4\ell}) + N_{\text{nonres}}^{f,i,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y}(m_{4\ell}) \\ &= \sum_{j}^{\text{genBin}} \epsilon_{i,j}^{f,y} \left(1 + f_{\text{nonfid}}^{f,i,y} \right) \sigma_{\text{fid}}^{f,j,y} \mathcal{L} \mathcal{P}_{\text{res}}^{f,y}(m_{4\ell}) \\ &+ N_{\text{nonres}}^{f,i,y} \mathcal{P}_{\text{nonres}}^{f,y}(m_{4\ell}) + N_{\text{bkg}}^{f,i,y} \mathcal{P}_{\text{bkg}}^{f,i,y}(m_{4\ell}). \end{split}$$

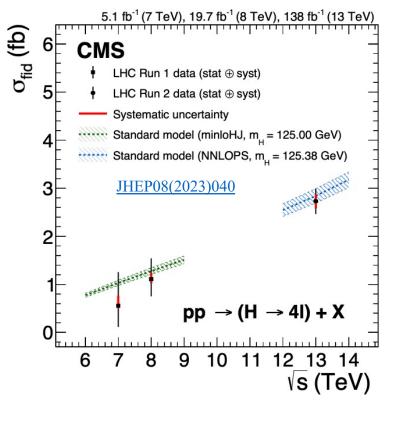

Signal process	$\mathcal{A}_{\mathrm{fid}}$	ϵ	$f_{ m nonfid}$	$(1+f_{ m nonfid})\epsilon$
ggH (POWHEG)	0.408 ± 0.001	0.619 ± 0.001	0.053 ± 0.001	0.652 ± 0.001
VBF	0.448 ± 0.001	0.632 ± 0.002	0.043 ± 0.001	0.659 ± 0.002
WH	0.332 ± 0.001	0.616 ± 0.002	0.077 ± 0.001	0.664 ± 0.002
ZH	0.344 ± 0.002	0.626 ± 0.003	0.083 ± 0.002	0.678 ± 0.003
${f t} {f ar t} {f H}$	0.320 ± 0.002	0.614 ± 0.003	0.179 ± 0.003	0.725 ± 0.005

JHEP08(2023)040

- Fiducial + non-fiducial resonances signal contribution:
 - Shape is described by double-sided Crystal Ball function.
 - Normalization is proportional to the fiducial cross section.
- Non-resonant signal contribution
 - Arises from WH, ZH ttH where one of the leptons from Higgs is lost or not selected.
 - Modeled by Landau distribution
 - Treated as background

Results of Inclusive Fiducial Cross Section

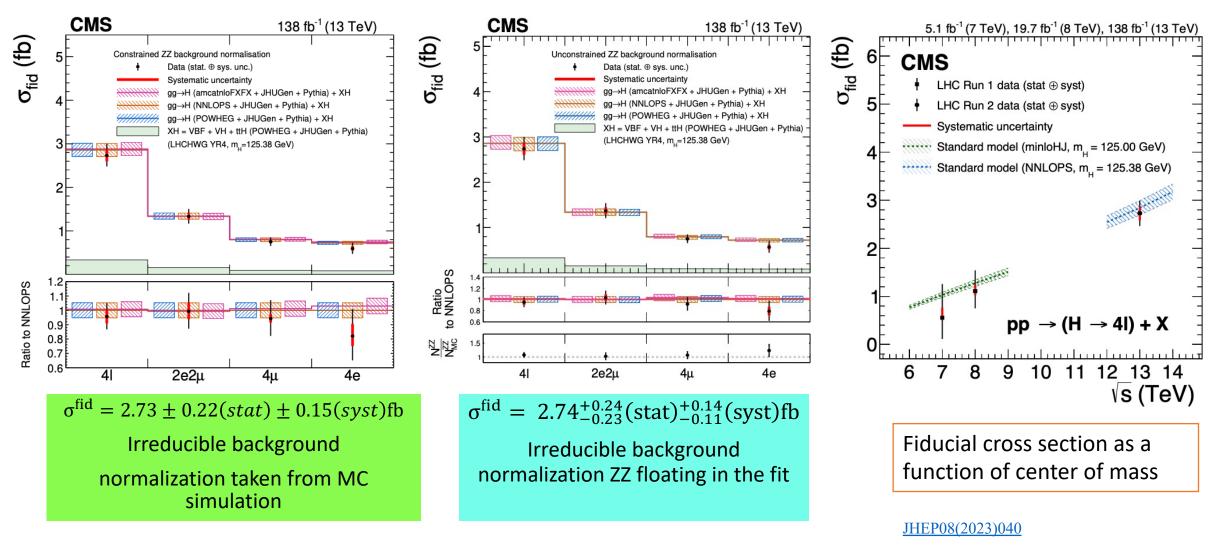




- $= 2.73 \pm 0.22 \, (\mathrm{stat}) \pm 0.12 \, (\mathrm{electrons}) \pm 0.05 \, (\mathrm{lumi}) \pm 0.05 \, (\mathrm{bkg}) \pm 0.03 \, (\mathrm{muons}) \, \mathrm{fb}$
- Systematic uncertainty dominated by
 - Electrons-related nuisances,
 - Especially electron reconstruction efficiency

Fiducial cross section as a function of center of mass

Results of Inclusive Fiducial Cross Section



- $= 2.73 \pm 0.22 \, (\mathrm{stat}) \pm 0.12 \, (\mathrm{electrons}) \pm 0.05 \, (\mathrm{lumi}) \pm 0.05 \, (\mathrm{bkg}) \pm 0.03 \, (\mathrm{muons}) \, \mathrm{fb}$
- Systematic uncertainty dominated by
 - Electrons-related nuisances,
 - Especially electron reconstruction efficiency
- Reduction of the systematic component due to the reduction of the main lepton nuisances

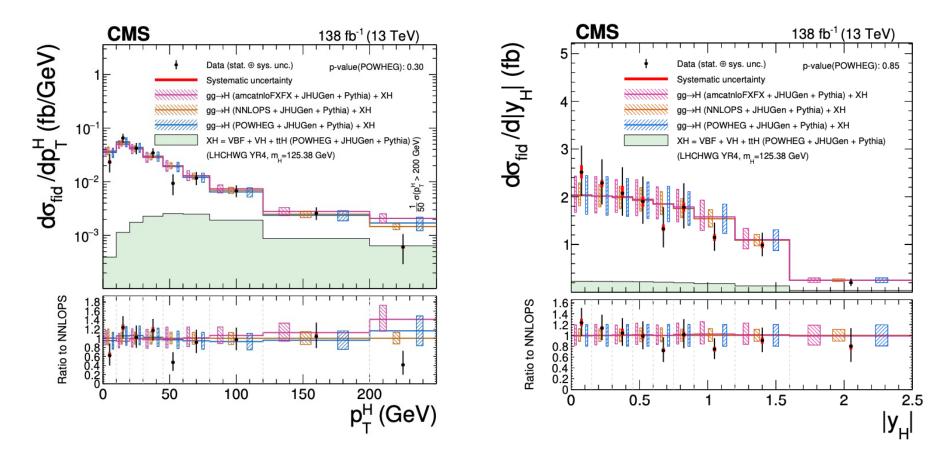
Fiducial cross section as a function of center of mass

Results of Inclusive Fiducial Cross Section

- Remove the impact of nuisances on ZZ normalization
- Being sensitive to BSM effects in the background

Differential Fiducial Cross Section

• Higgs production observables (13):


• Higgs decay observables (13):

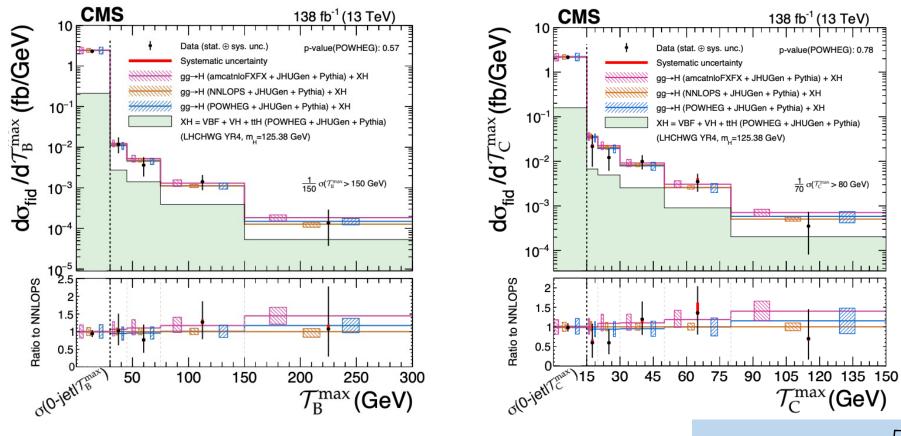
$$m_{Z1} m_{Z2} \Phi \Phi_1 \cos \theta \cos \theta_1 \cos \theta^*$$

 $\mathcal{D}_{0-}^{\mathrm{dec}} \mathcal{D}_{cp}^{\mathrm{dec}} \mathcal{D}_{0h+}^{\mathrm{dec}} \mathcal{D}_{\Lambda 1}^{\mathrm{dec}} \mathcal{D}_{\Lambda 1}^{\mathrm{Z}\gamma,\mathrm{dec}} \mathcal{D}_{int}^{\mathrm{dec}}$

• **Double** differential observables (6):

$$m_{Z1}$$
 vs m_{Z2} N_{jets} vs p_T^H p_T^{j1} vs p_T^{j2} \mathcal{T}_C vs p_T^H p_T^{Hj} vs p_T^H $|y^H|$ vs p_T^H

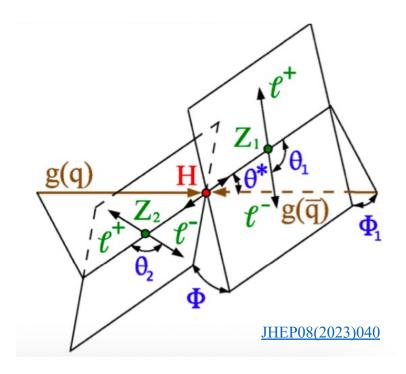
1D Differential Cross Section --- Production



- Differential observables of **Higgs boson kinematics**
 - P_T^H : probes the perturbative QCD modelling of this production mechanism

JHEP08(2023)040

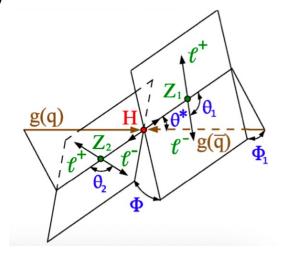
- $|y^H|$: sensitive to the gluon fusion production mechanism and PDFs
- Average precision of 35%


1D Differential Cross Section --- Production

- Differential observables of **Jet activity**

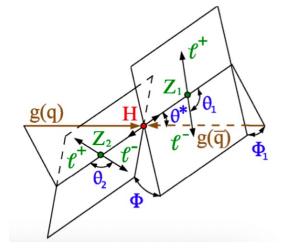
JHEP08(2023)040 Jet rapidity-weighted observables $\mathcal{T}_B^{max} = \max_i (m_T^j e^{-|y_j - y_H|})$

- Maximum is taken among all jets and events with $T_B \le 30$ GeV and $T_C \le 15$ GeV make the 0-jet bin
- The advantage of such observables is that they can be factorized and resumed allowing for precise theory predictions. 10


- Differential observables of **Higgs decay**
 - Angular observables: Φ Φ_1 $\cos \theta$ $\cos \theta_1$ $\cos \theta^*$
 - Describe angle between the plane of Higgs, Z_1 , Z_2 decay and the beam direction
 - Sensitive to the spin and charge conjugation and parity properties of the Higgs

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1} , m_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$


```
\mathcal{D}_{0-}^{\operatorname{dec}} \mathcal{D}_{0h+}^{\operatorname{dec}} \mathcal{D}_{\Lambda 1}^{\operatorname{dec}} \mathcal{D}_{\Lambda 1}^{\operatorname{Z}\gamma,\operatorname{dec}} \mid \mathcal{D}_{cv}^{\operatorname{dec}} \mathcal{D}_{int}^{\operatorname{dec}}
```



- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1} , m_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$

HVV scattering amplitude of a spin-0 boson H and two spin-one gauge bosons

$$A(HV_{1}V_{2}) = \frac{1}{v} \left[a_{1}^{VV} + \frac{k_{1}^{VV} q_{V1}^{VV} + k_{2}^{VV} q_{V2}^{2}}{(\Lambda_{1}^{VV})^{2}} + \frac{k_{3}^{VV} (q_{V1} + q_{V2})^{2}}{(\Lambda_{Q}^{VV})^{2}} \right] m_{V1}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + \frac{a_{2}^{VV} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{VV} f_{\mu\nu}^{*(1)} \bar{f}^{*(2),\mu\nu}}{(\Lambda_{Q}^{VV})^{2}}$$

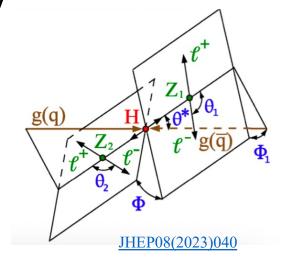
CP even

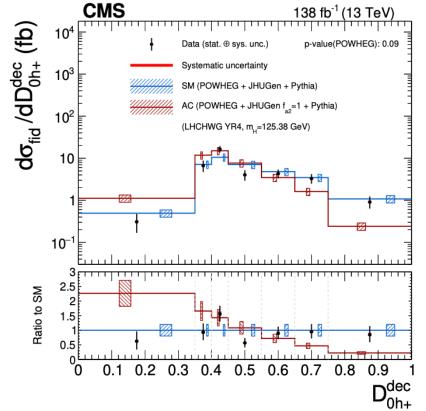
- SM-like spin-zero 0^+ : $a_1^{ZZ}=a_1^{WW}=2$
- Higher order spin-zero 0_h^+ : a_2

CP odd

• Pseudoscalar spin-zero 0⁻: a₃

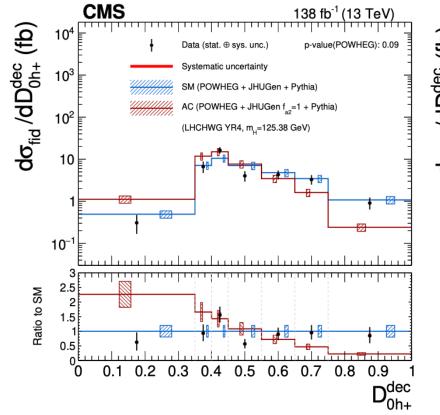
Scales of BSM physics

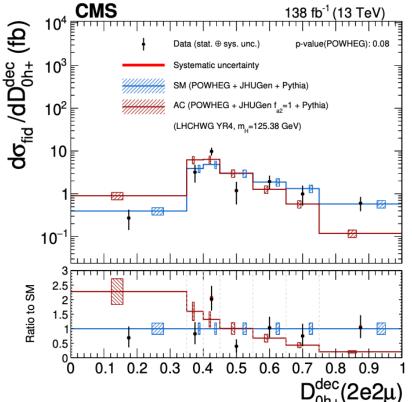

Observables sensitive to HVV anomalous couplings using kinematics of leptons in decay

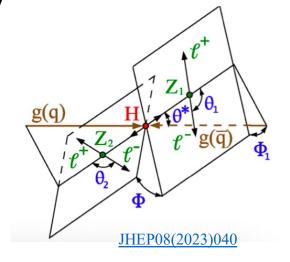

$$\mathcal{D}_{ ext{alt}} = rac{\mathcal{P}_{ ext{sig}}(ec{\Omega})}{\mathcal{P}_{ ext{sig}}(ec{\Omega}) + \mathcal{P}_{ ext{alt}}(ec{\Omega})} \ \ \mathcal{D}_{ ext{int}} \ = rac{\mathcal{P}_{ ext{int}}(ec{\Omega})}{2 \cdot \sqrt{\mathcal{P}_{ ext{sig}}(ec{\Omega}) \cdot \mathcal{P}_{ ext{alt}}(ec{\Omega})}},$$

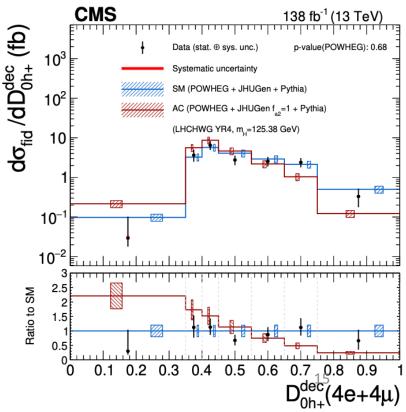
	\mathcal{D}_{alt}			\mathcal{D}_{int}		
	Coupling					
Discriminant	a_3	a_2	κ_1	$\kappa_2^{Z,\gamma}$	a ₃	a_2
Discriminant	\mathcal{D}_{0} -	\mathcal{D}_{0h+}	$\mathcal{D}_{\Lambda 1}$	$\mathcal{D}_{\Lambda 1}^{\mathrm{Z},\gamma}$	$\mathcal{D}_{ ext{CP}}$	\mathcal{D}_{int}

- Higgs **Decay** in 4l final states could be characterized by the following seven parameters:
 - m_{Z1} , m_{Z2}
 - Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$


- Higher order spin-zero 0_h^+ a_2 : sensitive to possible BSM contributions from heavy H bosons
- 13 Differential cross sections of decay are also measured in the **same-flavor** and **different flavor** final states.
- Its final state is sensitive to *interference effects*


 Higgs Decay in 4l final states could be characterized by the following seven parameters:


• m_{Z1} , m_{Z2}


• Φ , Φ_1 , $\cos \theta$, $\cos \theta_1$, $\cos \theta^*$

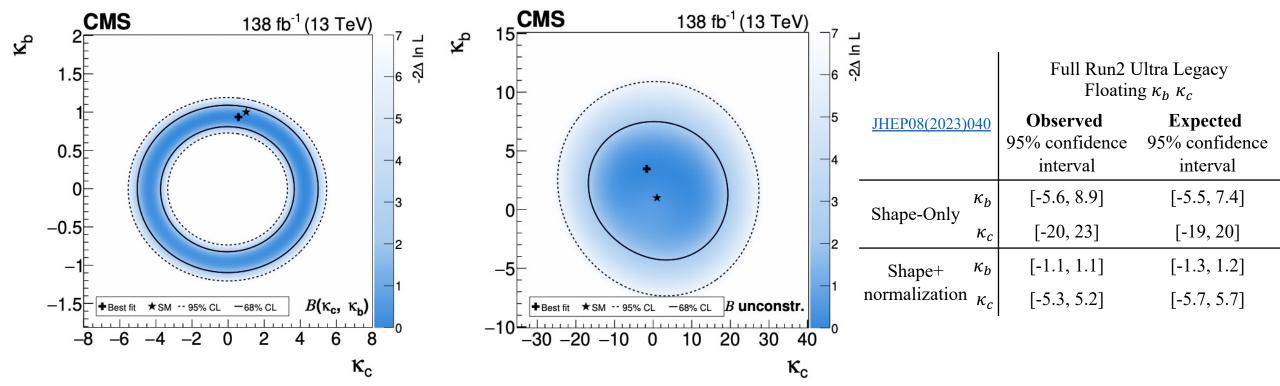
Constraints on the H boson self-coupling

Probing κ_{λ} via single-Higgs decay

• Differential XS measurement as a function of $p_T^H \Rightarrow \text{extract limits on H}$ boson self coupling.

$$\mu_{i}^{f} = \mu_{i} \times \mu^{f} = \frac{\sigma^{NLO}}{\sigma_{SM}^{NLO}} \frac{BR(H \to ZZ)}{BR^{SM}(H \to ZZ)} = \frac{1 + \kappa_{\lambda} C_{1,i} + \delta Z_{H}}{(1 - (\kappa_{\lambda}^{2} - 1)\delta Z_{H})(1 + C_{1,i} + \delta Z_{H})} \times \left[1 + \frac{(\kappa_{\lambda} - 1)(C_{1}^{\Gamma}ZZ - C_{1}^{\Gamma}tot)}{1 + (\kappa_{\lambda} - 1)C_{1}^{\Gamma}tot}\right]$$

 Cross sections of different production mechanisms of H boson is parameterized as a function of


$$\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM}$$

• The corresponding observed (expected) excluded κ_{λ} range at 95% CL

$$-5.4(-7.6) < \kappa_{\lambda} < 14.9(17.7)$$

Constraints on Higgs boson couplings modifier

Probing κ_b , κ_c via p_T^H differential cross section

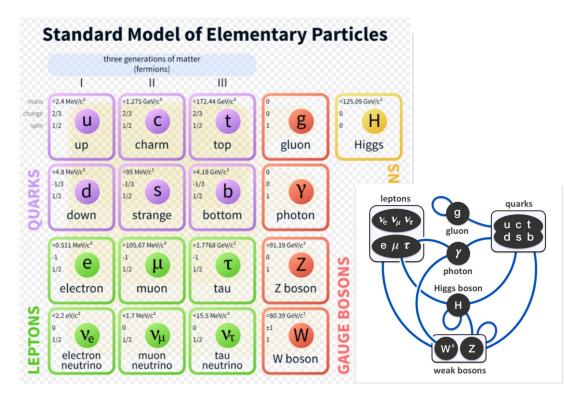
- Simultaneous fit for coupling modifier κ_b , κ_c assuming
 - (left) coupling dependence of the branching fractions (shape+normalization)
 - (right)branching fractions implemented as nuisance parameters with no prior constraint (shape-only)
- Observed and expected 95% confidence intervals for the Yukawa coupling modifiers 17

Summary

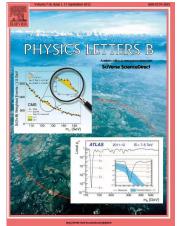
- Measurements of Higgs boson cross section in four-lepton final state at $\sqrt{s} = 13 TeV$ using data sample corresponding to an integrated luminosity of 138 fb⁻¹
 - The inclusive fiducial cross section measured is $\sigma^{fid} = 2.73 \pm 0.22(stat) \pm 0.15(syst)$ fb.
 - **Differential** cross sections as a function of **32 observables** are measured, including one and **two dimension observables**, which involves the
 - H boson production and **HZZ decay**, jet related observables, and observables sensitive to spin and CP quantum numbers
 - Complete coverage of the whole phase space
 - The measurement of fiducial cross section in bins of the transverse momentum is reinterpreted to set constraints to
 - H boson self-coupling (κ_{λ})
 - Couplings to bottom and charm quarks (κ_b, κ_c)
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson.

Thanks for your listening!

