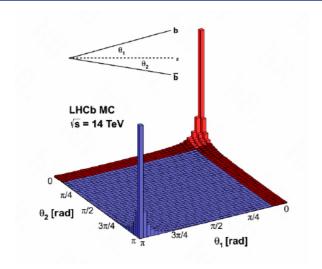
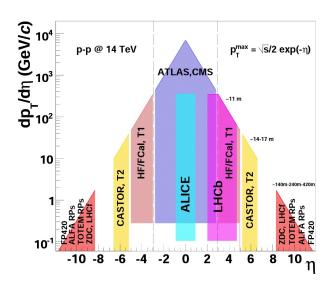

Observation of the decay $B_{(s)}^0 \rightarrow D_{s1}(2536)^{\mp} K^{\pm}$


Zirui Wang, Tsinghua University on behalf of LHCb collaboration


The 9th China LHC Physics Workshop Nov 16-20, 2023

LHCb detector

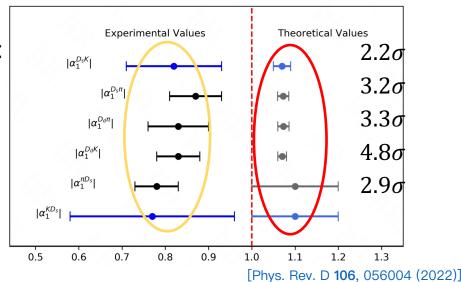
- Single-arm forward spectrometer
- \blacksquare Designed for the study of b and c physics
- Forward region $2 < \eta < 5$
 - ~4% of solid angle, but ~25% of $b\bar{b}$ quark pairs accepted
- Data collection
 - Totally $\sim 9 \text{fb}^{-1} pp$ collision data at 7,8,13 TeV

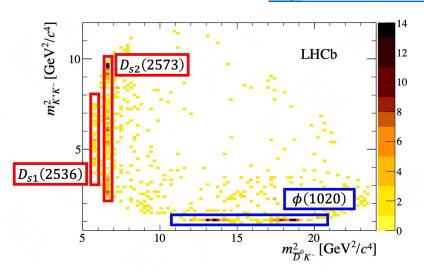
[arXiv:0708.0551]

Observation of the decay $B_{(s)}^0 \to D_{s1}(2536)^{\mp}K^{\pm}$

published in JHEP, JHEP 10 (2023) 106

- Motivation
- Analysis strategy
- Differential decay rate
- Mass fitting
- Systematic uncertainty
- Conclusion

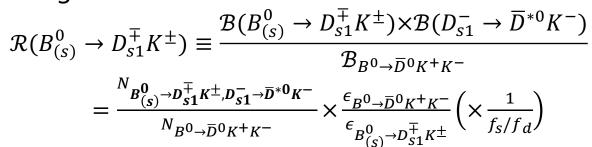

Motivation

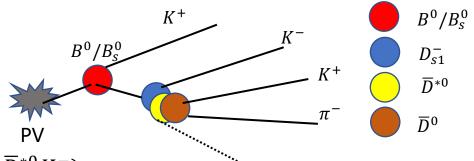

- The puzzle in the decays $B^0 \to D^{(*)-}K^+$ and $B_s^0 \to D_s^{(*)-}\pi^+/K^+$:
 - their measured branching fractions are smaller than those from calculation with QCD factorization.

[Phys. Rev. D **83**, 014017 (2011)]

[Eur. Phys. J. C 80, 951 (2020)]

- An extension of previous $B_{(s)}^0 \to \overline{D}{}^0 K^+ K^-$ measurement
 - A significant peak corresponding to $D_{s1}(2536)$
 - $D_{s1}K$ decay mode not observed for $B_{(s)}^0$
- Same quark content as $D_s^{\pm}K^{\pm}$
 - The B_s^0 mode can process via both $b \to c$ and $b \to u$ transition sensitive to CKM angle γ
 - Probe γ from $B_s^0 \bar{B}_s^0$ mixing and decay, time-dependent measurement
 - We focus on its branching fraction measurement in this analysis

