Searches for lepton flavour violation in Higgs boson decays, ${\rm H}{\rightarrow}{\rm e}\tau \text{ and } {\rm H}{\rightarrow}\mu\tau\text{, at ATLAS}$

Antonio De Maria CLHCP 2023

LFV $H \rightarrow l \tau$ decay search in ATLAS

- Analysis searching for two independent signal processes, $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$, considering both leptonic and hadronic τ decays
- For full leptonic final state (τ_{lep}τ_{lep}), eτ_μ and μτ_e, two different estimation methods for major backgrounds:
 - MC-template method: backgrounds estimated using Monte Carlo (MC) templates + normalisation through Control Regions (CRs)
 - Symmetry method: backgrounds estimated via data-driven symmetry method More on this in Wu Minlin's talk
- For one lepton and one hadronically decaying τ final state ($\tau_{lep}\tau_{had}$), $e\tau_{had}$ and $\mu\tau_{had}$, only *MC-template* method

 $e au_{had}$ and μau_{had} search

Event selection and categorisation

- Cut-based signal region definition to enhance contribution from main Higgs boson production modes, VBF/non-VBF.
- MVA analysis in each signal region to enhance final sensitivity

Background estimation in $\tau_{lep}\tau_{lep}$

- $Z \rightarrow \tau \tau$ and $Top (t\bar{t} + single-top)$ contribution estimated through templates + normalisation through 1-bin CRs separately for VBF and non-VBF categories
 - $Z \rightarrow \tau \tau$ CR: require lead lepton $p_T < 45$ GeV
 - Top CR: require at least 1 b-jet
- Diboson validated in a dedicated region
- Other minor backgrounds estimated from MC
- Misidentified background (*Fake*) estimated via *ABCD* method using lepton charge and isolation

Background estimation in $\tau_{lep}\tau_{had}$

- $Z \rightarrow \tau \tau$ contribution estimated with templates + independent Norm Factors (NFs) for *VBF* and *non-VBF* categories
- Top contribution estimated through templates and normalisation through shared NFs with $\tau_{lep}\tau_{lep}$
- Other minor backgrounds estimated from MC
- Fake estimated through Fake-Factor method based on hadronic τ identification

MVA analysis strategy in $\tau_{lep}\tau_{lep}$

- Boosted Decision Trees (BDTs) trained separately for VBF and non-VBF categories, but summing over $e\tau_{\mu}$ and $\mu\tau_{e}$ final states
 - 3 BDTs combined linearly (Signal Vs Z/H $\rightarrow \tau\tau$ + Z \rightarrow II, Signal Vs Top + Diboson + H \rightarrow WW, Signal Vs Fake)

MVA analysis strategy in $\tau_{lep}\tau_{had}$

- BDTs trained separately for VBF, non-VBF categories and for $e\tau_{had}$, $\mu\tau_{had}$ final states
 - non-VBF eτ_{had}: 3 BDTs combined linearly (Signal Vs Z→ ττ, Signal Vs Fake, Signal Vs all other backgrounds)
 - VBF category and *non-VBF* $\mu \tau_{had}$: 2 BDTs combined linearly for *non-VBF* $\mu \tau_{had}$ and quadratically for VBF category (Signal Vs Z $\rightarrow \tau \tau$, Signal Vs all other backgrounds)

A. De Maria

Method	Channel	Category	Region	1 POI fit	2 POI fit
MC-template	$\ell au_{\ell'}$	non-VBF	SR	\checkmark	\checkmark
			$Z \rightarrow \tau \tau \ \mathrm{CR}$	\checkmark	\checkmark
			Top-quark CR	\checkmark	\checkmark
		VBF	SR		\checkmark
			$Z \rightarrow \tau \tau \ \mathrm{CR}$		\checkmark
			Top-quark CR		\checkmark
MC-template	$\ell au_{ m had}$	non-VBF	SR	\checkmark	\checkmark
		VBF	SR	\checkmark	\checkmark
Symmetry	$\ell au_{\ell'}$	non-VBF	SR		
		VBF	SR	\checkmark	

- Use MVA outputs for each category as final discriminant in the fit to extract the signal strength and upper limits at 95% confidence limits (C.L.)
- Different types of fit performed to extract results; next slides focus on 2 POI fit:
 - 2 POI: simultaneous fit of $\mathcal{B}r(H \to \mu \tau)$ and $\mathcal{B}r(H \to e \tau)$. No assumption on $\mathcal{B}r$

2 POI fit results

- 2.4 σ excess observed for $\mathcal{B}r(H \to \mu\tau)$ and 1.6 σ for $\mathcal{B}r(H \to e\tau)$
- Compatibility with SM within 2.1 σ
- Observed (expected) upper limits at 95% C.L. on $\mathcal{B}r$ are 0.20% (0.12%) for $H \rightarrow e\tau$ and 0.18% (0.09 %) for $H \rightarrow \mu\tau$

/ 13

Interpretation as Yukawa-coupling

• Br values can be related to non-diagonal Yukawa coupling matrix elements:

$$|Y_{l\tau}|^2 + |Y_{\tau l}|^2 = \frac{8\pi}{m_H} \frac{\mathcal{B}r(H \to l\tau)}{1 - \mathcal{B}r(H \to l\tau)} \Gamma_H(SM)$$

