Beauty baryon to double open-charm decays at LHCb

Yiduo Shang on behalf of LHCb collaboration

Peking University

CLHCP

November, 2023

- Motivation
- LHCb experiment
- New beauty baryon to double open-charm decays
 - Observation of $\mathcal{Z}_b^{0(-)} \rightarrow \mathcal{Z}_c^{0(+)} D_s^-$ decays [arXiv:2310.13546]
 - Measurement of the relative branching fractions of $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}$ decays [LHCb-PAPER-2023-034]
- Summary

Motivation

• Measurement of $\mathcal{B}(H_b \to H_c D_s^{(*)-})$ and $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)$ can test theory predictions

- Heavy quark effective theory (HQET)
 - Decays dominated by $b \rightarrow c$, while light quarks serve as spectators. According to HQET, they should have approximately the same partial width.
- Numeric calcualtions

$$\frac{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{*-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-})} = 0.75 \sim 2.25^{[1-13]}$$

$$\frac{\mathcal{B}(\Xi_{b}^{0} \to \Xi_{c}^{+} D_{s}^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-})} = 0.91 \sim 1.06^{[14-16]} H_{b}:$$

$$\frac{\mathcal{B}(\Xi_{b}^{-} \to \Xi_{c}^{0} D_{s}^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-})} = 0.97 \sim 1.06^{[14-16]}$$

$$H_{b}:$$

$$\frac{\mathcal{B}(\Xi_{b}^{-} \to \Xi_{c}^{0} D_{s}^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-})} = 0.97 \sim 1.06^{[14-16]}$$

2 7

Motivation for $\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$

- Pentaquark P_c^+ seen in $\Lambda_b^0 \to J/\psi p K^-$ and $\Lambda_b^0 \to J/\psi p \pi^-$
- Decays to $\Lambda_c^+ \overline{D}^{(*)0}$ are open-charm equivalent of $J/\psi p$

 Λ_{h}^{0}

 $\Sigma^{+} \overline{D}^{0}$

data total fit

background

tes/(2 MeV)

1000

 $\Sigma_c^+ \bar{D}^{*0}$

[PRL 122, 222001]

LHCb

Where are we looking at ? —— LHCb!

 Single-arm forward spectrometer, designed to study CP violation and rare decays within beauty and charm hadrons

Observation of $E_b^{0(-)} \rightarrow E_c^{+(0)} D_s^-$ decays

[arXiv:2310.13546]

Analysis strategy

- Data samples
 - 5.1 fb⁻¹ proton-proton collisions collected at $\sqrt{s} = 13$ TeV by LHCb in 2016-2018
- Measurement of cross-section ratio times branching fraction ratio

•
$$R\left(\frac{\Xi_b^0}{\Lambda_b^0}\right) \equiv \frac{f_{\Xi_b^0}}{f_{\Lambda_b^0}} \times \frac{\mathcal{B}(\Xi_b^0 \to \Xi_c^+ D_s^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = \frac{N(\Xi_b^0 \to \Xi_c^+ D_s^-)}{N(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} \times \frac{\varepsilon(\Lambda_b^0 \to \Lambda_c^+ D_s^-)}{\varepsilon(\Xi_b^0 \to \Xi_c^+ D_s^-)} \times \frac{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}$$

• $R\left(\frac{\Xi_b^-}{\Lambda_b^0}\right)$ and $R\left(\frac{\Xi_b^0}{\Xi_b^-}\right)$ defined similarly

- Ξ_b mass measurement
 - Energy release Q in $\mathcal{Z}_b \to \mathcal{Z}_c D_s^-$ are small, so the momentum scale induced uncertainty is small.

• Charm hadron reconstruction: $\Xi_c^+(\Lambda_c^+) \to pK^-\pi^+, \Xi_c^0 \to pK^-K^-\pi^+, D_s^- \to K^+K^-\pi^-$

Signal yield determination

- Selections suppress backgrounds
- Fit to the invariant mass of *H*_b

Efficiencies and systematic uncertainties

Effiencies taken from simulation

• Data-driven corrections to: PID responses, track reconstruction efficiency, production- and decay-kinematics, track multiplicity

Systmatic uncertainties	Source	$\mathcal{R}\left(rac{arepsilon_b^0}{arLambda_b^0} ight)$	$\mathcal{R}\left(rac{arepsilon_b^-}{A_b^0} ight)$	$\mathcal{R}\left(rac{arpi_b^0}{arpi_b^-} ight)$
on signal yields {	Imperfect modelling of invariant-mass fit	2.7%	1.3%	3.4%
	Fraction of non-dicharm background	2.0%	1.6%	2.5%
on efficiencies -	Limited simulation sample size	0.9%	1.0%	0.8%
	Trigger efficiency	1.5%	1.5%	1.5%
	Reconstruction efficiency	0.1%	1.6%	1.7%
	Corrections to simulations	1.3%	4.3%	4.3%
-	Total	3.8%	5.4%	6.5%