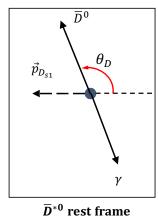


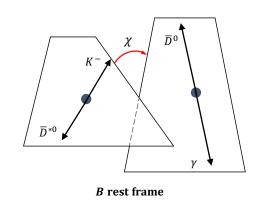


[Phys. Rev. D98 072006 (2018)]

Analysis strategy


- Signal: $B_{(s)}^0 \to D_{s1}^{\mp} K^{\pm}, D_{s1}^+ \to D^{*0} K^+, D^{*0} \to D^0 \gamma / \pi^0$
 - Studied with partially reconstructed approach (γ/π^0 missing)
 - Forms a $D^0K^+K^-$ final state
- Control channel: $B^0 \to \overline{D}{}^0K^+K^-$
- Relative branching fraction



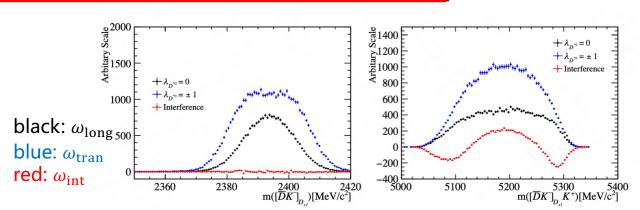


Differential decay rate of signal

- Due to the non-zero spin of D_{s1} and D^{*0} , the decay amplitude of signal process $B_{(s)}^0 \to D_{s1}K$ contains multiple processes
- $D_{s1} \rightarrow D^{*0} \quad K$ $D^{*0} \quad 1^{+} \quad 1^{-} \quad 0^{-}$
- Using helicity formalism, the differential decay rate of the decay can be expressed as a function of
 - lacktriangle θ_{D^*} : the angle between \overline{D}^{*0} and the direction opposite the B momentum vector in the D_{s1} rest frame
 - \blacksquare θ_D : the angle between \overline{D}^0 and the direction opposite the D_{s1} momentum vector in the D^* rest frame
 - \blacksquare χ : the angle between two decay planes defined in the B rest frame

Differential decay rate of signal (cont.)

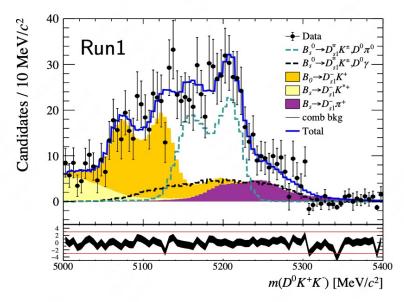
The differential decay rate:

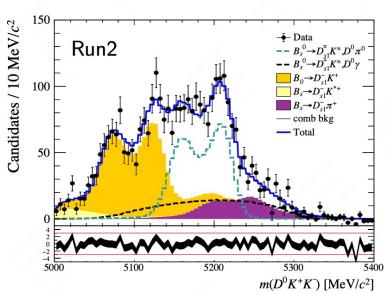

Here containing the condition that $H_+ = H_-$, due to parity conversation on the process, $D_{s1}^- \to \overline{D}^{*0}K^-$

$$\frac{d\Gamma}{d\cos\theta_{D^*}d\cos\theta_{D}d\chi} \propto \omega_{\text{long}}(\theta_{D^*},\theta_{D})H_0^2 + \omega_{\text{tran}}(\chi,\theta_{D^*},\theta_{D})H_+^2 + \omega_{\text{int}}(\chi,\theta_{D^*},\theta_{D})\mathcal{R}e(H_0,H_+)$$

- $H_+/H_0 = ke^{i\phi}$ is the ratio of the two amplitudes.
- The signal channel is split into γ chain (where $D^{*0} \to D^0 \gamma$) and π^0 chain (where $D^{*0} \to D^0 \pi^0$).
 - lacktriangledown $\omega_{\mathrm{long/tran/int}}$ and $H_{+/0}$ are different for γ and π^0 chains, but H_{+}/H_0 is same for both of them.

