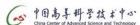


Search for a SM-like lowmass Higgs boson in the γγ final state at CMS

Junquan Tao (IHEP/CAS) 陶军全 (中科院高能所) on behalf of the CMS collaboration

Based on CMS-PAS-HIG-20-002



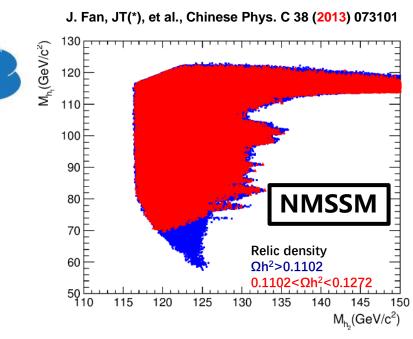
Introduction

➤ Although the Higgs boson discovered at LHC so for is compatible with the SM Higgs boson, there is still **room for extensions of the Standard Model**

> BSM models: H(125GeV) + additional Higgs bosons with some of which could have

wonder if there are

others like me.

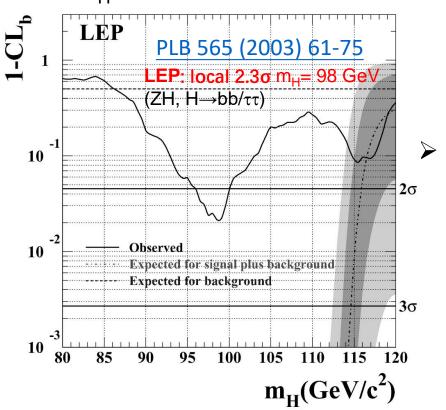

masses below 125 GeV

✓ 2HDM : 2 CP-even (h, H), 1 CP-odd (a), 2 charged (H[±])

✓ **NMSSM**: 3 CP-even (h_i), 2 CP-odd (a_i), 2 charged (h[±])

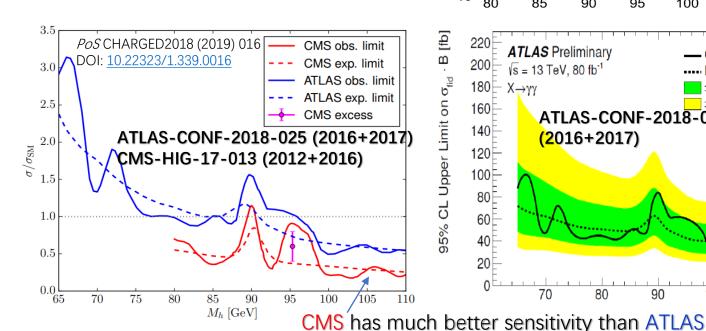
✓ Georgi-Machacek(**GM**) model : 2 singlet(h, H), 3 triplet(H₃⁰, H₃[±]) and 5 fiveplet (H₅⁰, H₅[±], **H₅**[±]) mass eigenstates

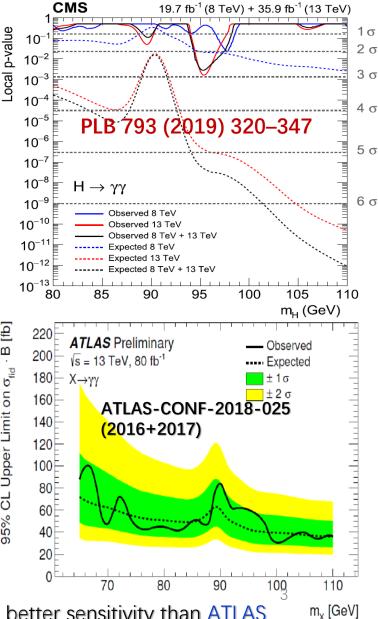
✓ Other extensions e.g. left-right symmetric models (LRSMs), Three Higgs Doublet Model (3HDM),


- Discovery of extra Higgs boson(s) would be an unequivocal sign of new physics
- > LHC is currently the most powerful discovery machine
 - Hope to find hints of BSM

Experimental searches in low-mass region

Final LEP SM Higgs boson search results: >2σ excess at m_H= 98 GeV

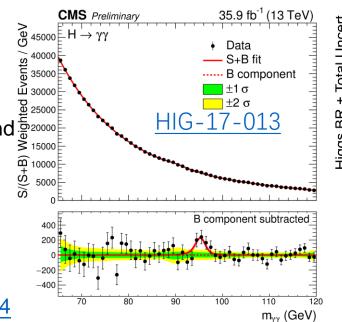


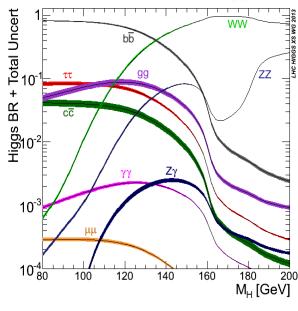

Some experimental results before 2023

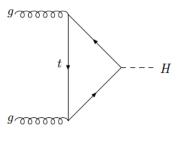
We have performed the LM H→γγ search since Run1 at CMS

