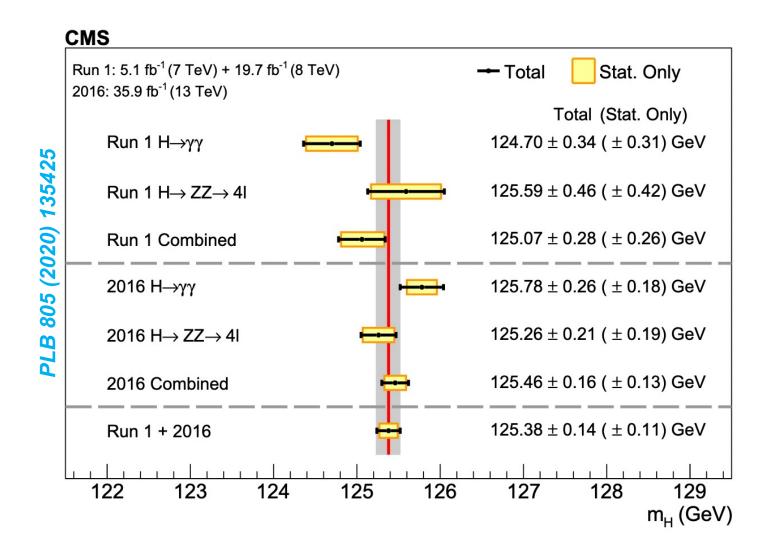

Higgs mass and width measurement in ZZ to 4-leptons final state with CMS full Run2 data

Chenguang Zhang IHEP, Beijing

CLHCP2023, Shanghai 16-20 Nov 2023


Introduction

- The Higgs boson mass is one of the most important free parameters of the Standard Model.
 - Its value should be measured precisely since it determines all other Higgs boson properties.
- The two mass peaks formed by 4ℓ and $\gamma\gamma$ have good resolution.
- Already ~0.1% precision by ATLAS Run1+Run2 combination.

Introduction

• Before this measurement from CMS ~0.1% precision

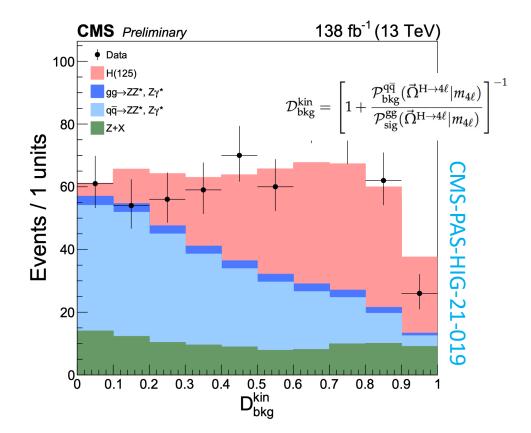

- Run2 Ultra-Legacy data (138 fb^{-1})
 - Event selection Inherits from HIG-21-009

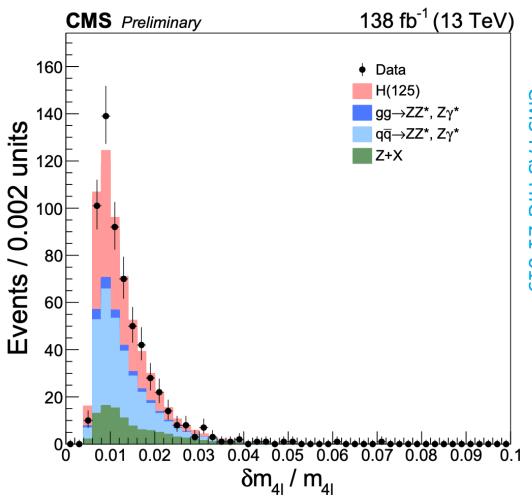

Table 2: The observed number of events and the post-fit expected yields for the H boson signal and background contributions in the on-shell region $105 < m_{4\ell} < 140 \,\text{GeV}$.