	γ chain	π^0 chain
$\omega_{\mathrm{long}}(heta_{D^*}, heta_D)$	$\cos^2 \theta_{D^*} \sin^2 \theta_D$	$\cos^2 \theta_{D^*} \cos^2 \theta_D$
$\omega_{ ext{tran}}(\chi, heta_{D^*}, heta_D)$	$\sin^2\theta_{D^*}(\sin^2\chi + \cos^2\chi\cos^2\theta_D)$	$\cos^2\chi\sin^2 heta_{D^*}\sin^2 heta_D$
$\omega_{ m int}(\chi, heta_{D^*}, heta_D)$	$2\cos\chi\sin\theta_{D^*}\cos\theta_{D^*}\sin\theta_D\cos\theta_D$	$-2\cos\chi\sin\theta_{D^*}\cos\theta_{D^*}\sin\theta_D\cos\theta_D$

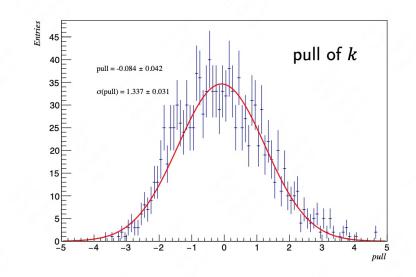

Toy samples generated for γ chain, plotting invariant mass $\omega_{\rm int}$ has no contribution on $m(\overline{D}^0K^-)$



Fit for signal channel

- Signal: $B_s^0 \to D_{s1}K$ and $B^0 \to D_{s1}K$
- Background: $B_s^0 \to D_{s1}\pi$ and $B_s^0 \to D_{s1}K^*$
- Mass shapes:
 - Shapes of $D_{s1}K$ and $D_{s1}\pi$ channels are obtained from PHSP MC weighted by ω_{long} , ω_{tran} and ω_{int} , the ratio of which is $1: k^2: k\cos\phi$
 - Shapes of $D_{s1}K^*$ is obtained from PHSP MC, as only the tail of the decay enters the mass range
- Yield setup
 - Yields between γ and π^0 chains are fixed by branching fractions for all decay channels

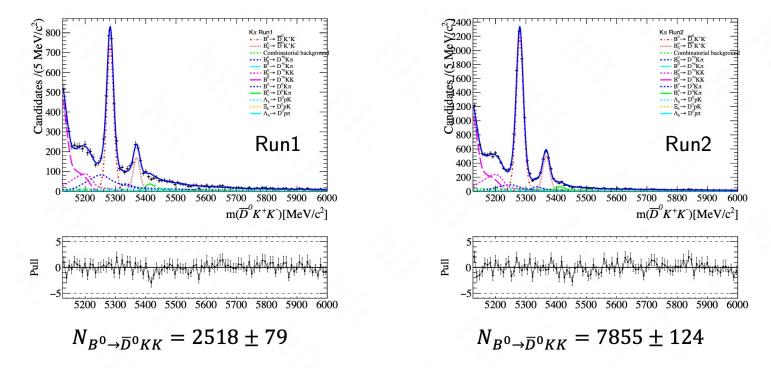
$$\frac{N_{\gamma}(X)/\epsilon_{\gamma}(X)}{N_{\pi^0}(X)/\epsilon_{\pi^0}(X)} = \frac{\mathcal{B}_{D^{*0}\to D^0\gamma}}{\mathcal{B}_{D^{*0}\to D^0\pi^0}}$$