Backup

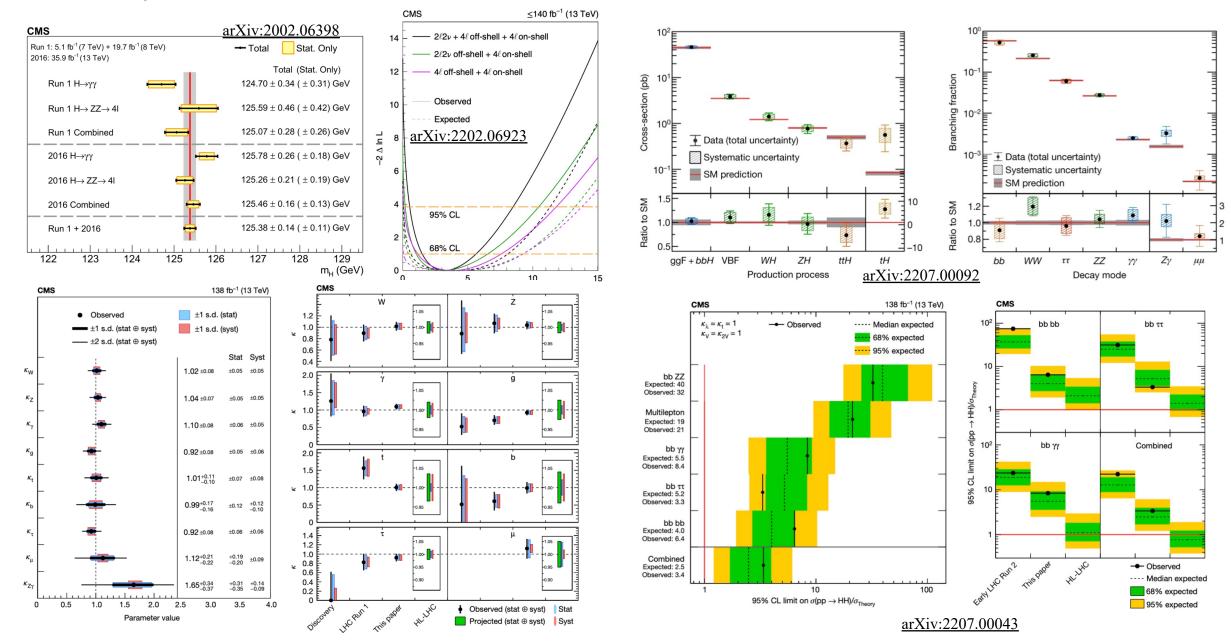

Introduction

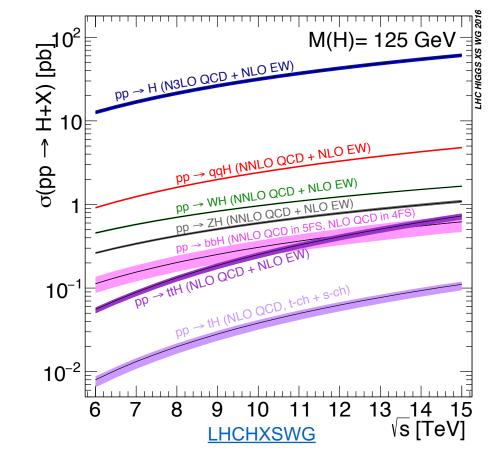
>Standard model


- Describe elementary particles and interactions
- Introduce Higgs mechanism in 1960s
- Predict a scalar field responsible for mass origin

➤ Higgs boson

- Particle corresponding to excitation of the predicted scalar field
- Key to verify the current understanding of boson/fermion mass generation
- A new probe to new physics after its experimental observation
- Crucial to measure its properties





Observed in 2012

Experimental measurements

Higgs production at LHC

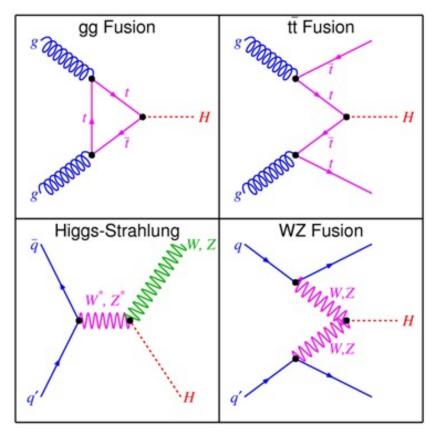
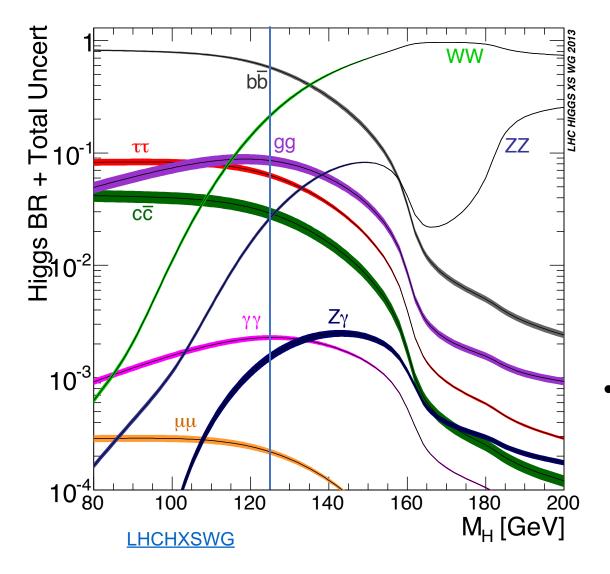
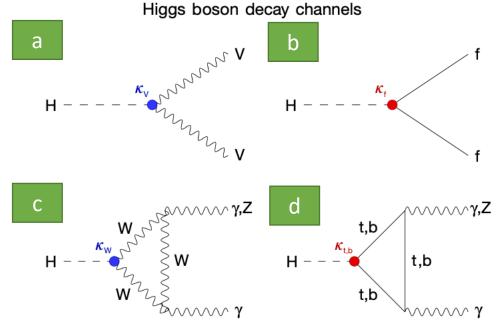
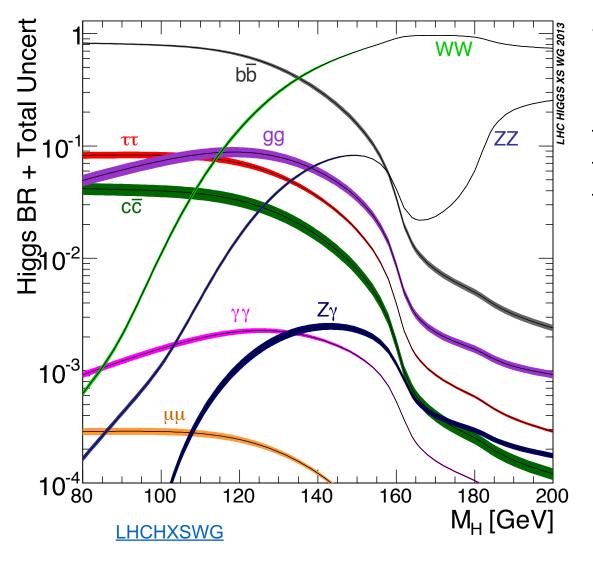
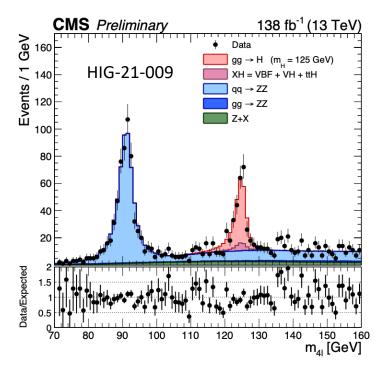




Fig. Feynman diagram of each production model

- Main production model and its cross section at 13TeV and Higgs mass of 125GeV
- Gluon-Gluon Fusion: 48.58 pb
- VBF: 3.782pb
- VH: 1.373pb(WH); 0.8839pb(ZH)
- ttH: 0.5071pb


Higgs decay at LHC



- Higgs boson decays into Nature 607 (2022) 60–68
 - Heavy vector boson pairs (a)
 - Fermion—antifermion pairs (b)
 - Photon pairs or Zγ (c,d)

Higgs decay

- 4l channel is one of the most important channel for Higgs boson property measurements.
- A large signal-to-background ratio (> 2:1)
- Complete reconstruction of final state decay products
- Excellent lepton momentum reconstruction (1-2%)

Dataset and simulation samples

- Data recorded in 2016-2018 for physics analyses: 138 fb⁻¹
 - DoubleMuon, MuonEG, EGamma and Single-Muon
 - Use of dedicated collections of HLT paths, combined in a logical "OR" to avoid duplication of events
- Simulation samples
 - Signal: POWHEG V2 generator for the five main production modes
 - Backgrounds: qqZZ, ggZZ and additional MC samples of WZ, Drell-Yan+jets...

Process	MC Generator(s)	$\sigma \times BR(\times \epsilon_{\text{filter}})$
$gg \rightarrow H \rightarrow ZZ \rightarrow 4\ell$	Standard	13.34 fb
$qq o Hqq o ZZqq o 4\ellqq$	Standard	1.038 fb
$q\bar{q} \rightarrow ZH \rightarrow ZZZ \rightarrow 4\ell + X$	POWHEG 2.0 (minlo HZJ)	0.618 fb
$q\bar{q} ightarrow W^+ H ightarrow W^+ ZZ ightarrow 4\ell + X$	POWHEG 2.0 (minlo HWJ)	0.232 fb
$q\bar{q} \rightarrow W^-H \rightarrow W^-ZZ \rightarrow 4\ell + X$	POWHEG 2.0 (minlo HWJ)	0.147 fb
$gg \rightarrow ttH \rightarrow ttZZ \rightarrow 4\ell + X$	Standard	0.139 fb

Process	Dataset Name	$\sigma \cdot BR$
$qq o ZZ o 4\ell$	/ZZTo4L_TuneCP5_13TeV_powheg_pythia8/	1.256 pb
$ m qq ightarrow ZZ ightarrow 4\ell$	/ZZTo4L_TuneCP5_13TeV-amcatnloFXFX-pythia8/	1.212 pb
$gg \rightarrow ZZ \rightarrow 4e$	/GluGluToContinToZZTo4e_13TeV_MCFM701/	0.00159 pb
$gg \rightarrow ZZ \rightarrow 4\mu$	/GluGluToContinToZZTo4mu_13TeV_MCFM701/	0.00159 pb
$gg \rightarrow ZZ \rightarrow 2e2\mu$	/GluGluToContinToZZTo2e2mu_13TeV_MCFM701/	0.00319 pb
$Z \rightarrow \ell\ell$ + jets	/DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/	6225.4 pb
$Z \rightarrow \ell\ell$ + jets	/DYJetsToLL_M-10to50_TuneCP5_13TeV-amcatnloFXFX-pythia8/	18610 pb
$WZ \rightarrow 3\ell\nu$	/WZTo3LNu_TuneCP5_13TeV-powheg-pythia8/	4.67 pb

OBJECTS

Electrons

- Loose electrons
 - $P_T > 7$ GeV; $|\eta| < 2.5$
 - $d_{xy} < 0.5 cm$; $d_z < 1 cm$; $SIP_{3D} < 4$
- BDT cut based on ID+Iso in 6 ($|\eta|$, P_T)bins

• FSR photon

- $P_{T,\gamma} > 2$ GeV; $|\eta^{\gamma}| < 2.4$;relPFIso<1.8
- Associated γ to the closest loose lepton
- $\Delta R(\gamma,l) < 0.5; \frac{\Delta R(\gamma,l)}{E_{T,\gamma}^2 \Delta R(\gamma,l)} < 0.012;$ choose photon with lowest $\frac{\Delta R(\gamma,l)}{E_{T,\gamma}^2}$
- Remove selected FSRs from lepton isolation cone for all loose leptons

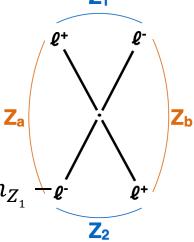
Muons

- Loose muons
 - $P_T > 5$ GeV; $|\eta| < 2.4$
 - $d_{xy} < 0.5 cm$; $d_z < 1 cm$; $SIP_{3D} < 4$
- PF muon ID if $P_T < 200$ GeV, PF muon ID or High-pT muon ID if $P_T > 200$ GeV,
- RelPFIso($\Delta R = 0.3$) < 0.35

$$\mathcal{I}^{\ell} \equiv \left(\sum p_{\mathrm{T}}^{\mathrm{charged}} + \max\left[0, \sum p_{\mathrm{T}}^{\mathrm{neutral}} + \sum p_{\mathrm{T}}^{\gamma} - p_{\mathrm{T}}^{\mathrm{PU}}(\ell)\right]\right) / p_{\mathrm{T}}^{\ell}$$

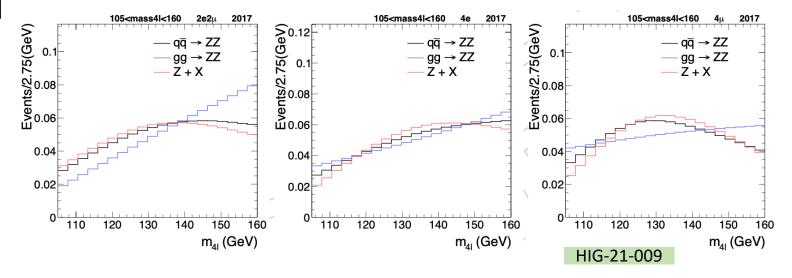
$$\Delta R(i,j) = \sqrt{(\eta^i - \eta^j)^2 + (\phi^i - \phi^j)^2}$$