	4μ	4e	2e2μ	2μ2e	Total
qq background	89.2	38.9	64.4	42.1	234.6
gg background	9.7	4.9	4.9	3.8	23.4
Z+X background	32.4	12.2	28.2	18.6	91.3
Total signal	90.9	48.7	65.5	53.3	258.4
Total expected	222.2	104.6	163.0	117.8	607.7
Observed	230	94	170	107	601

MS-PAS-HIG-21-019

- Observables
 - 4-lepton invariant mass (m_{4l})
 - Kinematic discriminant (D_{bkg}^{kin})
 - Per-event mass uncertainty (D_{mass})

- Signal line shape: double-side crystal ball
 - Treat all parameters as function of m_H
 - $k_i = a + b * (125 m_H)$
- ZZ backgrounds: from simulations
- Z+X: data-driven


- Per-event mass uncertainty
 - Lepton kinematics uncertainty is propagated to the 2/4-lepton event to predict the mass uncertainty on an event-by-event basis

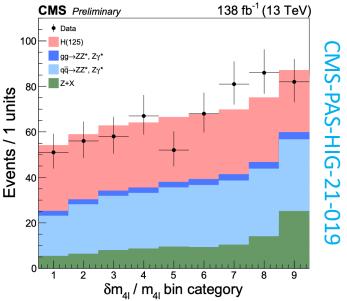
$$m_0 = F(p_{T1}, \phi_1, \eta_1; p_{T2}, \phi_2, \eta_2; p_{T3}, \phi_3, \eta_3; p_{T4}, \phi_4, \eta_4)$$

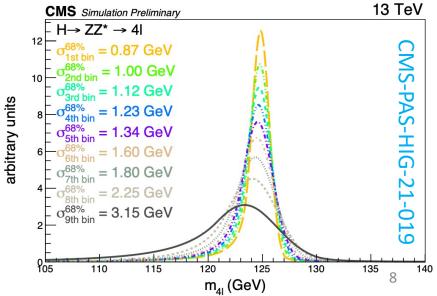
$$\delta m_i = F(...; p_{Ti} + \delta p_{Ti}, \phi_i, \eta_i; ...) - m_0$$

$$\delta m = \sqrt{\delta m_1^2 + \delta m_2^2 + \delta m_3^2 + \delta m_4^2}$$

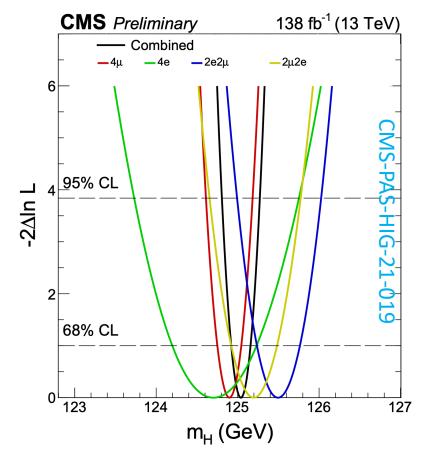
- The per-lepton momentum uncertainties are corrected in data and simulation using Z boson events
 - Asking $\overline{\delta m} = \sigma$ of the Z peak
- After corrections are derived, a closure test of the agreement between the predicted and fitted 4-lepton mass resolution is performed.
 - Measured σ : the σ from the fit function
 - Predicted σ : arithmetic mean of predicted perevent mass error

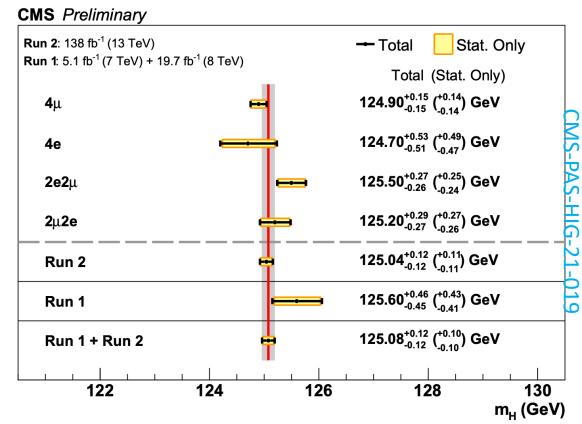
- New technique, beam-spot constraint for muon (new w.r.t HIG-16-041)
 - Once the 4-lepton system selected, muons are constrained to beam spot
 - This method improves Higgs boson mass resolution by roughly 5-8% (depending on year) in the 4μ final state
 - Smaller impact (<3%) in $2\mu 2e$ and $2e2\mu$ final state
 - No improvement in 4e final state, because electron momentum measurement is dominated by ECAL system