Fit to sweighted $m(\overline{D}^0K^+K^-)$: toy studies

- Generate 2D $(m(\overline{D}^0K^-)\times m(\overline{D}^0K^+K^-))$ distributions for
 - non- D_{s1} background: assume no correlation between two masses
 - $B_{(s)}^0 \to D_{s1}K$, $B_s^0 \to D_{s1}\pi$, $B_s^0 \to D_{s1}K^*$: from weighted MC samples
- Perform mass fits to toy samples and obtain pulls for
 - yields of $B_{(s)}^0 \to D_{s1}K$
 - \blacksquare amplitude ratio k and phase difference $|\phi|$
- Pull means are mostly consistent with 0 in 3σ , pull widths are significantly larger than 1. Correction applied to fit results $x_m \pm \sigma_{x_m}$

$$x_c = x_m - \mu_{\text{pull}}^x \times \sigma_{x_m}$$
$$\sigma_{x_c} = \sigma_{\text{pull}}^x \times \sigma_{x_m}$$



corrected fit results

Parameter		Run1	Run2
р0 , р <i>и</i>	$D^0\gamma$ yield	154 ± 13	493 ± 25
$B_s^0 \to D_{s1}K$	$D^0\pi^0$ yield	335 ± 28	1071 ± 55
n0 . n v	$D^0\gamma$ yield	95 ± 8	374 ± 15
$B^0 \to D_{S1}K$	$D^0\pi^0$ yield	226 ± 20	856 ± 35
k		1.89 ± 0.24	
$ \phi $ [rad]		1.81 ± 0.20	

Fit for control channel

- Signal: $B_{(s)}^0 \to \overline{D}{}^0 K^+ K^-$ described by Two crystal balls, parameters from MC
- Combinatorial background: exponential
- Physical background: shapes from MC and weighted by Dalitz models, yields of some channel $(\Lambda_b^0/\Xi_b^0 \to D^0 p K/\pi)$ constrained

Systematic uncertainty

- Efficiency-related systematic
 - generator-level efficiency: small difference between Gauss and RapidSim
 - simulated sample size: studied by toys based on uncertainties of efficiencies
 - PID efficiency: studied by toys from PIDCalib efficiency tables and alternative binning schema
 - L0 efficiency: use alternative method to compute L0 efficiency for signal
- Mass fit-related systematic
 - modeling of signal channel
 - modeling of control channel
 - branching fraction ratio $\mathcal{B}(D^{*0} \to D^0\pi^0)/\mathcal{B}(D^{*0} \to D^0\gamma)$
 - correlation between $m(D^0K^+)$ and $m(D^0K^+K^-)$
- External inputs
 - $\blacksquare f_s/f_d$

Results: branching fractions

[Phys. Rev. D98 072006 (2018)]

■ The branching fraction of $B^0 \to \overline{D}{}^0 K^+ K^-$, $\mathcal{B}(B^0 \to \overline{D}{}^0 K^+ K^-) = (6.1 \pm 0.4 \pm 0.3 \pm 0.3) \times 10^{-5}$

$$\mathcal{B}(B^{0} \to D_{s1}(2536)^{\mp} K^{\pm}) \times \mathcal{B}(D_{s1}^{-} \to \overline{D}^{*0}K^{-}) \qquad \mathcal{B}(B)$$

$$= \begin{cases} (0.53 & \pm 0.05 & \pm 0.10 & \pm 0.05 \\ (0.506 & \pm 0.023 & \pm 0.031 & \pm 0.050) \times 10^{-5} & (\text{Run 1}) \\ & \text{stat.} & \text{syst.} & \text{norm.} \end{cases}$$

$$\mathcal{B}(B_s^0 \to D_{s1}(2536)^{\mp} K^{\pm}) \mathcal{B}(D_{s1}^- \to \overline{D}^{*0}K^-)$$

$$= \begin{cases} (3.27 \pm 0.28 \pm 0.20 \pm 0.32 \pm 0.10) \times 10^{-5} \text{ (Run 1)} \\ (2.34 \pm 0.12 \pm 0.12 \pm 0.23 \pm 0.07) \times 10^{-5} \text{ (Run 2)} \end{cases}$$
stat. syst. norm. f_s/f_d

■ Combine the Run 1&2 results according to the statistical uncertainties. As for systematic uncertainties, each source are combined first by correlation factor between Run 1&2, and then the different sources of systematic uncertainty are considered to be independent.