27


Jets

- AK4 PFCHs jets
- $P_T > 30$ GeV; $|\eta| < 4.7$; Tight PF jet ID
- Cleaned $\Delta R(jet, l/\gamma) > 0.4$
- Cut-based jet ID (tight WP); Jet pileup ID (tight WP)

HIG-21-009


Event reconstruction and selections

- Loose e (μ) passing selections $p_T > 7(5)$ GeV; $|\eta| < 2.5(2.4)$; vertex cut $d_{xy} < 0.5$ cm; $d_z < 1$ cm; $SIP_{3D} < 4$; Tight Selections based on BDT method for e (PF μ RelPFIso< 0.35);
- Z candidate
 - Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV
- Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\mathcal{V})}$ closest to the POG m(Z) mass
 - $m_{Z1} > 40$ GeV; $p_T(l1) > 20$ GeV; $p_T(l2) > 10$ GeV
 - $\Delta R > 0.02$ between each of the four leptons
 - $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)
 - Reject 4μ and 4e candidates where the alternative pair Z_aZ_b satisfies $|m_{Z_a}-m_Z|<|m_{Z_1}-\mu_Z|$ $m_Z|$ and $m_{Z_b}<12$ GeV
 - $m_{4l} > 70 \text{ GeV}$
- If more than one ZZ candidate is left, take the one with Z_1 mass closest to m_Z and the Z_2 from the candidates whose lepton give higher p_T sum

Background estimation

- Irreducible background
 - $q\overline{q} \rightarrow ZZ$
 - $gg \rightarrow ZZ$
 - Estimated using simulation

- Reducible background
 - Misidentified leptons
 - Secondary produced leptons
 - Two independent methods used to estimated Z+X background: OS and SS
 - Fake rates calculated in Z+l control region
 - Z+X yields estimated in orthogonal regions of Z+II control region
 - Final estimate combination of 2 methods
 - Templates are built from the control regions in data

Background normalization

- In previous HIG-19-001, ZZ background from MC predictions
 - Both shape and normalization
 - Mass4l [105, 140]
- Several studies carried out to assess the measurement's precision
 - Its ZZ normalization from data sidebands
 - Improvement of estimation as well as **reduction in uncertainties** because luminosity and other theoretical uncertainties no longer contribute to the normalization.
 - ZZ floating approach:
 - --- inclusive normalization for qqZZ and ggZZ process profiled in the fit
 - ---- only applied in inclusive cross section measurement due to statistics

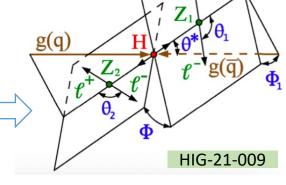
Systematics Uncertainties

- Experimental uncertainties
 - Integrated luminosity
 - Lepton identification and reconstruction efficiency
 - Reducible background
 - Lepton scale and resolution
 - Jet energy scale
 - Common experimental uncertainties 2016 2017 2018 Luminosity uncorrelated 1 % 2%1.5 %2%0.6 %0.9 %Luminosity correlated 2016–2018 0.6~%0.2~%Luminosity correlated 2017–2018 Lepton id/reco efficiencies 0.7 - 10 %0.6-8.5~%0.6 - 9.5 %Jet energy scale 0.1% - 27%0.1% - 33%0.1% - 33%Background related uncertainties Reducible background (Z+X) 24-36 %25-43~%23-36 %Signal related uncertainties 0.06% (e)-0.01% (μ) 0.06% (e)-0.01% (μ) 0.06% (e)-0.01% (μ) Lepton energy scale Lepton energy resolution 10% (e)-3% (μ) 10% (e)-3% (μ) 10% (e)-3% (μ)

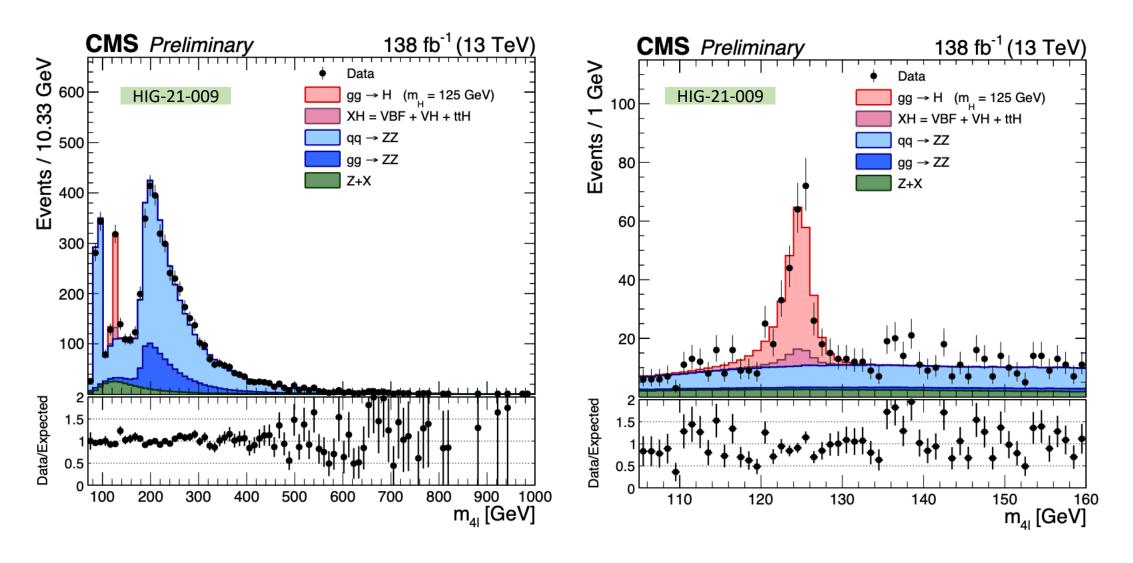
- Theoretical uncertainties
 - QCD uncertainty
 - Uncertainty on the Choice of **PDF set**
 - Uncertainty of 2% on H → 4l
 branching ratio

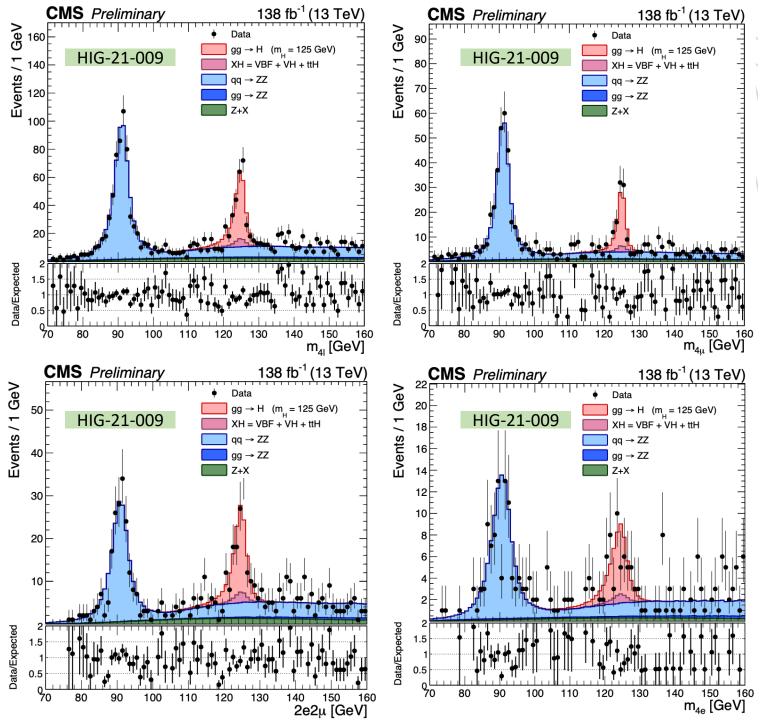
JHEP08(2023)040

Fiducial/Differential Cross Section


- An alternative approach to study the properties of the Higgs boson
- Cross section of bin i is defined as:

$$\sigma_i = \frac{N_{reco,i}}{C_i * A_i * L * B}$$


• Fiducial cross section = cross section in fiducial volume (cuts applied to generated events)

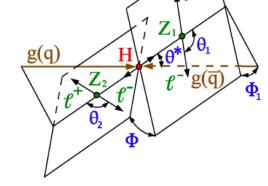

$$\sigma_{fid,i} * B = \frac{N_{reco,i}}{C_i * L}$$

- Higgs boson kinematics:
 - P_T^H : probes the perturbative QCD modelling of this production mechanism
 - $|\eta^H|$: sensitive to the gluon fusion production mechanism and PDFs
- **Jet activity:** N_{jets} ; P_T and η of leading (sub) jet; \mathcal{T}_B , \mathcal{T}_C ...
 - sensitive to the theoretical modelling and relative Higgs production.
- Spin and CP quantum numbers: Angular observables, such as Φ , Φ_1 , $\cos \theta_1$, $\cos \theta_2$, $|\cos \theta^*|$:
 - sensitive to the spin and charge conjugation and parity properties of the Higgs
- Higgs boson production mechanisms
 - specific fiducial regions may be constructed

Distribution of m₄₁ of Run-2 data

Distribution of m₄₁ of Run-2 data of different final states

1D Observables and bin boundaries of 4l --- production


200 [0.17
$200,\infty[{ m GeV}]$
.9, 1.2, 1.6, 2.5
≥4
∞ [GeV
∞ [GeV
,80,∞[GeV
$50,\infty[{ m GeV}]$
∞ [GeV
0,10.0]
$,\pi/2,\pi]$
o[GeV
$0,600,\infty[{ m GeV}]$
[GeV
, , ,

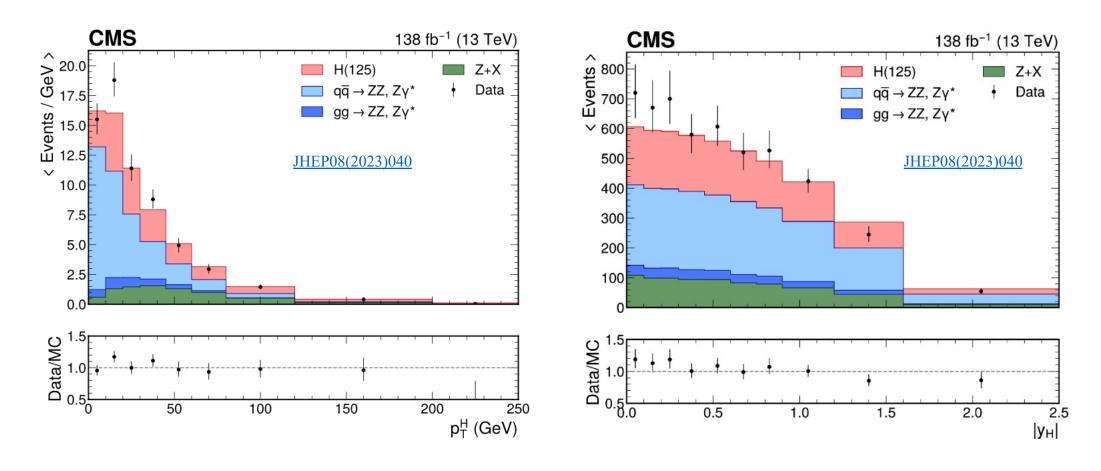
JHEP08(2023)040

The variables in green circle are new observables compared with presented in HIG-19-001.

