

University of Chinese Academy of Sciences

Measurement of the CKM angle γ using $B^\pm \to D^*h^\pm$ channels

arXiv: 2310.04277

Lei Hao On behalf of the LHCb collaboration

CLHCP 2023

Outlines

- Motivation and introduction
- Data and simulation samples
- Selections
- Invariant mass fit
- Systematic uncertainty
- Interpretation
- Summary.

arXiv: 9612327 Phys. Rev. **D98** (2018) 030001

• CKM matrix is a 3×3 unitary matrix, elements represent the strength of flavor-changing weak interactions.

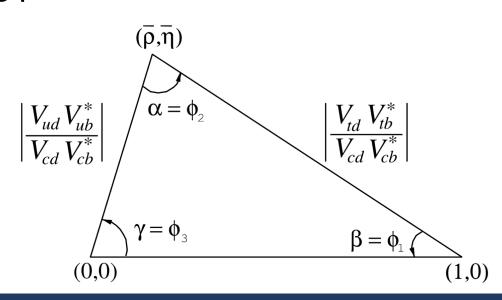
$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = V_{\text{CKM}} \begin{bmatrix} d \\ s \\ b \end{bmatrix}, \text{ where } V_{\text{CKM}} = \begin{bmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{bmatrix}$$

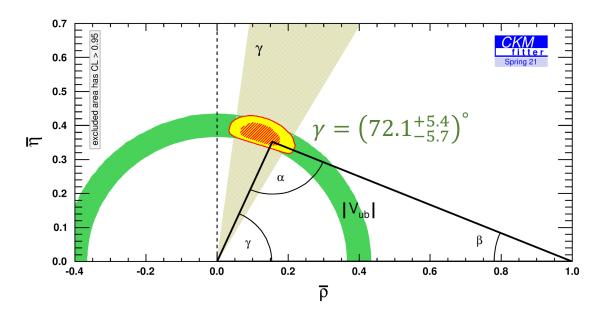
• Parameterized by 3 mixing angles and 1 CP violating phase.

•
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

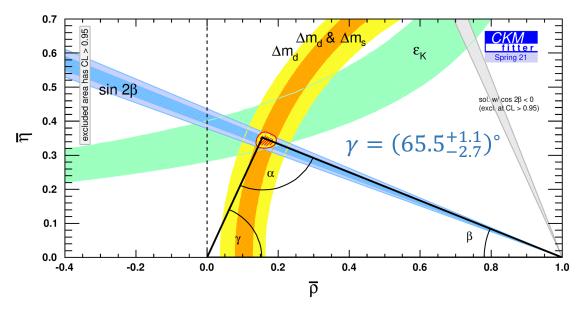
• CKM phases are related to CP violation (CPV).

•
$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right); \beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right); \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$





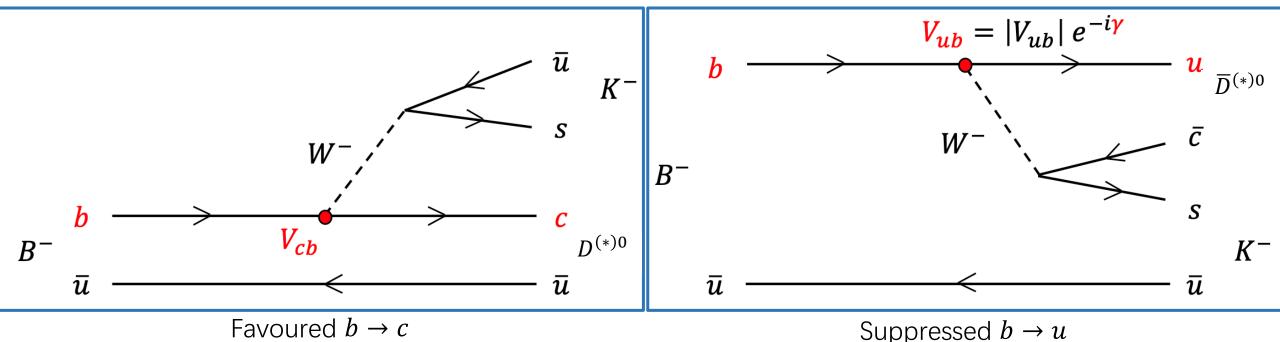
- Accessible at tree-level
- Benchmarks of the standard model.



