Ω_{c}^{0} two-body hadronic decays at LHCb

Chuangxin Lin (UCAS)
on behalf of the LHCb Collaboration
(Based on arXiv:2308.08512, LHCb-PAPER-2023-011)

CLHCP2023, $16^{\text {th }}-20^{\text {th }}$ November, Shanghai

Outline

> Motivation
$>$ LHCb experiment
$>$ Strategy and dataset
> Selection and efficiency
$>$ Signal yield
$>$ Systematic uncertainty
> Results
$>$ Summary

Motivation I

$>$ Two-body SCS decays $\Omega_{\mathrm{c}}^{0} \rightarrow \Xi^{-} \pi^{+}$and $\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}$not yet observed
$>$ Results from Belle: Evidence of $\Omega_{\mathrm{c}}^{0} \rightarrow \Xi^{-} \pi^{+}(4.5 \sigma)$ and upper limit of $\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}$
> The BFs are crucial to test the theoretical models

- Wide range of theoretical predictions for $\Xi^{-} \pi^{+}\left(1.96 \times 10^{-3} \sim 1.04 \times 10^{-1}\right)$
- No prediction is available for $\Omega^{-} K^{+}$(until our result submitted to arXiv)
- Possibility to test factorizable and nonfactorizable contributions

W-emission: factorizable contribution

W-exchange: non-factorizable contribution

Motivation II

PDG2023

Λ_{c}^{+}MASS	$2286.46 \pm 0.14 \mathrm{Mev}$
Ξ_{c}^{+}MASS	$2467.71 \pm 0.23 \mathrm{mev}^{\prime}(S=1.3)$
Ξ_{c}^{0} MASS	2470.44 ± 0.28 mev ($\mathrm{s}=1.2)$
Ω_{c}^{0} MASS	$2695.2+1.7 \mathrm{MeV}(\mathrm{S}=1.3)$

> Single arm spectrometer, 25% of $b \bar{b}$ pairs produced in the acceptance
$>$ Designed to study heavy hadron decays, high rapidity $(2<\eta<5)$ and low p_{T}
$>$ Excellent vertexing, tracking, momentum resolution and particle identification

Strategy and dataset

$>$ Normalization mode $\Omega_{\mathrm{c}}^{0} \rightarrow \Omega^{-} \pi^{+}$used

- Same decay topology and high yield
$>\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)}=\frac{N_{\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}}}{N_{\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}}} \frac{\epsilon_{\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}}}{\epsilon_{\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}}}, \frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)}=\frac{N_{\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}}}{N_{\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}}} \frac{\epsilon_{\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}}}{\epsilon_{\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}}} \frac{\mathcal{B}\left(\Omega^{-} \rightarrow \Lambda K^{-}\right)}{\mathcal{B}\left(\Xi^{-} \rightarrow \Lambda \pi^{-}\right)}$
- Yields \rightarrow Invariant mass fits
- Efficiencies \rightarrow Calculate using simulation
- Branching fractions \rightarrow PDG

$\mathcal{B}\left(\Xi^{-} \rightarrow \Lambda \pi^{-}\right)$	$(67.8 \pm 0.7) \%$
$\mathcal{B}\left(\Omega^{-} \rightarrow \Lambda K^{-}\right)$	$(99.887 \pm 0.035) \%$

$>$ Perform analysis based on Run II 2016-2018 dataset ($5.4 \mathrm{fb}^{-1}$)
$>$ Simulation samples are used to optimize selections and estimate the efficiencies

Selection and efficiency

$>$ Cut-based selection requirements are performed on the final-state charged tracks, Λ, Ξ^{-} / Ω^{-} and Ω_{c}^{0} to suppress combinatorial backgrounds
$>$ A kinematic fit of the decay chain constrains the Ω_{c}^{0} to originate from PV , and the Ξ^{-} / Ω^{-}and Λ to have their known masses
> Efficiencies obtained after applying selections and simulation corrections

- Extended unbinned maximum likelihood fits are performed to full dataset
$>$ Signal is modelled by a Johnson S_{U} distribution and a Gaussian function, the tail and fraction of Johnson S_{U} are fixed from simulation sample
- Background is modelled by an Exponential function

Decay mode	$\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}$	$\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$	$\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$
Signal yield	425 ± 35	2780 ± 150	9330 ± 110

Systematic uncertainty

$>$ The total uncertainty is determined from the sum of all contributions in quadrature

Table 1: Systematic uncertainties for the Ω_{c}^{0} mass measurement.

Source	Uncertainty $[\mathrm{MeV}]$
Momentum scale calibration	0.27
Energy loss correction	0.03
Fit model	0.01
Total	0.27
External input masses	0.30

Table 2: Systematic uncertainties (in percent) for the BF ratio measurement.

Source	$\mathcal{B}\left(\Omega^{-} K^{+}\right) / \mathcal{B}\left(\Omega^{-} \pi^{+}\right)$	$\mathcal{B}\left(\Xi^{-} \pi^{+}\right) / \mathcal{B}\left(\Omega^{-} \pi^{+}\right)$
Tracking efficiency	1.78	1.78
PID efficiency	3.37	0.62
Trigger efficiency	1.26	0.69
Fit model	0.16	0.54
Decay model	3.59	1.32
Lifetimes of Ω^{-}and Ξ^{-}	-	0.59
Simulation sample size	0.07	0.08
Reweight strategy	2.82	0.52
Mass resolution	2.35	0.97
Total	6.51	2.76
External input BFs	-	1.04

Results

$>$ The BF ratios of $\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}$and $\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$are measured to be

- $\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)}=0.0608 \pm 0.0051$ (stat) ± 0.0039 (syst)
- $\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)}=0.1581 \pm 0.0087$ (stat) ± 0.0044 (syst) ± 0.0016 (ext)
$>$ Using $\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}$decay, the Ω_{c}^{0} mass is measured to be
- $m\left(\Omega_{c}^{0}\right)=2695.28 \pm 0.07$ (stat) ± 0.27 (syst) ± 0.30 (ext) $\left[\mathrm{MeV} / c^{2}\right]$
$>$ Using LHCb Run II dataset (2016-2018, $5.4 \mathrm{fb}^{-1}$)
$>$ The first observation of the $\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}$and $\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}$SCS decays is reported

BF ratios	This work	CA model	LFQM	Naive estimation
$\frac{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} K^{+}\right)}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)}$	0.0608 ± 0.0064	-	-	0.0467
$\frac{B}{\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Xi^{-} \pi^{+}\right)}$	0.1581 ± 0.0099	0.1038	0.0345	-
$\mathcal{B}\left(\Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+}\right)$				

> The non-factorizable contributions are necessary to accurately calculate the BFs
$>$ Provides fresh inputs to understand the non-perturbative effects in models based on QCD.

Summary II

> The precision of Ω_{c}^{0} mass improved by four times

- $m\left(\Omega_{c}^{0}\right)=2695.28 \pm 0.07$ (stat) ± 0.27 (syst) ± 0.30 (ext) $\left[\mathrm{MeV} / c^{2}\right]$
- This Ω_{c}^{0} mass measurement provides a strict constraint on various theoretical models

Thank you!

Back up