Z1 mass constraint

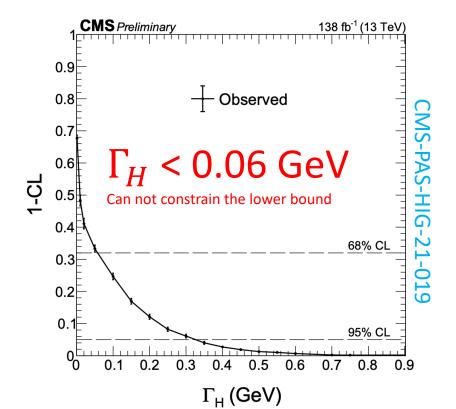

- To improve the mass resolution, a kinematic fit is also performed using a mass constraint on the intermediate on-shell Z resonance
- The basic idea is to re-evaluate P_T of two leptons forming the Z1 boson of the Higgs candidate, with a constraint on the reconstructed Z mass to follow the Z boson true line shape

$$\begin{split} &L(p_T^1, p_T^2 \middle| p_T^{reco1}, p_T^{reco2}, \sigma_{pT}^1, \sigma_{pT}^2) \\ &= Gauss(p_T^{reco1} \middle| p_T^1, \sigma_{pT}^1) Gauss(p_T^{reco2} \middle| p_T^2, \sigma_{pT}^2) L(m_{12} \middle| m_Z, m_H) \end{split}$$


- Per-event mass uncertainty (new w.r.t HIG-16-041)
 - In 2016, 3D likelihood $\mathcal{L}(m_{4l}, D_{mass}, D_{bkg}^{kin})$
 - Currently, mass error for categorisation
 - $\mathcal{N} \times \mathcal{L}(m_{4l}, D_{bkg}^{kin})$
 - Events are classified into 9 categories based on their σ_{m4l}/m_{4l}
 - Ranges are found by splitting ggH (at 125GeV) sample evenly
 - The new approach deal with the correlation between σ_{m4l} and D_{bkg}^{kin}
- Better systematic uncertainties treatment

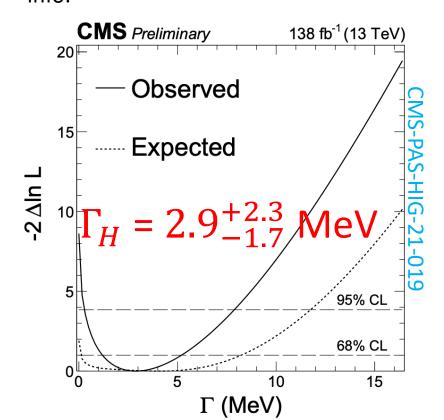

Difference(%)	4μ	4e	2e2μ	2μ2e
Muon momentum scale	0.03%	-	0.03%	0.03%
Electron energy scale	_	0.15%	0.15%	0.15%
Muon momentum resoltuon	3%	-	3%	3%
Electron energy resolution	-	10%	10%	10%

Full Run2 and Run1+Run2 results


 $m_H = 125.08 \pm 0.12 (\pm 0.10) \ GeV$

Expected: 0.12 GeV

CMS Γ_H measurement in $H \to ZZ \to 4\ell$


• On-shell

- Same as the mass procedure, treat Γ_H as POI, 1D model only
- Bounded parameter, Feldman-Cousins algorithm

Off-shell

- Aim to measure width from the ratio of off-shell and on-shell yields
- Mass range > 220 GeV
- Categorisation based on MELA and jet info.