Indirect measurements

- Some inputs include loop processes
- Assuming closed triangle.
- New Physics (NP) expected to contribute through loop processes.

A discrepancy between direct and indirect measurements would be a clear sign of NP.



- Access to γ via interference between $b \to c$ and $b \to u$.
 - $\frac{A(B^- \to \overline{D}^*K^-)}{A(B^- \to D^*K^-)} = r_B^{D^*K} e^{i(\delta_B^{D^*K} \gamma)}, \frac{A(B^+ \to D^*K^+)}{A(B^+ \to \overline{D}^*K^+)} = r_B^{D^*K} e^{i(\delta_B^{D^*K} + \gamma)}$
 - Interference $\propto \cos[\delta_B^{D^*K} \pm \gamma]$.

BP-GGSZ method

Phys. Rev. D 68, 054018

- Multi-body *D* decays are used to study *CPV* in various regions over phase space, can be split into bins.
- $D \rightarrow K_S^0 h^+ h^-$ decays $(h = K, \pi)$

Amplitude of $D(\bar{D})$ decay Square of mass of $K_S^0 h^\pm$ • $A(B^\pm \to D^{(*)} h^\pm) \propto A_D(s_\pm, s_\mp) + A_{\bar{D}}(s_\pm, s_\mp) r_B^{D^{(*)} h} e^{i(\delta_B^{D^{(*)} h} \pm \gamma)}$

- Presence of resonances in D decay provide variation of amplitude over phase space for extracting γ .
 - Knowledge of D decay is necessary to disentangle γ , from charm factory (BEIII and CLEO-c).

CP observables in BP-GGSZ method

- Model-independent measurement.
 - The optimal binning scheme is used in this analysis.
- Signal yields in bin (i) are related to CP observables.

•
$$N_i^- \propto \left(F_i + (x_-^2 + y_-^2)F_{-i} + 2f_{D^*}\sqrt{F_iF_{-i}}(c_ix_- + s_iy_-)\right)$$

•
$$N_i^+ \propto (F_{-i} + (x_+^2 + y_+^2)F_i + 2f_{D^*}\sqrt{F_iF_{-i}}(c_ix_+ - s_iy_+))$$

 F_i : fractional yields of D^0 in bin i. determined mainly in $D^*\pi$ mode.

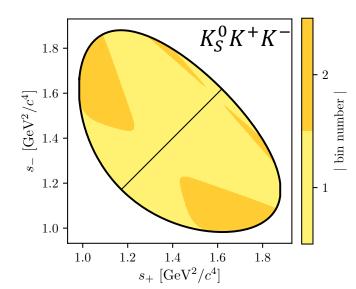
Factor describing π phase difference between $D^* \to D\pi^0$ (1) and $D^* \to D\gamma$ (-1)

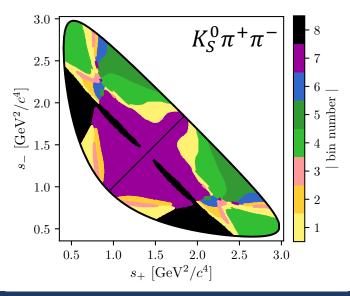
$$r_B^{D^*K} e^{i(\delta_B^{D^*K} \pm \gamma)} = x_{\pm} + iy_{\pm}$$

 c_i, s_i : the cosine and sine of the strong phase difference of $D^0 - \overline{D}{}^0$ decay in bin i. inputs from BESIII and CLEO-c.

• $D^*\pi$ mode contributes to the measurement of γ .

•
$$x_{\xi}^{D^*\pi}, y_{\xi}^{D^*\pi} = \text{Re,Im}\left[\frac{r_B^{D^*\pi}e^{i\delta_B^{D^*\pi}}}{r_B^{D^*K}e^{i\delta_B^{D^*K}}}\right] \text{ arXiv:1804.05597}$$





Data and simulation samples

- Samples: RUN1+RUN2 datasets.
- Simulation samples: obtain the shapes of signal and background
 - Signal simulation samples:

•
$$B^{\pm} \rightarrow (D^* \rightarrow (D \rightarrow K_S^0 h h) \pi^0 / \gamma) h^{\pm}$$
, $h = K, \pi$