Results of branching fraction ratios

LHCb measurement of $R\left(\frac{H_b^1}{H_b^2}\right) \equiv \frac{f(H_b^1)}{f(H_b^2)} \times \frac{\mathcal{B}(H_b^1 \to H_c^1 D_s^-)}{\mathcal{B}(H_b^2 \to H_c^2 D_s^-)}$	LHCb measurement of branching fraction ${\cal B}$ ratios	Theory predictions of $\mathcal B$ ratios		
$R\left(\frac{\Xi_b^0}{\Lambda_b^0}\right) = (15.8 \pm \frac{\text{stat}}{1.1} \pm \frac{\text{syst}}{0.6} \pm \frac{\mathcal{B}(H_c)}{7.7})\%$	$\frac{\mathcal{B}\left(\mathcal{Z}_{b}^{0} \to \mathcal{Z}_{c}^{+} D_{s}^{-}\right)}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-})} = 1.92 \pm 1.15$	0.91~1.06 ^[14-16]		
$R\left(\frac{\Xi_b^-}{\Lambda_b^0}\right) = (16.9 \pm 1.3 \pm 0.9 \pm 4.3)\%$	$\frac{\mathcal{B}(\mathcal{Z}_b^- \to \mathcal{Z}_c^0 D_s^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ D_s^-)} = 2.06 \pm 0.88$	0.97~1.06 ^[14-16]		
$R\left(\frac{\Xi_b^-}{\Xi_b^0}\right) = (93.6 \pm 9.6 \pm 6.1 \pm 51.0)\%$ • $R\left(\Xi_b^-/\Xi_b^0\right)$ consistent with isospin symm • R are valuable input for $f(\Xi_b)/f(\Lambda_b^0)$	hetry Input fragmentation ratio $f(\Xi_b^-)/f(\Lambda_b^0) = (8.2 \pm 2.7)$ measured with $\Xi_b^- \rightarrow J/\psi\Xi^-$ and assuming SU(3) symmetry [PRD99 Assume $f(\Xi_b^-)/f(\Xi_b^0) = 1$	Input fragmentation ratio $f(\Xi_b^-)/f(\Lambda_b^0) = (8.2 \pm 2.7)\%$ measured with $\Xi_b^- \rightarrow J/\psi\Xi^-$ and $\Lambda_b^- \rightarrow J/\psi\Lambda$ assuming SU(3) symmetry [PRD99(2019)050026] Assume $f(\Xi_b^-)/f(\Xi_b^0) = 1$		

Results of \mathcal{Z}_b mass

New LHCb measurements are consistent with PDG values^[29]

• Dominant systematic uncertainty comes from momentum scale calibration

Measurement of the relative branching fractions of $\Lambda_b^0 \rightarrow \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^{*-}$ decays

[LHCb-PAPER-2023-034]

Analysis strategy

Data samples

• 5.4 fb⁻¹ proton-proton collisions collected at $\sqrt{s} = 13$ TeV by LHCb in 2015-2018

Charm hadron reconstruction

•
$$\Lambda_c^+ \to p K^- \pi^+$$
, $\overline{D}{}^0 \to K^+ \pi^-$, $D_s^- \to K^+ K^- \pi^-$

• D_s^{*-} and \overline{D}^{*0} reconstructed partially in $K^+K^-\pi^-$ and $K^+\pi^-$ respectively

Signal yield determination

- Measure $N(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-)$ and $N(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-})$ through partial reconstruction. π^0 or γ from \overline{D}^{*0} or D_s^{*-} not reconstructed.
- Invariant mass distribution of partially reconstructed decays determined by kinematics and dynamics i.e. amplitude composition

$$MUZ Uata = Full model$$
Full model
Full mod

$$\begin{split} N(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-}) &= 46400 \pm 500 (\text{stat.}) \\ N(\Lambda_b^0 \to \Lambda_c^+ D_s^-) &= 35450^{+200}_{-210} (\text{stat.}) \\ N(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{*0} K^-) &= 10560^{+310}_{-290} (\text{stat.}) \\ N(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^0 K^-) &= 4010 \pm 70 (\text{stat.}) \end{split}$$

Efficiencies and systematic uncertainties

Effficiency taken from simulation

• Data-driven corrections to: production and decay kinematics, track multiplicity, BDT response for $\Lambda_c^+ \rightarrow p K^- \pi^+$

 $\varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^- \right) / \varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ D_s^- \right) = 0.809 \pm 0.006 (\text{MC stat})$ $\varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^{*0} K^- \right) / \varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ D_s^- \right) = 0.680 \pm 0.005 (\text{MC stat})$ $\varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ D_s^{*-} \right) / \varepsilon \left(\Lambda_b^0 \to \Lambda_c^+ D_s^- \right) = 0.785 \pm 0.005 (\text{MC stat})$

Efficiency of partially reconstructed Λ_b^0 is lower, because its track does not point to PV