$$\mathcal{B}(B^0 \to D_{s1}(2536)^{\mp} K^{\pm}) \times \mathcal{B}(D_{s1}^- \to \overline{D}^{*0}K^-)$$

= $(0.510 \pm 0.021 \pm 0.040 \pm 0.050) \times 10^{-5}$
stat. syst. norm.

$$\mathcal{B}(B_s^0 \to D_{s1}(2536)^{\mp} K^{\pm}) \times \mathcal{B}(D_{s1}^- \to \overline{D}^{*0} K^-)$$

= $(2.49 \pm 0.11 \pm 0.13 \pm 0.25 \pm 0.06) \times 10^{-5}$
stat. syst. norm. f_s/f_d

Results: amplitude ratios

■ The helicity coupling ratio of H_+ to H_0 , $ke^{i\phi}$, is measured to be

$$k = 1.89 \pm 0.24 \pm 0.06$$

 $|\phi| = 1.81 \pm 0.20 \pm 0.11$ rad
stat. syst.

■ Converting to LS coupling, the ratio of S-wave over D-wave amplitudes, Ae^{iB} , is measured to be

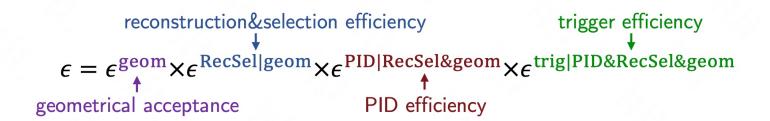
$$A = 1.11 \pm 0.15 \pm 0.06$$

 $|B| = 0.70 \pm 0.09 \pm 0.04$ rad
stat. syst.

■ The fraction of *S*-wave component in $D_{s1}(2536)^+ \rightarrow D^{*0}K^+$ is $(55 \pm 7 \pm 3)\%$, consistent with its isospin partner $D_{s1}(2536)^+ \rightarrow D^{*+}K^0$, in which the *S*-wave fraction is $(72 \pm 5 \pm 1)\%$ [Phys. Rev. D77 032001 (2008)]

2023/11/10

Summary


- First observation of $B_{(s)}^0 \to D_{s1}K$ and measurement of their branching fraction
- First measured the helicity coupling ratio of D^{*0} in $D_{s1} \to D^{*0}K$ decay
- Prospect: more data will be collected after Run 3 and 4, time-dependent analysis would be possible then and γ angle can be measured via this $B_s^0 \to D_{s1}K$ decay

14

Backup

Efficiency

- Efficiencies determined from angular weighted ($\omega_{010,100,int}$) MC, and calibrated by data
- Efficiencies from different years combined by the production cross-section of *B* mesons and integrated luminosities, Run1/2 separated

$$\epsilon_{\text{avg}} = \frac{\sum_{i} \mathcal{L}_{i} \sigma_{i}}{\sum_{i} \mathcal{L}_{i} \sigma_{i} / \epsilon_{i}}$$

Efficiency correction (cont.)

- Geometrical acceptance
 - **a** acceptance requirements are applied to missing γ and π^0 in full simulation which introduces large bias
 - computed from RapidSim to save computational time: proved to be consistent with
 Gauss simulation, a small systematic has been assigned
- Reconstruction&selection efficiency
 - computed from MC samples after Stripping, initial cuts and MVA selections
- PID efficiency
 - computed from PIDCalib tool
- Trigger efficiency
 - from MC samples, and L0 TOS efficiencies are corrected by calibration data

Total efficiency

Total efficiency in 10^{-4}

	Run1	Run2
$B^0 \to D_{s1}K$, γ chain	17.17 ± 0.25	25.80 ± 0.20
$B^0 o D_{s1} K$, π^0 chain	22.09 ± 0.30	32.21 ± 0.22
$B_s^0 \to D_{s1} K$, γ chain	18.70 ± 0.27	28.90 ± 0.21
$B_s^0 o D_{s1} K$, π^0 chain	22.25 ± 0.30	34.37 ± 0.26
$B^0 \to \overline{D}{}^0 KK$	13.87 ± 0.07	15.81 ± 0.09