Partially reconstructed background simulation samples

Constrain and selections

- The invariant masses of D, K_S^0 and π^0 are constrained to PDG value($\frac{Prog.\ Theor.}{Prog.\ Phys.\ 2022\ (2022)\ 083C01}$), B^{\pm} constrained to originate from PV.
- For the final-state charged tracks, requirements are placed on the track quality, momenta, IP and so on to suppress random tracks coming from the PV and backgrounds.
- Boosted decision trees (BDT) are used to reduce combinatorial background. J. Comput. Syst. Sci. 55 (1997) 119
 - Charged final-state tracks: the same as $\underline{B^{\pm}} \to Dh^{\pm}$ GGSZ analysis, variables used include the momenta, vertex positions and so on.
 - Neutral BDT:
 - Reduce the combinatorial background with the $D^* \to D\pi^0/\gamma$ reconstruction.
 - Variables used include momentum, confidence level of γ and so on.
 - Optimized by the minimizing the uncertainty of the γ angle based on the toys.

Mass fit

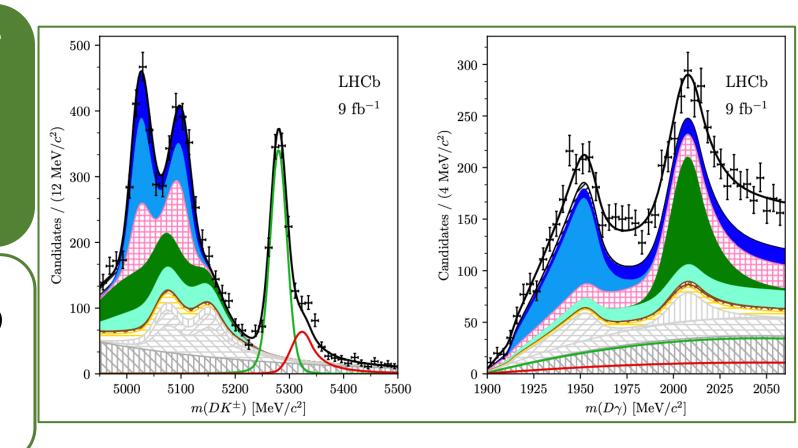
• Unbinned, extended maximum-likelihood 2D fit is performed simultaneously to mass distributions $m(Dh^{\pm}), m(D\pi^0/\gamma)$ in each of categories (D decay phase space bins, B charges, B decays, D decays, D^* decays).

Fit simultaneously and drawn with the *B* charges and *D* decay phase space bins merged.

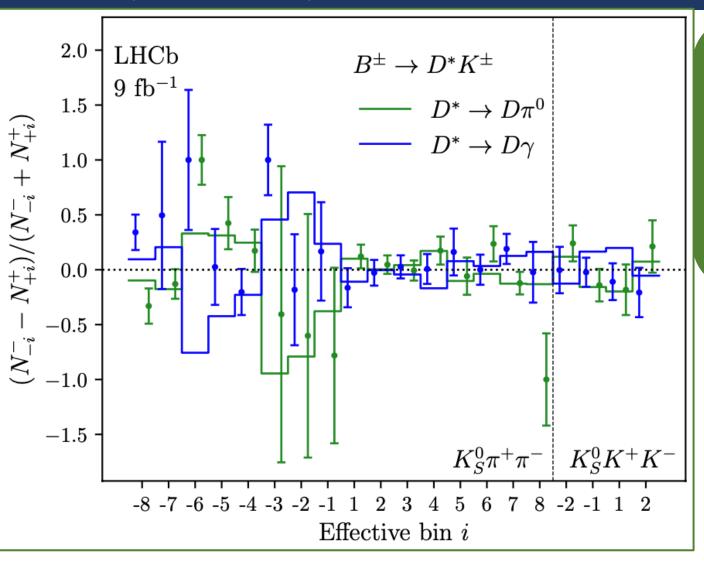
Solid color components contribute to the CKM angle γ measurement dominantly.

Solid color \Longrightarrow signal contributions (fully and partially reconstructed D^*)

Hashed color background contributions



CP asymmetry



Points with error bar are obtained from the alternative fit where the signal yield in each category is a free parameter.

Solid line indicate the CP asymmetry predicted with the CP observables.

CP violation to be observed.

Good agreement between individual bin asymmetries from alternative fit and prediction with *CP* observables.

Bin asymmetries between $D^* \to D\pi^0$ and $D^* \to D\gamma$ are opposite in sign.

Systematic uncertainty

Fitted with correlation in the $B^{\pm} \to D^*h^{\pm}$, $D^* \to D\pi^0$ component in γ mode.