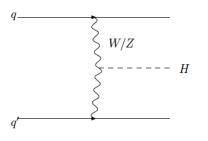
- ✓ 2012 data (<u>HIG-14-037</u>, PAS only): ~2σ local at 97.5 GeV
- ✓ 2016 + 2012 data (HIG-17-013, PLB 793 (2019) 320–347): 2.8σ local (1.3σ global) significance at 95.3 GeV

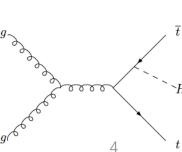
ATLAS LM $h\rightarrow \gamma\gamma$ with 80 fb⁻¹: not exclude the CMS observed excess



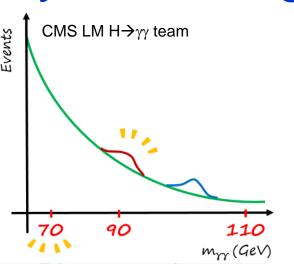



SM-like LM $H\rightarrow \gamma\gamma$ search with full Run2




- → H→γγ provides a clean final-state topology that allows the mass of a Higgs boson to be reconstructed with high precision (1-2%)
 - ✓ Challenges: Large backgrounds including continuum γγ (irreducible) and fakes from γ+jet and jet+jet (reducible) and relic Z→ee bkg
- Production modes: "SM-like", gluon fusion (ggH), vector boson fusion (VBF), in association with a W or Z boson (VH), or with a tt pair (ttH)
- ➤ Cross sections and BR : LHC Higgs Working Group YR4
- ➤ Data samples: full Run2 132.2 fb⁻¹ data
 - √ lost ~5 fb⁻¹ since HLT path was not introduced at the beginning of 2018 data-taking
- Signal/searching region: 70-110 GeV, backgoud fitting range 65-120 GeV
 - ✓ To avoid the distortion of the diphoton mass spectrum, due to turn-on effects from the **HLT criteria** (**M>55 GeV**)

CMS-PAS-HIG-20-002 (approved for Moriond2023): first LHC full


Run 2 result of additional Higgs boson search in this mass range

Analysis strategy

Search for narrow signal peak over smoothly-falling background (direct $\gamma\gamma$, reducible γ + jet, jet+jet processes) except for relic DY ($Z\rightarrow$ ee), in the diphoton mass spectrum

- Many elements and techniques (event reconstruction and calibrations, vertex determination BDT, γ ID techniques with BDT, signal and datadriven background modeling with discrete profiling method ···) inherited from **SM** $H \rightarrow \gamma \gamma$ analysis
- > Dedicated updates and optimizations, such as
 - ✓ Dedicated HLT paths then event (pre-) selections (SFs on MC)
 - \checkmark Retrained γ -ID MVA in low-mass phase space, in 2017/2018
 - ✓ Dedicated DY suppression strategy (next slides)
 - ✓ Diphoton BDT retrained for low-mass case
 - ✓ Optimization of event categorization (next slides)

Analysis flow

Data & MC

Trigger

Photon reconstruction and energy calibration

Preselection

Vertex identification

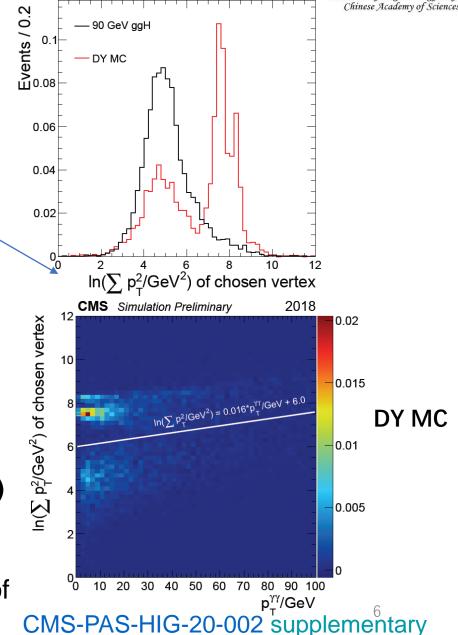
Photon identification

Diphoton BDT/VBF MVA

Event categorization

Signal/bkg modeling

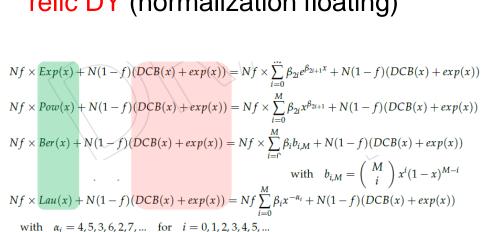
Statistical analysis with "combine"