Summary

- m_H measurement using CMS full Run2 data in 4-lepton final state has been presented
- m_H from HZZ

	Run1	Run1 (ATLAS+CMS)	2016	Run2	Run1+2
ATLAS	124.51 ± 0.52	125.15 ± 0.40	124.79 ± 0.37	124.99 ± 0.19	124.94 ± 0.18
CMS	125.59 ± 0.46		125.26 ± 0.21	125.04 ± 0.12	125.08 ± 0.12

- Γ_H from HZZ
 - Off-shell, $\Gamma_H = 2.9^{+2.3}_{-1.7} \text{ MeV}$
 - On-shell, $\Gamma_H < 0.06 \text{ GeV}$

Thank you for your attention

Objects definition is inherited from HIG-19-001 and HIG-21-009

AN	Electrons		
	$ m p_T^e > 7GeV ~~ \eta^e < 2.5$		
	$d_{xy} < 0.5 \text{cm}$ $d_z < 1 \text{cm}$		
$d_{xy}^{11} < 0.5 \text{cm}$ $d_z < 1 \text{cm}$ $ SIP_{3D} < 4$			
BDT ID with isolation with cuts			

Muons

Global or Tracker Muon

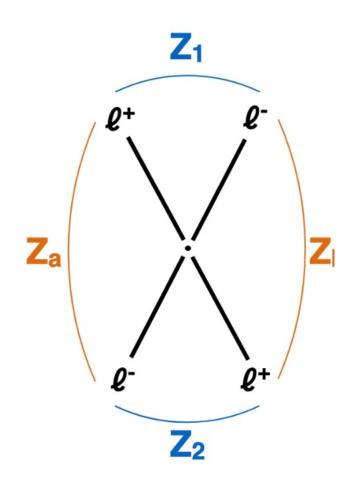
Discard Standalone Muon tracks if reconstructed in muon system only Discard muons with muonBestTrackType==2 even if they are global or tracker muons

$$p_T^{\mu} > 5 \text{ GeV} \qquad |\eta^{\mu}| < 2.4 \ d_{xy} < 0.5 \text{ cm} \qquad d_z < 1 \text{ cm} \ |\text{SIP}_{3D}| < 4$$

PF muon ID if $p_T <$ 200 GeV, PF muon ID or High- p_T muon ID if $p_T >$ 200 GeV $\mathcal{I}_{PF}^{\mu} < 0.35$

$$FSR \ photons$$

$$p_T^{\gamma} > 2 \, \text{GeV} \quad |\eta^{\gamma}| < 2.4$$


$$\mathcal{I}_{PF}^{\gamma} < 1.8$$

$$\Delta R(\ell, \gamma) < 0.5 \quad \frac{\Delta R(\ell, \gamma)}{(p_T^{\gamma})^2} < 0.012 \, \text{GeV}^{-2}$$

Event Selection

Event selection is inherited from HIG-19-001 and HIG-21-009

- Z Candidates
 - Any OS-SF pair that satisfies $12 < m_{ll} < 120 \text{ GeV}$
- Build all possible **ZZ candidates** defined as pairs of non-overlapping Z candidate; define Z_1 candidate with m_{ll} closest to the PDG m_Z
 - m_{z1} > 40GeV; $P_T(l1)$ > 20GeV; $P_T(l2)$ > 10GeV
 - $\Delta R > 0.02$ between each of the four leptons
 - m_{II} > 4GeV for OS pairs (regardless of flavor)
 - Reject 4μ and 4e candidates where the alternative pair Z_aZ_b satisfies $\mid m_{za}-m_z\mid<\mid m_{z1}-m_z\mid$ AND $m_{zb}<$ 12GeV
 - $m_{4l} > 70 \text{GeV}$
- If more than one ZZ candidate is left, take the one with m_{Z1} mass closest to m_Z and the Z_2 from the candidates whose lepton give higher P_T sum.