1D Observables and bin boundaries of 4l --- decay

Observable	Definition	Bin boundaries
$\cos heta^*$	Cosine of the decay angle of the leading lepton pair in the 4ℓ rest frame	$[-1.0,\!-0.75,\!-0.50,\!-0.25,\!0.0,\!0.25,\!0.50,\!0.75,\!1.0]$
$\cos \theta_1, \cos \theta_2$	Cosine of the production angle, relative to the Z vector, of the antileptons from the two Z bosons	$[-1.0,\!-0.75,\!-0.50,\!-0.25,\!0.0,\!0.25,\!0.50,\!0.75,\!1.0]$
Φ,Φ_1	Azimuthal angles between the decay planes	$[-\pi,-3\pi/4,-\pi/2,-\pi/4,0,\pi/4,\pi/2,3\pi/4,\pi]$
$m_{{ m Z}_1}$	Invariant mass of the two leading leptons	$[40,\!65,\!75,\!85,\!92,\!120]~\mathrm{GeV}$
$m_{{ m Z}_2}$	Invariant mass of the two subleading leptons	$[12,\!20,\!25,\!28,\!32,\!40,\!50,\!65]~{\rm GeV}$
$\mathcal{D}_{0 ext{-}}^{ ext{dec}}$	Matrix element discriminant targeting a_3 coupling	[0.0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
$\mathcal{D}_{0\mathrm{h}+}^{\mathrm{dec}}$	Matrix element discriminant targeting a_2 coupling	$[0.0,\!0.35,\!0.4,\!0.45,\!0.55,\!0.65,\!0.75,\!1.0]$
$\mathcal{D}_{\Lambda 1}^{ m dec}$	Matrix element discriminant targeting k_1 coupling	[0.0, 0.45, 0.5, 0.6, 0.7, 1.0]
$\mathcal{D}_{\Lambda 1}^{\mathrm{Z}\gamma,\mathrm{dec}}$	Matrix element discriminant targeting $k_2^{Z\gamma}$ coupling	$[0.0,\!0.35,\!0.45,\!0.5,\!0.55,\!0.65,\!1.0]$
$\mathcal{D}_{ ext{CP}}^{ ext{dec}}$	Interference matrix element discriminant targeting a_3 coupling	$[-0.75,\!-0.25,\!-0.1,\!0.0,\!0.1,\!0.25,\!0.75]$
$\mathcal{D}_{ ext{int}}^{ ext{dec}}$	Interference matrix element discriminant targeting a_2 coupling	$[0.0,\!0.7,\!0.8,\!0.9,\!0.95,\!1.0]$

Since the final state is sensitive to interference effects, differential cross sections of *decay* are also measured in the *same-flavor* and *different flavor* final states.

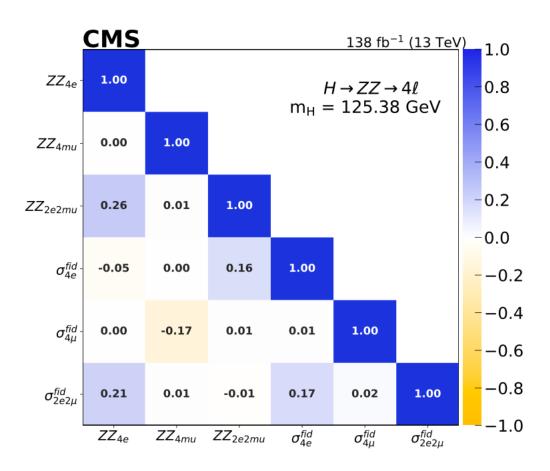

JHEP08(2023)040

The variables in green circle are new observables compared with presented in HIG-19-001.

Bin boundaries for 2D differential measurement

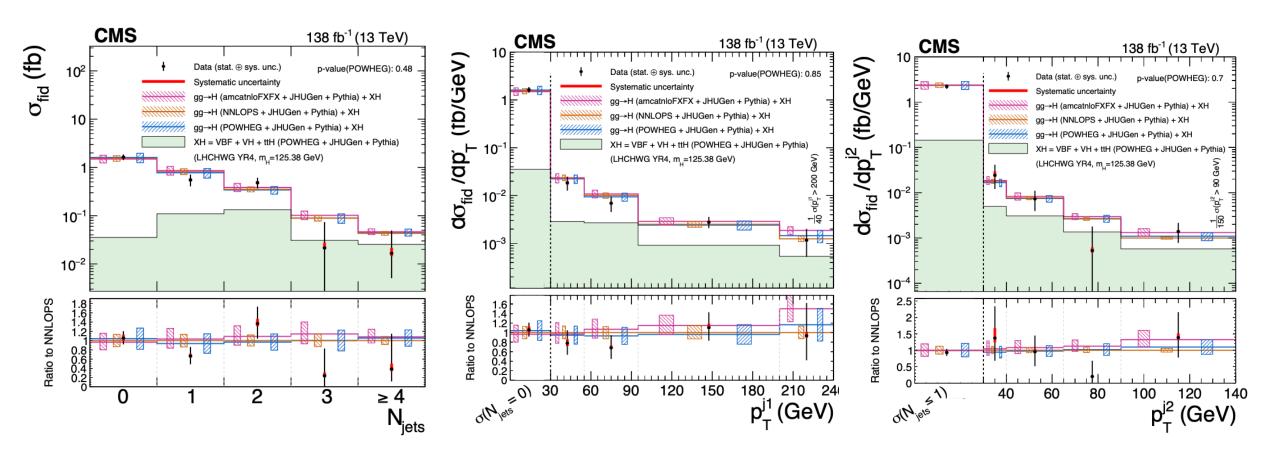
Observable	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9	Bin 10	Bin 11	Bin 12
$m_{{ m Z}_1}({ m GeV})$	[40,85]	[40,70]	[70,120]	[85,120]	[85,120]	[85,120]						
$m_{\rm Z_2}({\rm GeV})$	[12,35]	[35,65]	$[35,\!65]$	$[30,\!35]$	[24,30]	[12,24]						
$ y_{ m H} $	[0,0.5]	[0,0.5]	[0,0.5]	[0,0.5]	[0.5,1.0]	[0.5, 1.0]	[0.5, 1.0]	[1.0,2.5]	[1.0, 2.5]	[1.0, 2.5]		
$p_{\mathrm{T}}^{\mathrm{H}}(\mathrm{GeV})$	[0,40]	[40,80]	[80,150]	$_{[150,\infty[}$	[0,45]	[45,120]	$_{[120,\infty[}$	[0,45]	[45,120]	$_{[120,\infty[}$		
$N_{ m jets}$	0	0	0	1	1	1	1	>= 2	>= 2	>= 2	>= 2	
$p_{\mathrm{T}}^{\mathrm{H}}(\mathrm{GeV})$	[0,15]	[15,30]	$[30,\infty[$	[0,60]	[60,80]	[80,120]	$_{[120,\infty[}$	[0,100]	[100,170]	[170,250]	$_{[250,\infty[}$	
$p_{\mathrm{T}}^{\mathrm{j}_{1}}(\mathrm{GeV})$	$N_{jets} < 2$	[30,60]	[60,350]	[60,350]								
$p_{\mathrm{T}}^{\mathrm{j}_2}(\mathrm{GeV})$		[30,60]	[30,60]	$[60,\!350]$								
$p_{ m T}^{ m Hj}({ m GeV})$	$N_{jets} < 1$	[0,30]	[0,45]	[30,350]	$[45,\!350]$							
$p_{\mathrm{T}}^{\mathrm{H}}(\mathrm{GeV})$		[0,85]	$[85,\!350]$	[0,85]	$[85,\!350]$							
$\mathcal{T}_{\mathrm{C}}^{\mathrm{max}}(\mathrm{GeV})$	0 -jet $ \mathcal{T}_{\mathrm{C}}^{\mathrm{max}} $	[15,25]	[15,25]	[25,40]	[25,40]	[40,∞[[40,∞[
$p_{\mathrm{T}}^{\mathrm{H}}(\mathrm{GeV})$	[0,15]	[15,30]	$[30,\!45]$	[45,70]	[70,120]	$_{[120,\infty[}$	[0,120]	$_{[120,\infty[}$	[0,120]	$_{[120,\infty[}$	[0,200]	$_{[200,\infty[}$

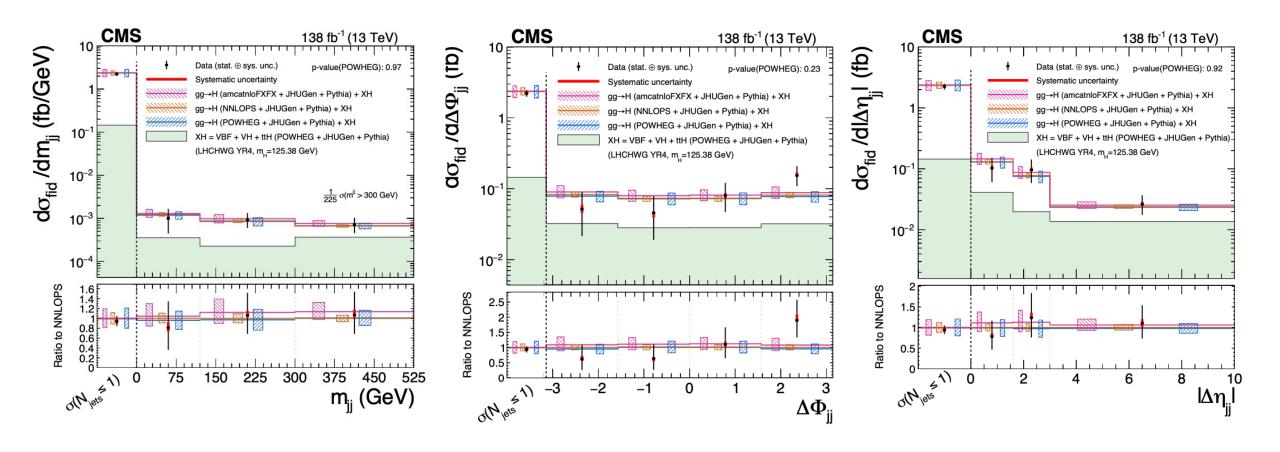
Distribution of p_T^H and $|y_H|$

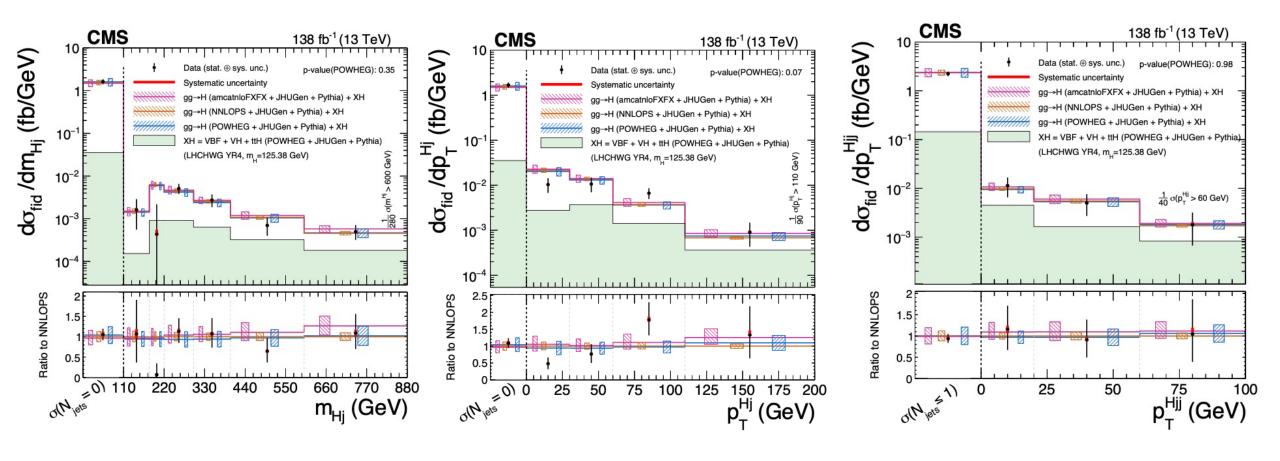

• Points with error bars represent the data, while the solid histograms represent the MC simulation.