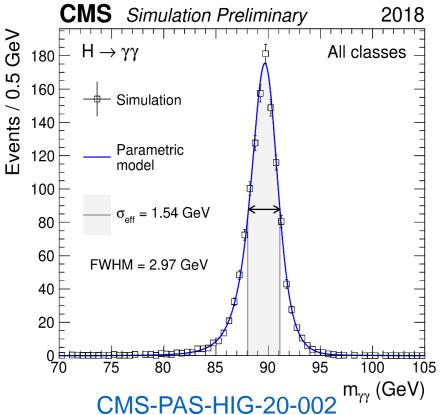

Results

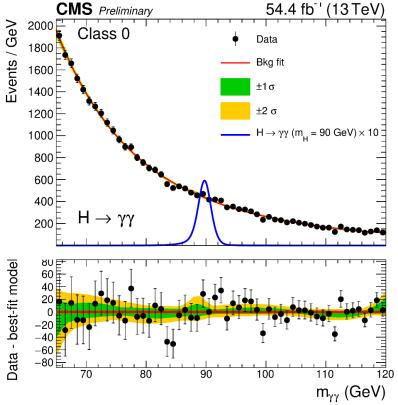
Analysis strategy (cont.)

2018

- > To suppress DY bkg, an updated strategy employed
 - ✓ Electron-veto by asking no pixel detector hit (used in previous 2016+2012 paper)
 - \checkmark Rejection of γ candidates also reconstructed as electrons
 - ✓ Maximum value of In $(\Sigma p_T^2/GeV^2)$ [tracks in chosen vertex] as **function of p_T** $^{\gamma\gamma}$ (GeV): optimized cut with ln (Σp_T^2) < 0.016 $p_T^{\gamma\gamma}$ + 6
- **2017/18**: events with additional jets were selected for class targeting VBF process
 - Di-jet BDT and combined di-jet + diphoton BDT
 - Validated with Z→ee, diphoton data/MC
 - An additional VBF tagged event class, with the optimized cut value on combined BDT
- > 2016: data reanalyzed with improved calibration (legacy data)
- > 3 untagged event classes (targeting ggH) in each of 2016/2017/2018 + 1 additional VBF tagged event class in each of 2017/2018: **11 event classes** in total


— 90 GeV ggH



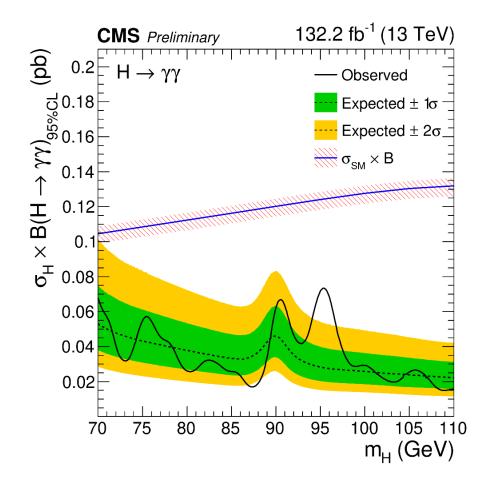

Sig and bkg modeling (parametrization)

中國科學院為維約用研究所 Institute of High Energy Physics

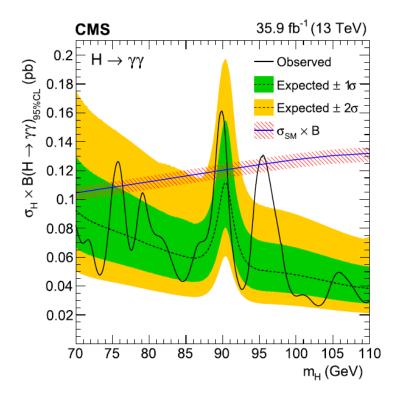
- ➤ Signal modeling (sum of Gaussian functions): event classes x production modes x correct/incorrect vertex
 - ✓ A simultaneous fit of all mass point (SSF) from 70-110GeV
- ➤ Background modeling
 (discrete profiling): sums of
 continuous functions (different
 families/orders) for continuum
 bkg and "DCB + exponential" for
 relic DY (normalization floating)

