

Ω_c^0 two-body hadronic decays at LHCb

Chuangxin Lin (UCAS)

on behalf of the LHCb Collaboration

(Based on arXiv:2308.08512, LHCb-PAPER-2023-011)

CLHCP2023, 16th-20th November, Shanghai

Outline

- Motivation
- LHCb experiment
- Strategy and dataset
- Selection and efficiency
- Signal yield
- Systematic uncertainty
- Results
- Summary

Motivation I

- ▶ Two-body SCS decays $\Omega_c^0 \to \Xi^- \pi^+$ and $\Omega_c^0 \to \Omega^- K^+$ not yet observed
- ▶ Results from Belle: Evidence of $\Omega_c^0 \to \Xi^- \pi^+$ (4.5 σ) and upper limit of $\Omega_c^0 \to \Omega^- K^+$
- The BFs are crucial to test the theoretical models
 - Wide range of theoretical predictions for $\Xi^{-}\pi^{+}$ (1.96×10⁻³~1.04×10⁻¹)
 - No prediction is available for $\Omega^- K^+$ (until our result submitted to arXiv)
 - Possibility to test factorizable and nonfactorizable contributions

W-exchange: non-factorizable contribution

JHEP01(2023) 055 Phys. Rev. D 101, (2020) 094033 Eur. Phys. J. C. 80(2020) 1066 Chin. Phys. C 42, (2018) 093101 arXiv:2310.18896

3

Motivation II

- > Significant uncertainty in the experimental results of Ω_c^0 mass
- > Theoretical predictions of Ω_c^0 mass in a wide range: 2610 ~ 2786 MeV/ c^2
 - Lattice QCD
 - Other various models: $1/N_c$, bag model...

 $\begin{array}{l} \Lambda_c^+ \, {\rm mass} & 2286.46 \pm 0.14 \, {\rm MeV} \\ \Xi_c^+ \, {\rm mass} & 2467.71 \pm 0.23 \, {\rm MeV} \, ({\rm S} = 1.3) \\ \Xi_c^0 \, {\rm mass} & 2470.44 \pm 0.28 \, {\rm MeV} \, ({\rm S} = 1.2) \\ \Omega_c^0 \, {\rm mass} & 2695.2 \pm 1.7 \, {\rm MeV} \, ({\rm S} = 1.3) \end{array}$

PDG2023 arXiv:2309.04401 arXiv:1207.3536 arXiv:1409.0497 arXiv:0909.3294 arXiv:1208.6270 arXiv:1301.4743 arXiv:1503.08440 Phys. Lett. B 175 (1986) 197 PhysRevD.54.4515 (1996) PhysRevD.52.1722 (1995) Phys. Lett. B 355 (1995) 345 Phys. Lett. B 251 (1990) 597 Nucl. Phys. B 199 (1982) 269

- > Single arm spectrometer, 25% of $b\overline{b}$ pairs produced in the acceptance
- > Designed to study heavy hadron decays, high rapidity (2 < η < 5) and low $p_{\rm T}$
- > Excellent vertexing, tracking, momentum resolution and particle identification

Strategy and dataset

- ➢ Normalization mode Ω⁰_c → Ω[−]π⁺ used
 - Same decay topology and high yield

$$\blacktriangleright \quad \frac{\mathcal{B}(\Omega_c^0 \to \Omega^- K^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = \frac{N_{\Omega_c^0 \to \Omega^- K^+}}{N_{\Omega_c^0 \to \Omega^- \pi^+}} \frac{\epsilon_{\Omega_c^0 \to \Omega^- \pi^+}}{\epsilon_{\Omega_c^0 \to \Omega^- K^+}}, \quad \frac{\mathcal{B}(\Omega_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = \frac{N_{\Omega_c^0 \to \Xi^- \pi^+}}{N_{\Omega_c^0 \to \Omega^- \pi^+}} \frac{\epsilon_{\Omega_c^0 \to \Omega^- \pi^+}}{\mathcal{B}(\Xi^- \to \Lambda \pi^-)}$$

- Yields → Invariant mass fits
- Efficiencies \rightarrow Calculate using simulation
- Branching fractions \rightarrow PDG

$\mathcal{B}(\Xi^- \to \Lambda \pi^-)$	$(67.8 \pm 0.7)\%$
$\mathcal{B}(\Omega^- \to \Lambda K^-)$	$(99.887 \pm 0.035)\%$