• From 2POI fit, $\sqrt{|Y_{\tau e}|^2 + |Y_{e\tau}|^2} < 0.0013$ and $\sqrt{|Y_{\tau \mu}|^2 + |Y_{\mu \tau}|^2} < 0.0012$

2 POI fit uncertainty breakdown

2 POI	Impact on observed [10 ⁻⁴]		
Source of uncertainty	$\hat{\mathcal{B}}(H \to e\tau)$	$\hat{\mathcal{B}}(H \to \mu \tau)$	
Flavour tagging	0.7	0.2	
Misidentified background ($e\tau_{had}$)	2.1	0.3	
Misidentified background $(e\tau_{\mu})$	2.7	0.3	
Misidentified background ($\mu \tau_{had}$)	0.6	1.4	
Misidentified background ($\mu \tau_e$)	0.9	1.0	
Jet and $E_{\rm T}^{\rm miss}$	1.2	0.9	
Electrons and muons	1.4	0.5	
Luminosity	0.6	0.4	
Hadronic τ decays	0.9	0.9	
Theory (signal)	0.8	0.8	
Theory (Z + jets processes)	0.8	1.0	
$Z \rightarrow \ell \ell$ normalisation $(e\tau)$	<0.1	<0.1	
$Z \rightarrow \ell \ell$ normalisation ($\mu \tau$)	0.2	0.9	
Background sample size	3.7	2.3	
Total systematic uncertainty	5.1	3.6	
Data sample size	3.0	2.7	
Total	5.9	4.5	

• Analysis dominated by systematic uncertainties, mainly from background sample statistics and Fake background estimation

- Starts from Run2 analysis results and extrapolate to HL-LHC scenario
- Expect to improve current limits by factor 4 (5) for $\mathcal{B}r(H \to \mu \tau)$ $(\mathcal{B}r(H \to e \tau)$
- Strong push to re-consider the analysis trying to reduce the impact of the systematic uncertainties/MC Statistics

- A search for two LFV signals , H
 ightarrow e au and $H
 ightarrow \mu au$, has been presented
- From simultaneous fit of the $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ signal, observed (expected) upper limits at 95% C.L. on the branching ratios are 0.20% (0.12%) for $H \rightarrow e\tau$ and 0.18% (0.09 %) for $H \rightarrow \mu\tau$; compatibility with SM within 2.1 σ
- Observed limits improved by factors of up to 2.4 (1.5) than the corresponding limits for the H → eτ (H → μτ) decay from previous ATLAS results. Expected sensitivity for H → eτ (H → μτ) signal improved by a factor of about 3.1 (4.1)
- Results also extrapolated for HL-LHC scenario: improve current limits by factor 4 (5) for $\mathcal{B}r(H \to \mu\tau)$ ($\mathcal{B}r(H \to e\tau)$)

Thanks For Your Attention

Backup

	a 🌒 s	3
NANA		A.LISP.

Selection	$\ell au_{\ell'}$	$\ell au_{ m had}$			
	exactly $1e$ and 1μ , OS	exactly 1ℓ and $1\tau_{had-vis}$, OS			
Baseline	$ au_{ m had}$ -veto	$ au_{ m had}{ m TightID}$			
		Medium eBDT ($e\tau_{had}$)			
	<i>b</i> -veto	<i>b</i> -veto			
	$p_{\rm T}^{\ell_1} > 45(35)$ GeV MC-template (Symmetry method)	$p_{\rm T}^{\ell} > 27.3 {\rm GeV}$			
	$p_{\rm T}^{\ell_2} > 15 {\rm GeV}$	$p_{\rm T}^{\tau_{\rm had-vis}} > 25 {\rm GeV}, \eta^{\tau_{\rm had-vis}} < 2.4$			
	$30 \text{GeV} < m_{\ell_1 \ell_2} < 150 \text{GeV}$	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss}) > -0.35$			
	$0.2 < \pi track(\ell_{1})/\pi cluster(\ell_{1}) < 1.25 (MC terms late)$	$i = \ell, \tau_{\text{had-vis}}$			
	$0.2 < p_{\rm T}^{-1}(\ell_2 = e)/p_{\rm T}^{-1}(\ell_2 = e) < 1.25$ (MC-template)	$ \Delta \eta(t, \tau_{\rm had-vis}) < 2$			
	track a_0 significance requirement (see text)				
	$ z_0 \sin \theta < 0.3 \min$				
	Baseline				
VBF	≥ 2 jets, $p_{\rm T}^{\rm j_1} > 40$ GeV, $p_{\rm T}^{\rm j_2} > 3$	0 GeV			
	$ \Delta \eta_{\rm jj} > 3, m_{\rm jj} > 400 {\rm GeV}$				
	Baseline plus fail VBF categorisation				
non-VBF	-	veto events if			
	-	$90 < m_{\rm vis}(e, \tau_{\rm had-vis}) < 100 { m GeV}$			

 $\begin{array}{c} \bullet \bullet \bullet \bullet \\ 2 \text{ Top NFs with CR} \\ \bullet \bullet \bullet \bullet 2 \text{ } Z \rightarrow \tau \tau \text{ NFs with CR} \\ \bullet \bullet \bullet \bullet 2 \text{ } Z \rightarrow \tau \tau \text{ NFs with CR} \\ \end{array}$

 \checkmark 2 Z $\rightarrow \tau \tau$ NFs without CR