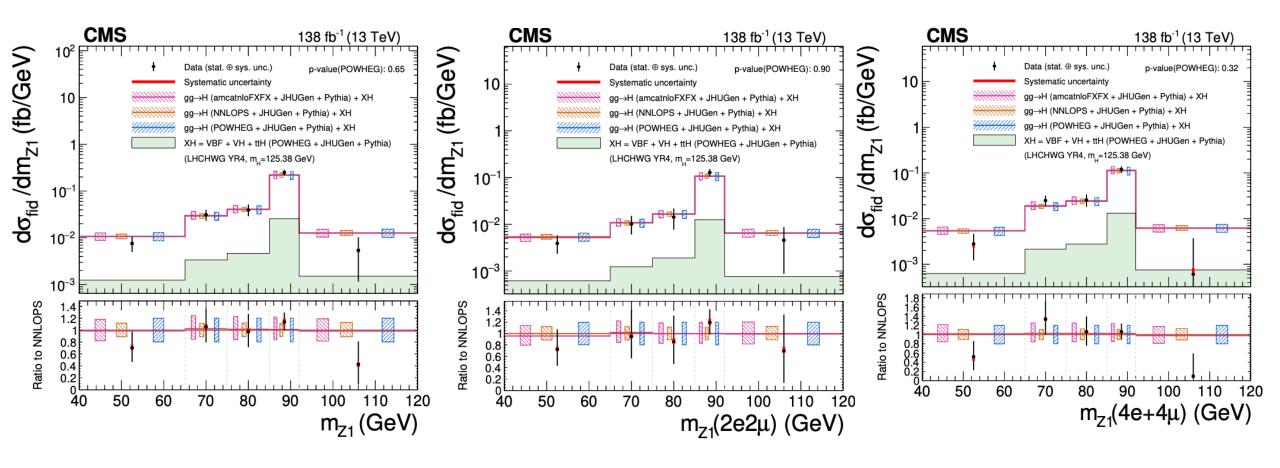
Results of inclusive fiducial cross section

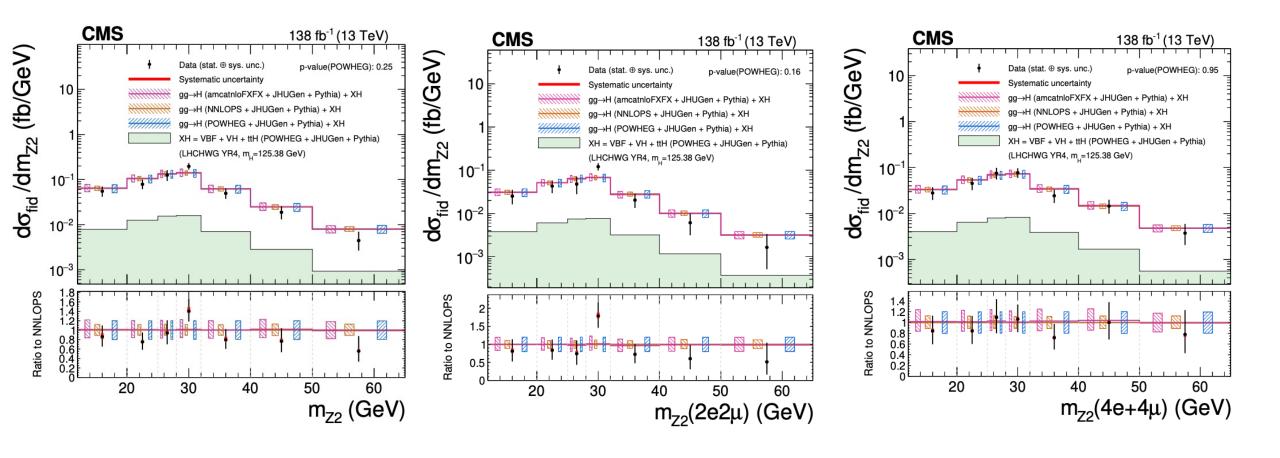
	$4\mathrm{e}$ 4μ		$2\mathrm{e}2\mu$	Inclusive						
Constrained ZZ background										
$\sigma_{ m fid}$	$0.59^{+0.13}_{-0.12}\mathrm{fb}$	$0.75^{+0.10}_{-0.09}\mathrm{fb}$	$1.33^{+0.17}_{-0.16}\mathrm{fb}$	$2.73_{-0.22}^{+0.22} (\text{stat})_{-0.14}^{+0.15} (\text{syst}) \text{fb}$						
Unconstrained ZZ background										
$\sigma_{ m fid}$	$0.57^{+0.15}_{-0.12}\mathrm{fb}$	$0.75^{+0.10}_{-0.09}\mathrm{fb}$	$1.37^{+0.17}_{-0.16}\mathrm{fb}$	$2.74_{-0.23}^{+0.24} (\text{stat})_{-0.11}^{+0.14} (\text{syst}) \text{fb}$						
N^{ZZ}	92^{+16}_{-13}	162^{+19}_{-18}	193_{-21}^{+23}	$445^{+27}_{-26} (\mathrm{stat})^{+21}_{-19} (\mathrm{syst})$						
N_{MC}^{ZZ}	74^{+7}_{-8}	152^{+7}_{-8}	188^{+13}_{-14}	414_{-28}^{+24}						

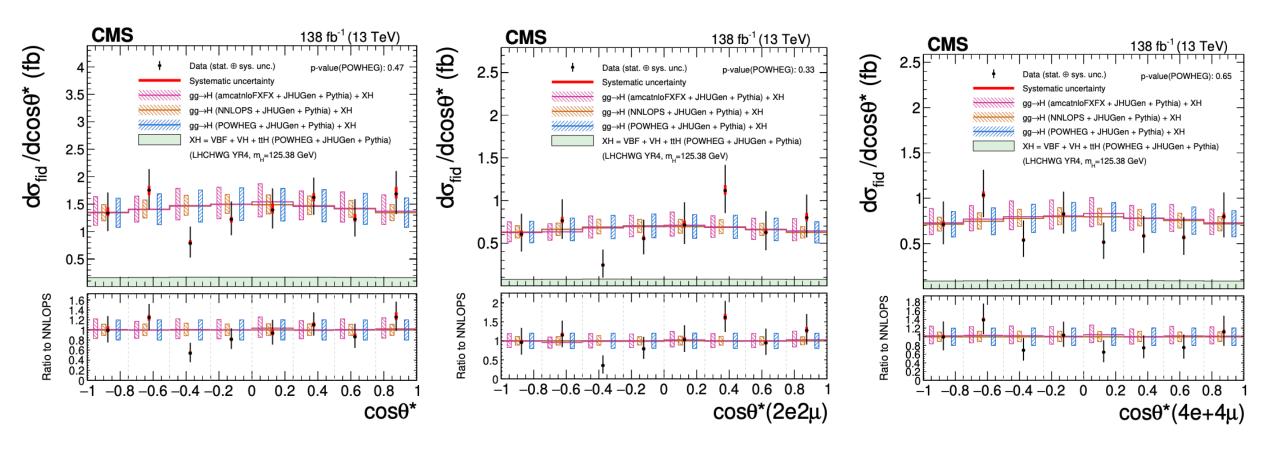

- The measured inclusive fiducial cross section and ± 1 standard deviation uncertainties for different final states at mH = 125.38 GeV.
- The statistical and systematic uncertainties are given separately for the inclusive measurements.
- Comparison of the inclusive fiducial cross section measurement by two methods
 - normalization of the ZZ irreducible background processes taken from MC simulation
 - normalization of the ZZ irreducible background processes as an unconstrained parameter in the fit.