 Systematic uncertainties 	Source / relative to	$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-}\right)} \begin{bmatrix}\%\end{bmatrix}$	$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{*0} K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-}\right)} \begin{bmatrix}\%\end{bmatrix}$	$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{*-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-}\right)} \begin{bmatrix}\%\end{bmatrix}$
	Fit model Weighting	$\substack{+0.5\\-0.6\\0.1}$	$^{+2.8}_{-3.0}$ 0.1	$^{+3.6}_{-3.3}$ 0.0
	Multiple candidates	0.0	0.0	0.1
	Size of the simulated samples	0.4	0.3	0.2
	Size of the generated samples	0.6	0.6	0.6
	Total	0.9	$^{+2.9}_{-3.1}$	$+3.7 \\ -3.3$
	Statistical	1.8	2.8	1.3

Results

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{0} K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-}\right)} = 0.1908^{+0.0036}_{-0.0034}(\text{stat})^{+0.0016}_{-0.0018}(\text{syst}) \pm 0.0038(\mathcal{B})$$

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} \overline{D}^{*0} K^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{-}\right)} = 0.589^{+0.018}_{-0.017}(\text{stat})^{+0.017}_{-0.018}(\text{syst}) \pm 0.012(\mathcal{B})$$

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{*-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \to \Lambda_{c}^{+} D_{s}^{*-}\right)} = 1.668 \pm 0.022(\text{stat})^{+0.061}_{-0.055}(\text{syst})$$

Prefer the following theories (1.45~1.84)

- factorization approximation, using the quark model, treating $\xi=1/N_c$ as a free parameter ^[4]
- the light-front approach under the diquark picture^[11, 15]
- the light-front quark model ^[10]
- HQET with 1/m_Q corrections and factorization approximation ^[3]
- the covariant confined quark model ^[9]
- the covariant oscillator quark model ^[5]

Do not prefer the following theories (0.75~1.29, 2.25)

- HQET and factorization ^[1]
- the nonrelativistic quark model ^[2]
- a covariant light-front quark model, diquark approximation, QCD factorization approach^[6]
- a detailed angular momentum formulation^[8]
- a model based on Cornell potential plus logarithmic term in the hyperspherical coordinates ^[12]
- the contact-range effective field theory approach, the pentaquark molecules are produced in the Λ_b^0 decay via the triangle diagrams^[13]

Results

Results

• Comparing $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-)$ to mesonic counterpart allows to estimate strength of color-suppressed amplitudes, which are absent for meson decays

- \mathcal{DR} of decays via \overline{D}^0 hint towards larger baryonic branching ratio, while those corresponding to the \overline{D}^{*0} are inconclusive.
- Larger baryonic branching fractions are expected, due to an additional color-suppressed amplitude in the Λ_b^0 decay, which does not exist for mesons.

- LHCb is capable of reconstructing fully hadronic beauty to double open-charm decays with 6 and 7 particles in the final state, reaching down to percent-level precision!
- The presented branching fractions show sensitivity to test models.
- $\mathcal{B}(\Xi_b^0 \to \Xi_c^+ D_s^-)$ and $\mathcal{B}(\Xi_b^- \to \Xi_c^0 D_s^-)$ are valuable input to Ξ_b / Λ_b^0 fragmentation ratios.
- Ξ_b mass measurements consistent with and will improve the world averages.
- $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \overline{D}{}^0 K^-)$ needs for upcoming pentaquark searches in these channels to test predictions of $\mathcal{B}(P_c^+ \to \Lambda_c^+ \overline{D}{}^{(*)0})/\mathcal{B}(P_c^+ \to J/\psi p)$.

Reference

[1] Z. Phys. C 59, 179 [2] Phys. Rev. D 56, 2799 [3] Mod. Phys. Lett. A 13 (1998) 23 [4] Phys. Rev. D 58, 014016 [5] Prog. Theor. Phys. 101, 959 [6] Phys. Rev. D 99, 054020 [7] Chinese Phys. C 42 093101 [8] Eur. Phys. J. C 78, 528 [9] Phys. Rev. D 98, 074011 [10] Eur. Phys. J. C 79, 540 [11] Phys. Rev. D 100, 034025 [12] Eur. Phys. J. C 80, 636 [13] arXiv:2309.12050 [14] Phys. Rev. D 56, 2799 [15] Chinese Phys. C 42 093101

[16] Phys. Rev. D 100, 034025 [17] arXiv:2309.12050. [18] Phys. Lett. B793 (2019) 144 [19] Phys. Rev. D100 (2019) 014021 [20] Phys. Rev. D100 (2019) 016014 [21] Phys. Rev. D100 (2019) 034020 [22] Phys. Rev. D100 (2019) 056005 [23] Eur. Phys. J. A56 (2020) 142 [24] Eur. Phys. J. C80 (2020) 945 [25] Eur. Phys. J. C80 (2020) 341 [26] Chin. Phys. C45 (2021) 063104 [27] Phys. Rev. D102 (2020) 056018 [28] Phys. Rev. D108 (2023) 056015 [29] Prog. Theor. Exp. Phys. 2022 (2022) 083C01.