- > Perform analysis based on Run II 2016-2018 dataset (5.4 fb^{-1})
- > Simulation samples are used to optimize selections and estimate the efficiencies

Selection and efficiency

- > Cut-based selection requirements are performed on the final-state charged tracks, Λ , Ξ^{-}/Ω^{-} and Ω_{c}^{0} to suppress combinatorial backgrounds
- > A kinematic fit of the decay chain constrains the Ω_c^0 to originate from PV, and the Ξ^-/Ω^- and Λ to have their known masses
- > Efficiencies obtained after applying selections and simulation corrections

Signal yield

- > Extended unbinned maximum likelihood fits are performed to full dataset
- > Signal is modelled by a Johnson S_U distribution and a Gaussian function, the tail and fraction of Johnson S_U are fixed from simulation sample
- Background is modelled by an Exponential function

Systematic uncertainty

> The total uncertainty is determined from the sum of all contributions in quadrature

Table 1: Systematic uncertainties for the Ω_c^0 mass measurement.

Source	Uncertainty [MeV]
Momentum scale calibration	0.27
Energy loss correction	0.03
Fit model	0.01
Total	0.27
External input masses	0.30

Table 2: Systematic uncertainties (in percent) for the BF ratio measurement.

Source	$\mathcal{B}(\Omega^- K^+)/\mathcal{B}(\Omega^- \pi^+)$	$\mathcal{B}(\Xi^-\pi^+)/\mathcal{B}(\Omega^-\pi^+)$
Tracking efficiency	1.78	1.78
PID efficiency	3.37	0.62
Trigger efficiency	1.26	0.69
Fit model	0.16	0.54
Decay model	3.59	1.32
Lifetimes of Ω^- and Ξ^-	-	0.59
Simulation sample size	0.07	0.08
Reweight strategy	2.82	0.52
Mass resolution	2.35	0.97
Total	6.51	2.76
External input BFs	_	1.04

Results

- → The BF ratios of $\Omega_c^0 \to \Omega^- K^+$ and $\Omega_c^0 \to \Xi^- \pi^+$ are measured to be
 - $\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- K^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 0.0608 \pm 0.0051(\text{stat}) \pm 0.0039(\text{syst})$
 - $\frac{\mathcal{B}(\Omega_c^0 \to \Xi^- \pi^+)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 0.1581 \pm 0.0087 \text{(stat)} \pm 0.0044 \text{(syst)} \pm 0.0016 \text{(ext)}$
- → Using $\Omega_c^0 \to \Omega^- \pi^+$ decay, the Ω_c^0 mass is measured to be
 - $m(\Omega_c^0) = 2695.28 \pm 0.07(\text{stat}) \pm 0.27(\text{syst}) \pm 0.30(\text{ext}) [\text{MeV}/c^2]$

Summary I

Phys. Rev. D 101, (2020) 094033 Eur. Phys. J. C. 80(2020) 1066 Chin. Phys. C 42, (2018) 093101

- > Using LHCb Run II dataset (2016-2018, 5.4 fb^{-1})
- → The first observation of the $\Omega_c^0 \to \Omega^- K^+$ and $\Omega_c^0 \to \Xi^- \pi^+$ SCS decays is reported

BF ratios	This work	CA model	LFQM	Naive estimation
$\mathcal{B}(\Omega_c^0 \to \Omega^- K^+)$	0.0608 ± 0.0064	-	-	0.0467
$\overline{\mathcal{B}(\Omega_c^0 o \Omega^- \pi^+)}$				
$\mathcal{B}(\Omega_c^0 \to \Xi^- \pi^+)$	0.1581 ± 0.0099	0.1038	0.0345	-
$\overline{\mathcal{B}(\Omega_c^0\to\Omega^-\pi^+)}$				

- > The non-factorizable contributions are necessary to accurately calculate the BFs
- > Provides fresh inputs to understand the non-perturbative effects in models based on QCD.

Summary II

- > The precision of Ω_c^0 mass improved by four times
 - $m(\Omega_c^0) = 2695.28 \pm 0.07(\text{stat}) \pm 0.27(\text{syst}) \pm 0.30(\text{ext}) [\text{MeV}/c^2]$
 - This Ω_c^0 mass measurement provides a strict constraint on various theoretical models

Back up