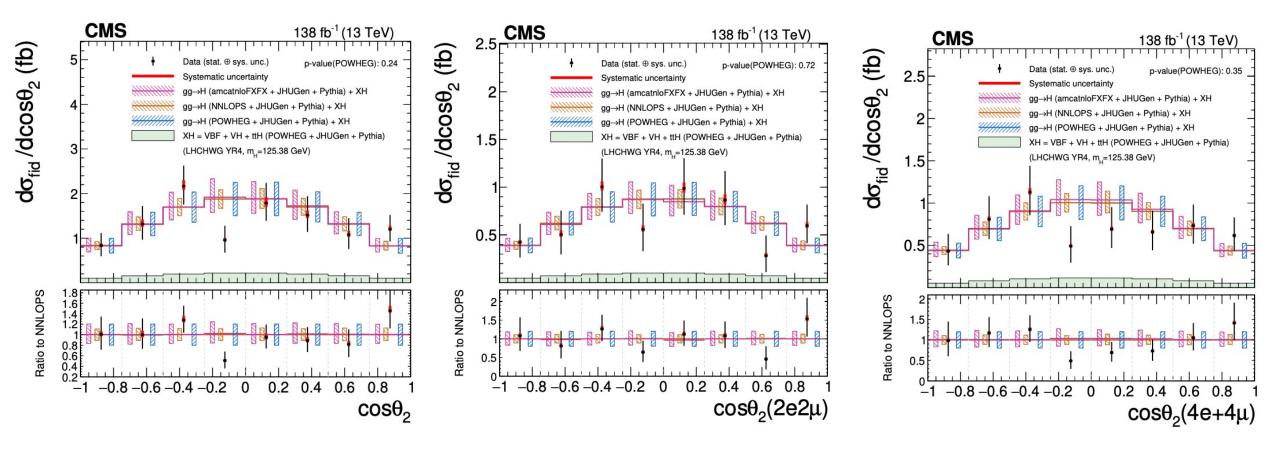

Correlation

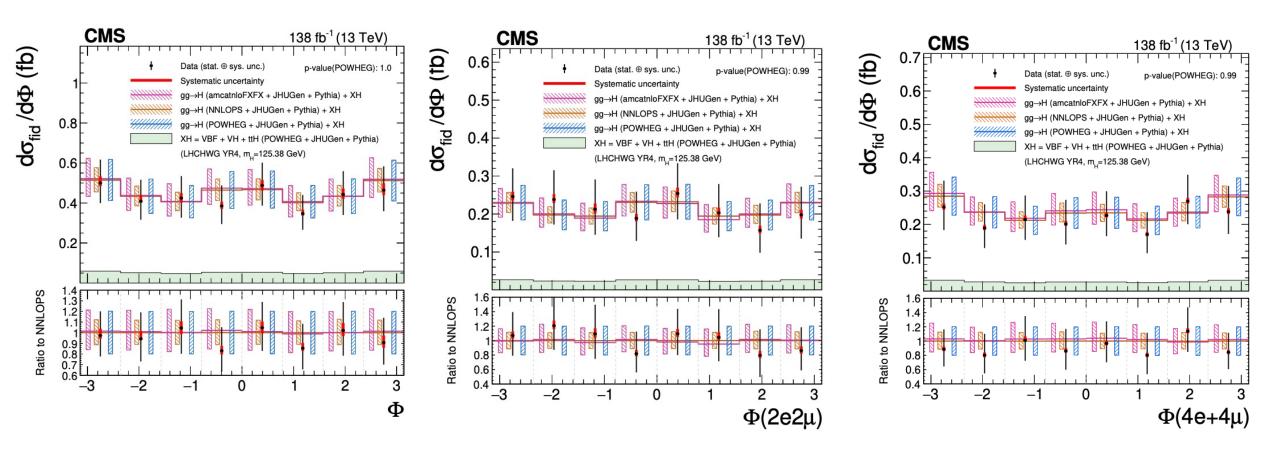


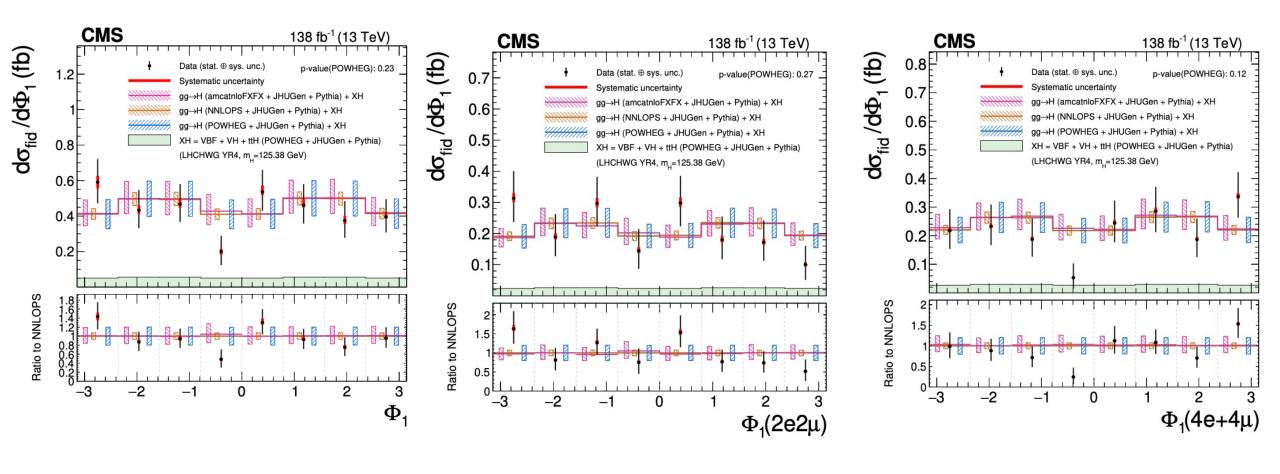

JHEP08(2023)040

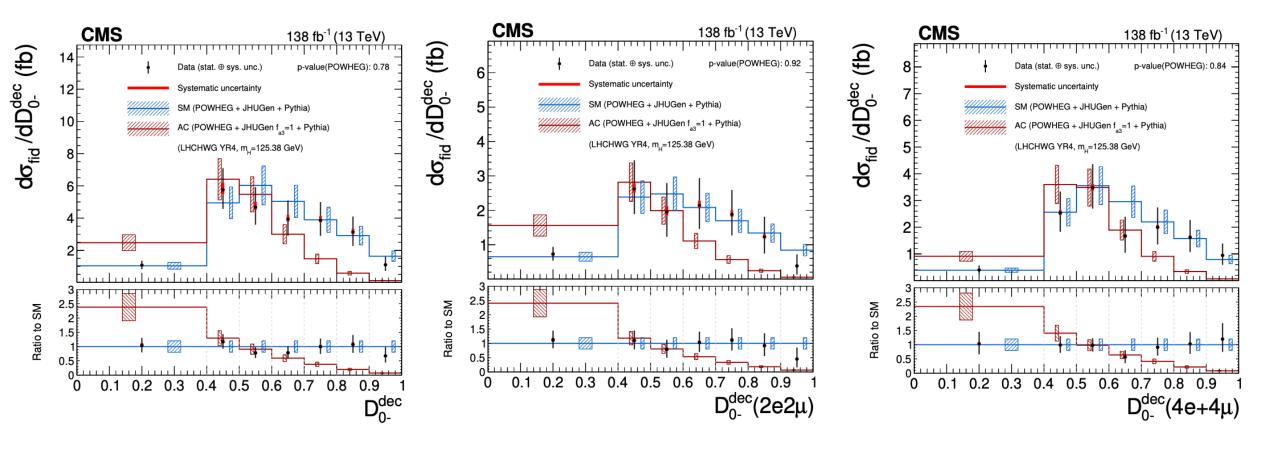

• Correlations between the fiducial cross sections in each final state and the ZZ normalization (right).