The strategy for assessing these is similar to past $B^{\pm} \rightarrow Dh^{\pm}$ analysis.

All uncertainties are quoted with implicit: $\times 10^{-2}$

Source	$\sigma(x_+^{D^*K})$	$\sigma(x^{D^*K})$	$\sigma(y_+^{D^*K})$	$\sigma(y^{D^*K})$	$\sigma(x_{\xi}^{D^*\pi})$	$\sigma(y_{\xi}^{D^*\pi})$
Neglecting correlations	0.05	0.03	0.19	0.04	0.70	1.48
Efficiency correction of (c_i, s_i)	0.53	0.18	0.18	0.20	0.64	1.73
Invariant mass shape parameter	0.09	0.16	0.20	0.05	0.39	0.06
Fixed yield ratios	0.09	0.03	0.03	0.01	0.33	0.15
Bin dependence of the invariant-mass shape	0.40	0.38	0.41	0.33	1.78	1.57
DP bin migration	0.32	0.70	0.03	0.17	1.20	2.00
Λ_b^0 background	0.97	1.34	0.55	0.77	1.13	1.43
Semileptonic B backgrounds	0.27	1.29	0.02	0.67	0.03	0.04
Merging data subsamples	0.06	0.02	0.12	0.03	0.06	0.34
CP violation in $B^{\pm,0} \to DK^{\pm}\pi^{0,\mp}$	0.03	0.13	1.97	0.99	0.13	0.68
Total systematic	1.26	2.04	2.12	1.48	2.66	3.78
Strong-phase inputs (external)	0.41	0.23	0.30	0.64	0.93	0.83
Statistical	3.16	3.55	4.41	3.98	5.00	5.04

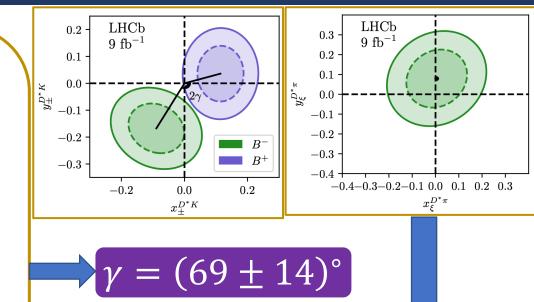
Fitted with CPV in $B^{\pm,0} \to DK^{\pm}\pi^{0,\mp}$ components.

Simultaneous fit performed to data subsamples.

The systematic uncertainties are smaller than statistical uncertainty.

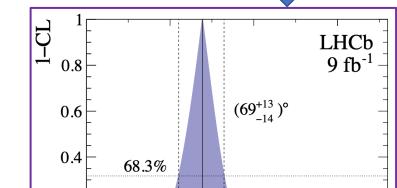
CP observables and measured γ

- CP observables measured, uncertainties are statistical, systematic and due to external inputs.
 - $x_{+}^{D^*K} = (11.42 \pm 3.16 \pm 1.26 \pm 0.41) \times 10^{-2}$
 - $x_{-}^{D^*K} = (-8.91 \pm 3.55 \pm 2.04 \pm 0.23) \times 10^{-2}$
 - $y_{+}^{D^*K} = (3.60 \pm 4.41 \pm 2.12 \pm 0.30) \times 10^{-2}$
 - $y_{-}^{D^*K} = (-16.75 \pm 3.98 \pm 1.48 \pm 0.64) \times 10^{-2}$
 - $x_{\xi}^{D^*\pi} = (0.51 \pm 5.00 \pm 2.66 \pm 0.93) \times 10^{-2}$
 - $y_{\xi}^{D^*\pi} = (7.92 \pm 5.04 \pm 3.78 \pm 0.83) \times 10^{-2}$



0.2

95.5%



100

150

- Consistent with world average.
- · The most precise determination using this channel.
- Improve sensitivity on γ combination.

Summary

- RUN1+2 data analysed.
- Model-independent method used to measure γ .
 - Yields measured in bins of phase space.
 - External measurements of strong phases used to access γ .
- Measured value is $\gamma = (69 \pm 14)^\circ$, in agreement with other results and the most precise in $B^\pm \to D^*h^\pm$ channels. Statistical uncertainty dominates.
- $B^{\pm} \to D^*h^{\pm}$ is an important channel for γ measurement.

BACKUP