

Production of D_s^+ and D^+ in proton-lead collisions with the LHCb detector

Yiheng Luo, Peking University on behalf of LHCb collaboration

November 16th, 2023 @Shanghai, China

第九届中国LHC物理年会 The 9th China LHC Physics Workshop

- Introduction
- LHCb detector and datasets
- Results in *pPb* collisions at LHCb
 - > Prompt D_s^+ and D^+ production at $\sqrt{s_{NN}} = 5.02$ and 8.16TeV

[arXiv:2309.14206; arXiv:2311.08490]

• Summary

Introduction

- Cold nuclear matter effects (CNM) are assumed to be dominant in *p*Pb collisions
 - Modification of nuclear parton distribution functions (nPDFs).
 - > Other initial/final state effects.
- Production of open charm (D_s^+, D^+) are used to probe CNM and constrain nPDFs at small-*x* and mid-*x* region in *p*Pb collisions at LHCb.

2

3

Introduction

- Modification of heavy quark hadronization and strangeness enhancement
 - Since the enhanced s quark abundance in the QGP, an increased D_s^+ in heavy-ion collisions relative to pp has been predicted.
 - \succ The *s* quark enhancement was also observed in high-multiplicity *pp* collisions.
 - > D_s^+/D^+ ratios increase versus multiplicity is also expected.

LHCb detector

- A single-arm forward spectrometer, covering the range of $2 < \eta < 5$.
- Designed for studying particles containing b or c quarks.

LHCD THCD

[LHCb, JINST 3 (2008) S08005] [LHCb, IJMPA 30 (2015) 1530022]

LHCb datasets

- Rapidity coverage:
 - \succ y^{*}: rapidity in nucleon-nucleon cms
 - $\succ y_{cms} = \pm 0.45$
 - Forward: $1.5 < y^* < 4.0s$
 - ▶ Backward: $-5.0 < y^* < -2.5$
 - ≻ common region: $2.5 < |y^*| < 4.0$
- $\sqrt{s_{NN}} = 5.02 \text{TeV} (\text{Run I}, 2013)$ > Luminosity: pPb(1.06 nb⁻¹) + Pbp (0.52 nb⁻¹)
- $\sqrt{s_{NN}} = 8.16$ TeV (Run II, 2016) > Luminosity: pPb(13.6 nb⁻¹) + Pbp (20.8 nb⁻¹)
- Decay modes:
 - $\succ D^+ \rightarrow K^- \pi^+ \pi^+ \& c.c$ $\succ D_s^+ \rightarrow K^- K^+ \pi^+ \& c.c$

Prompt D_s^+ and D^+ production in *p*Pb at $\sqrt{s_{NN}} = 5.02$ and 8.16TeV

[arXiv:2309.14206; arXiv:2311.08490]

Prompt D_s^+ and D^+ yield determination in *p*Pb at 5.02TeV

LHCb

 $p Pb \sqrt{s_{NN}} = 5.02 TeV$

1900

 D^+

 $\log_{10}\chi^2_{\rm IP}$

LHCb

2

 D^+

 $2 < p_{_{\rm T}} < 3~{\rm GeV}/c$

 $3.0 < y^* < 3.5$

[arXiv:2309.14206]

LHC

- Prompt and from *b* yields: distinguished by fitting $\log_{10}\chi_{IP}^2$ distribution.
- Background: described with a PDF created from the data side-band regions. [Comput. Phys. Commun. 136 (2001),198

Prompt D_s^+ and D^+ yield determination in *p*Pb at 8.16TeV

[arXiv:2311.08490]

IHC

- Prompt and from *b* yields: distinguished by fitting $\log_{10}\chi_{IP}^2$ distribution.
- Background:

subtracted by sPlot technique.

[Nucl. Instrum. Methods Phys.Res., Sect. A 555, 356 (2005)] 8

D_s^+ and D^+ nuclear modification factors at 5.02 & 8.16 TeV *LHC*

5.02TeV [arXiv:2309.14206]

- $R_{pPb} = \frac{\mathrm{d}^2 \sigma_{pPb} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y^*}{208 \times \sigma_{pp} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y^*}$
 - Forward:
 ➤ R_{pPb} is consistent with D⁰ and nPDFs and CGC (5.02 & 8.16TeV).
- Backward:
 - D⁺ data are lower than the nPDFs (5.02TeV). Possible change in charm hadronization?
 - D-meson data are lower than the nPDF calculations (8.16TeV).
 Possible other nuclear effects may exist in pPb (initial/final state energy loss, multiple parton scattering...).

[PhysRevLett.131.102301]

D_s^+ and D^+ forward-backward ratios at 5.02 & 8.16 TeV

5.02TeV [arXiv:2309.14206]

- $R_{FB}(p_{T}, y^{*}) = \frac{d^{2}\sigma_{FWD}(p_{T}, |y^{*}|; y^{*} > 0)/dp_{T}dy^{*}}{d^{2}\sigma_{BWD}(p_{T}, |y^{*}|; y^{*} < 0)/dp_{T}dy^{*}}$
- A a rising trend with $p_T (D^+)$, consistent with nPDFs at low p_T regions.
- A slight y^* dependence $(D^+ \& D_s^+)$, consistent with nPDFs.

D_s^+ , D^+ and D^0 production ratios at 5.02 TeV

- D_s^+/D^0 and D_s^+/D^+ ratios:
 - No significant strangeness enhancement in immediate p_T region.
 - Consistent with previous results at 5.02TeV.
- *D*⁺/*D*⁰ ratio:
 pp > forward > backward.
 - $R_{\rm FB}$ (charge) > 1 \rightarrow average multiplicity:
 - \succ backward > forward (~1.6x).

[Phys. Rev. Lett. 128, 142004]

D_s^+/D^+ production ratio vs multiplicity at 8.16TeV

- D_s^+/D^+ ratio increases significantly versus multiplicity ($N_{\text{Tracks}}^{\text{PV}}$).
- D_s^+/D^+ ratio is consistent with ALICE measurements.
- A modification of charm quark hadronization in high multiplicity *p*Pb collisions?

Summary

- Prompt D^+ and D_s^+ production has been measured at 5.02 and 8.16TeV with the LHCb detector, constraining nPDFs and CGC models.
- First production measurement of D^+ and D_s^+ in forward and backward rapidity regions at LHCb, down to very low $p_{\rm T}$.
- Measured R_{pPb} and R_{FB} indicate the existence of CNM effects and other nuclear effects.
- D^+/D^0 , D_s^+/D^0 and D_s^+/D^+ ratios are measured in *p*Pb collisions at 5.02TeV and are suited as reference for the PbPb studies.
- In *p*Pb collisions at 8.16TeV, an significant enhancement of D_s^+/D^+ vs multiplicity is observed in the low p_T region.

Thank you!