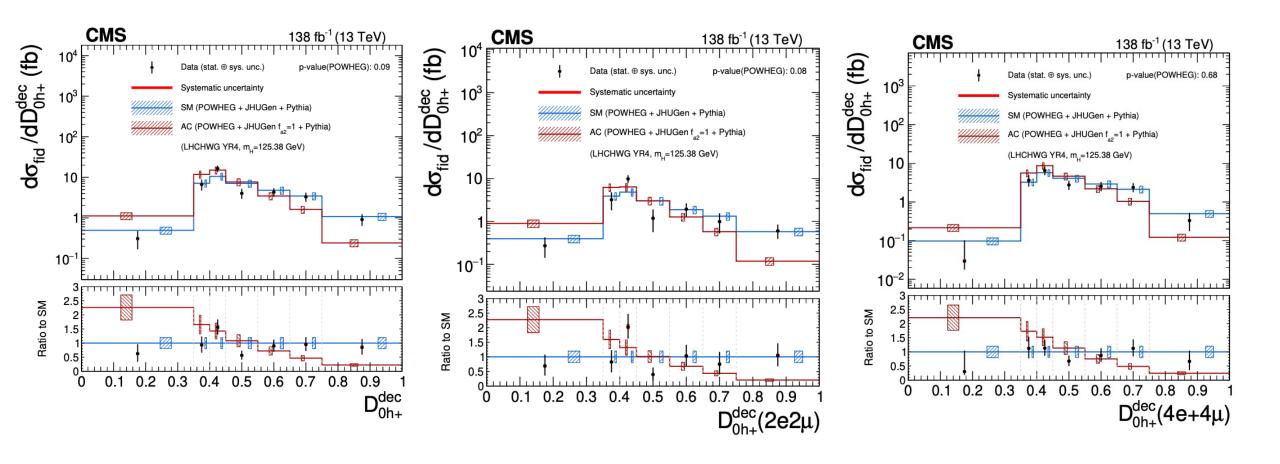


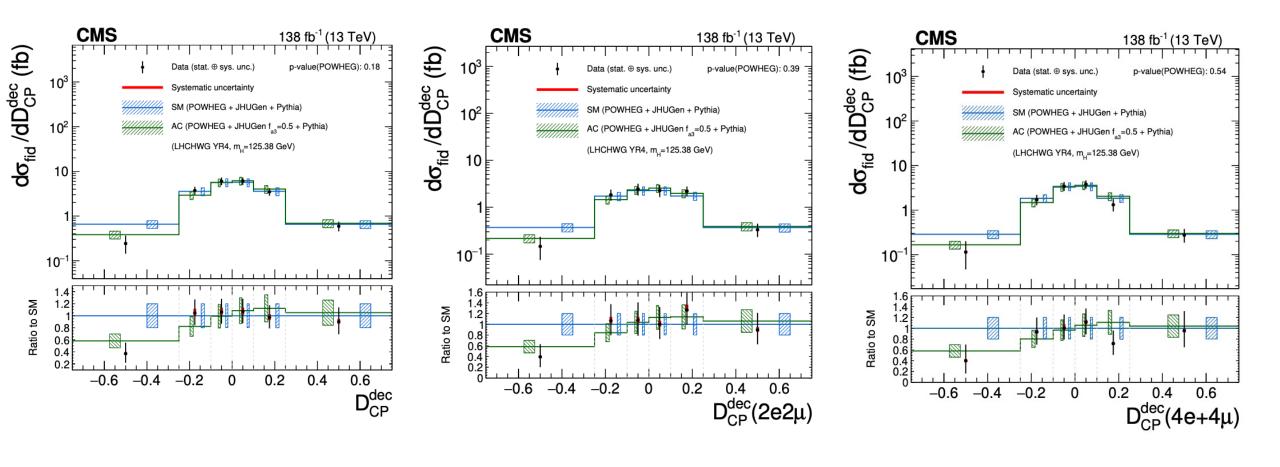


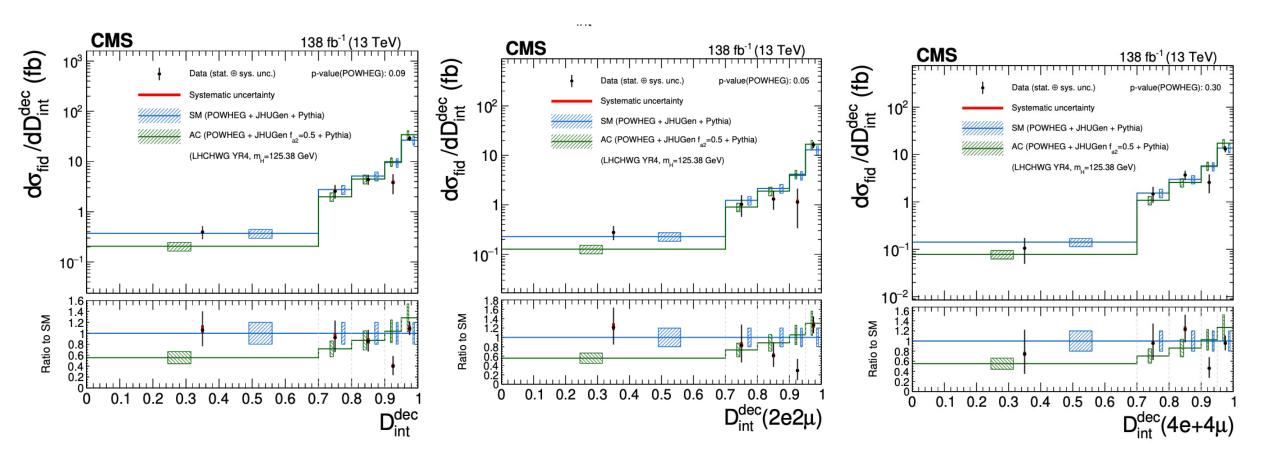


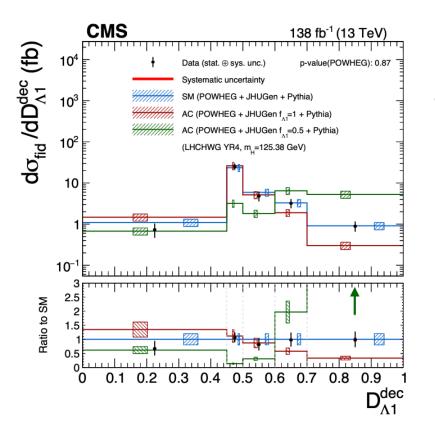


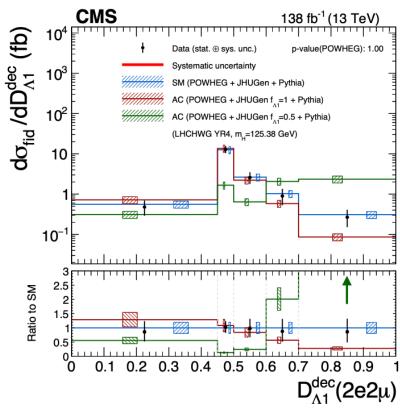


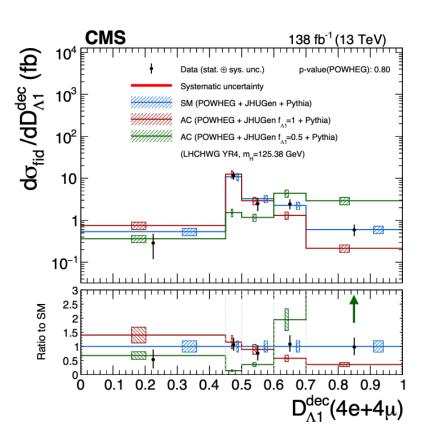


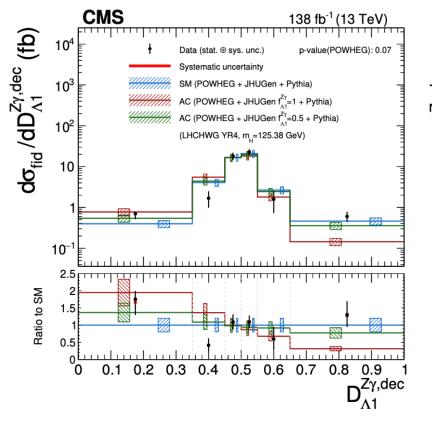


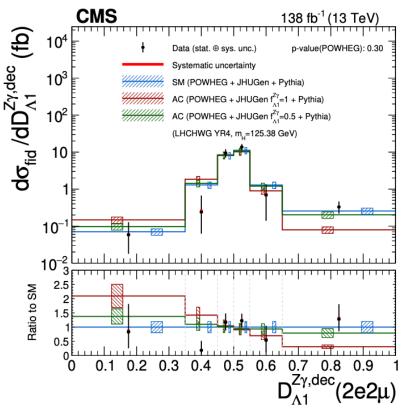


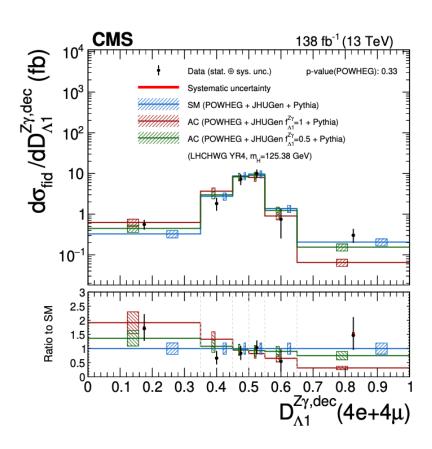


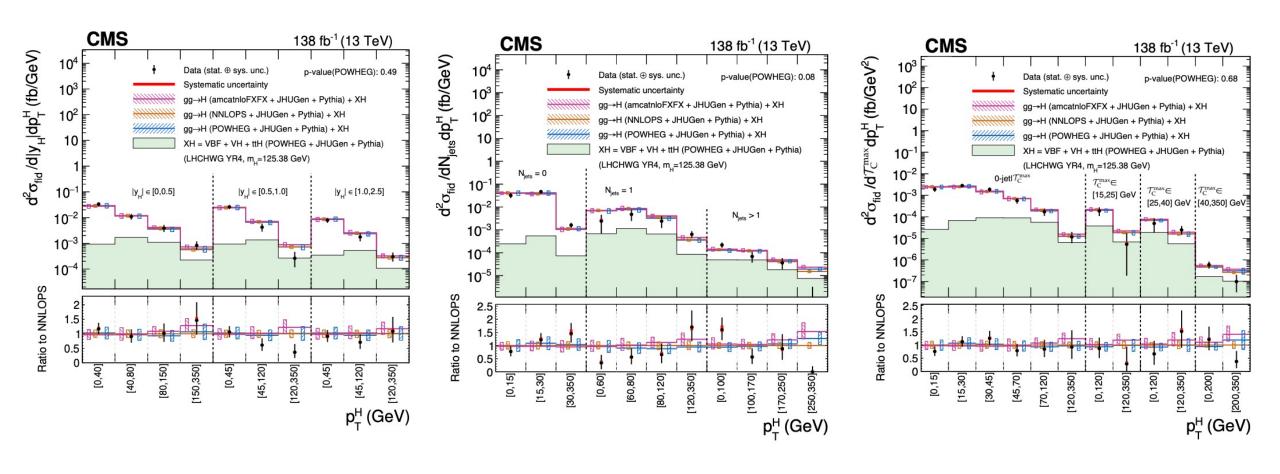


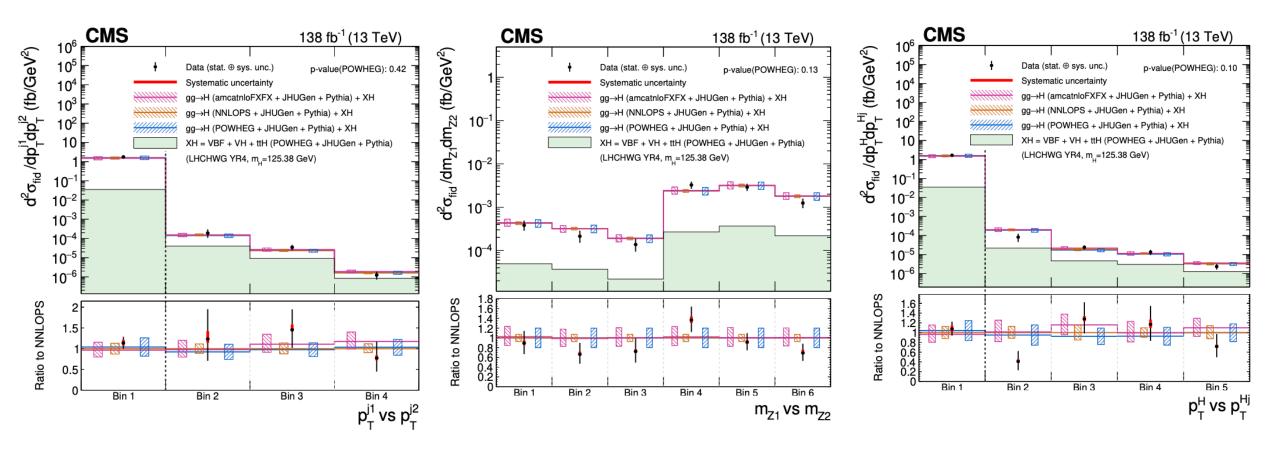


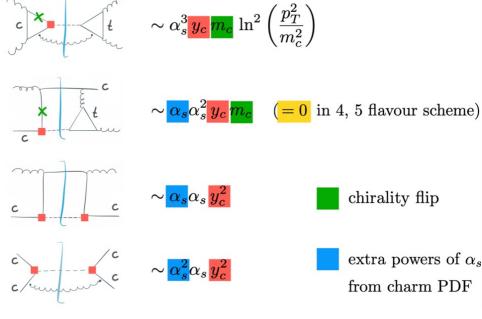












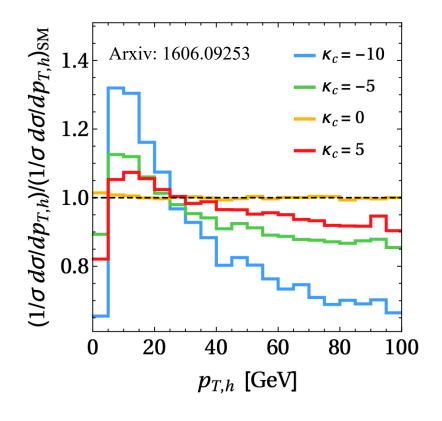
RMS method used in electron efficiency measurement

- 4 variables (altSig, altBkg, altMC, altTag)
- choosing the nominal setting to be central value
- The standard way of calculating systematic uncertainty in the Egamma TnP efficiency measurements is done by summing in quadrature 4 variations of the nominal setting.
- The main difference coming from the RMS approach is that we treat all the alternative measurements as variations of the same measurement with equal importance.
- Advantage of RMS method:
 - Sensitive to outliers
 - by adding alternative measurements we increase systematical uncertainty
- The improvement is visible in the reduction of the low pt uncertainty with the RMS approach.

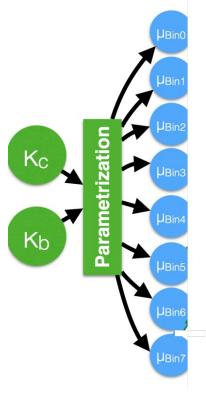
Introduction – Constrains of k_b , k_c

- Precise measurements of Higgs couplings play an important role since the couplings of Higgs boson are sensitive to BSM.
- The couplings to top and bottom are fairly precise while the coupling to charm is measured with large uncertainty.
- **Direct** measurement of y_c via:
 - $H o J/\psi \gamma$ channel is hard due to small signal rate and large continuous background
 - $pp \to W/ZH(H \to c \overrightarrow{c})$ and $pp \to Hc$ is dependent of c-tagging performance
- *Indirect* method:
 - Interpretation of P_H^T in terms of Higgs boson coupling of light quarks is exploited. Perform the scan of modification $k_c = \frac{y_c}{y_c^{SM}}$ and check its relative formula with P_H^T distribution.

Arxiv: 1606.09253


https://indico.cern.ch/event/783304/contributions/3497890/a ttachments/1913786/3163217/HC2NP19 Haisch.pdf

Constraints on Higgs boson couplings modifier


Probing k_b , k_c via p_T^H differential cross section

- Interpretation of $p_H^T \Rightarrow \text{ extract limits of Higgs boson coupling of light quarks}$
- Described in κ framework
 - Coupling modifiers expressed as $\kappa_c = y_c/y_c^{SM}$
 - Scan of modification κ_c
 - Check its relative formula with P_H^T distribution
- The theory predication combined of 2 method
 - Loop-induced ggF production -- Radish
 - Quark-initiated production of Higgs

-- MadGraph5_aMC@NLO

Parameterization of κ_b , κ_c

- Obtain 2D likelihood by varying kc and kb: $\Delta\sigma \to \Delta\sigma \; (\kappa_b,\kappa_c)$
- Signal model split into ggH and xH processes and the contributions from xH (not ggH) are set to SM
- We assume a parabolic function for the cross section

$$\sigma_{ggH} = \left| \sum_{i} A_{i} \kappa_{i} \right|^{2} = A \kappa_{b}^{2} + B \kappa_{c}^{2} + C \kappa_{t}^{2} + D \kappa_{b} \kappa_{c} + E \kappa_{b} \kappa_{t} + F \kappa_{c} \kappa_{t}$$

- Find the cross section for any set of the κ 's if we know the coefficients A, ..., F
- Use 6 known points: $\sigma_1(\vec{\kappa_1})$, $\sigma_2(\vec{\kappa_2})$, $\sigma_3(\vec{\kappa_3})$, $\sigma_4(\vec{\kappa_4})$, $\sigma_5(\vec{\kappa_5})$, $\sigma_6(\vec{\kappa_6})$
- Find values of the coefficients by simple matrix inversion
- κ_t set to 1.0 (SM) for the κ_b , κ_c analysis

$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{bmatrix} = \begin{bmatrix} \kappa_{b,1}^{2} & \kappa_{c,1}^{2} & \kappa_{t,1}^{2} & \kappa_{b,1}\kappa_{c,1} & \kappa_{b,1}\kappa_{t,1} & \kappa_{c,1}\kappa_{t,1} \\ \kappa_{b,2}^{2} & \kappa_{c,2}^{2} & \kappa_{t,2}^{2} & \kappa_{b,2}\kappa_{c,2} & \kappa_{b,2}\kappa_{t,2} & \kappa_{c,2}\kappa_{t,2} \\ \kappa_{b,3}^{2} & \kappa_{c,3}^{2} & \kappa_{t,3}^{2} & \kappa_{b,3}\kappa_{c,3} & \kappa_{b,3}\kappa_{t,3} & \kappa_{c,3}\kappa_{t,3} \\ \kappa_{b,4}^{2} & \kappa_{c,4}^{2} & \kappa_{t,4}^{2} & \kappa_{b,4}\kappa_{c,4} & \kappa_{b,4}\kappa_{t,4} & \kappa_{c,4}\kappa_{t,4} \\ \kappa_{b,5}^{2} & \kappa_{c,5}^{2} & \kappa_{t,5}^{2} & \kappa_{b,5}\kappa_{c,5} & \kappa_{b,5}\kappa_{t,5} & \kappa_{c,5}\kappa_{t,5} \\ \kappa_{b,6}^{2} & \kappa_{c,6}^{2} & \kappa_{t,6}^{2} & \kappa_{b,6}\kappa_{c,6} & \kappa_{b,6}\kappa_{t,6} & \kappa_{c,6}\kappa_{t,6} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \\ E \\ F \end{bmatrix}$$

Statistical analysis of κ_b, κ_c

An extended likelihood function is reconstructed by

$$\mathscr{L}(\overrightarrow{\Delta\sigma}|\overrightarrow{\theta}) = \prod_{i=1}^{n_{bins}} \prod_{k=1}^{n_{cat}} (pdf_i^k(\mathcal{O}_l|\overrightarrow{\Delta\sigma},\overrightarrow{\theta}))^{N_{obs}^{ikl}} \times Poisson(N_{obs}^{ik}|n_i^{sig,k}(\overrightarrow{\Delta\sigma}|\overrightarrow{\theta}) + n_i^{bkg,k}(\overrightarrow{\theta})) \times pdf(\overrightarrow{\theta})$$

- n_{bins}^{reco} is the number of reconstructed bins, n_{cat} is the number of categories for decay channel rel, and $n_{\mathcal{O}}$ is the number of bins for observable \mathcal{O}
- $pdf_i^k\left(\mathcal{O}_l|\Delta\sigma,\vec{\theta}\right)$ describes the probability to find an event measuring observable \mathcal{O} in reconstructed bin i.
- An overall probability distribution function for the observable $\mathcal O$ is constructed by summation of the signal and background distributions of the observable.
- In the case of fitting κ , parameter cross section in terms of κ

$$\overset{\rightarrow}{\Delta\sigma} \to \overset{\rightarrow}{\Delta\sigma} (\kappa_b, \kappa_c)$$

Two methods applied in the constrain of $\kappa_b ~\kappa_c$

- Results vary strongly depending on the assumption of the branching ratios.
- Overall discrimination power
 - Shape
 - Normalization
- The branching ratios depend on the couplings
 - Maximum amount of discrimination power
 - Normalization
 - Expected Cross section
 - Branching ratios scaled with coupling modifications
 - Constrain by the Higgs decay width.
- Freely floating branching ratios
 - Normalization of parametrization and coupling dependence of BRs are eliminated
 - Purely the constraints from only the shape.