Background fit, stat. unc. only, 2018

Event class		0	1	2	VBF
2016	Family/Order	Power Law 1	Bernstein 4	Exponential 3	
	DCB + Exp. Fraction (%)	3.0	3.1	3.3	
2017	Family/Order DCB + Exp. Fraction (%)	Bernstein 3 2.7	Exponential 3 1.4	Bernstein 4 1.9	Bernstein 3 2.6
2018	Family/Order DCB + Exp. Fraction (%)	Laurent 1 0.5	Bernstein 4 4.1	Exponential 3 4.8	Bernstein 2 0.8


Best-fit background functions w/ "DCB + exponential" fractions (0.5% - 4.8%) in [85, 95] GeV

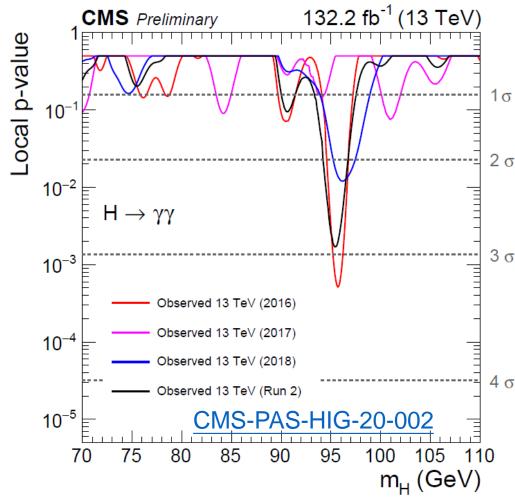
Upper limits on σ X B

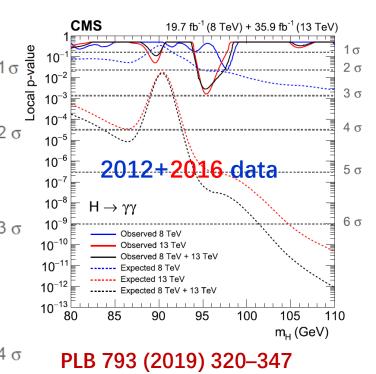


Observed absolute 95% CL UL on σ X B between 15-73 fb (22-53 fb expected)

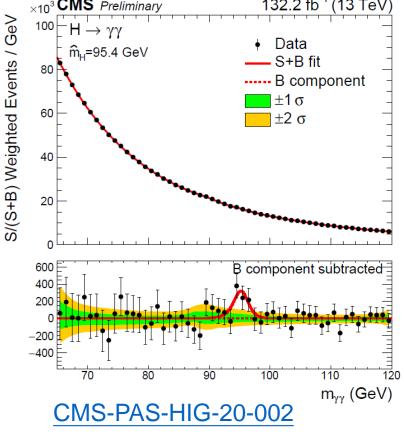
Previous 2016 results (HIG-17-013):

26-161 fb (obs.) *37-110 fb(exp.)*


PLB 793 (2019) 320-347



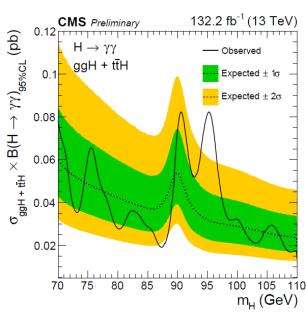
P-values or significances and mass



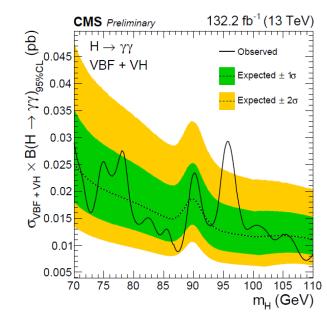
➤ Observed local p-values for 2016, 2017, 2018 and combination

ightharpoonup S/(S+B)-weighted $m_{\gamma\gamma}$ distribution with S+B fit for m_H =95.4 GeV $_{\times 10^3}$ CMS Preliminary 132.2 fb⁻¹ (13 TeV)

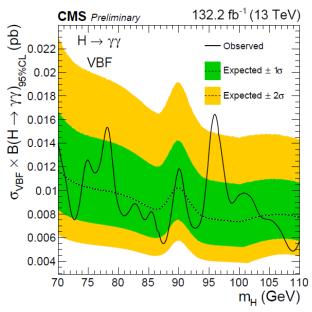
• Modest excess with $\sim 2.9\sigma$ local (1.3 σ global) significance at m_{yy}=95.4 GeV, more data needed to conclude!


9

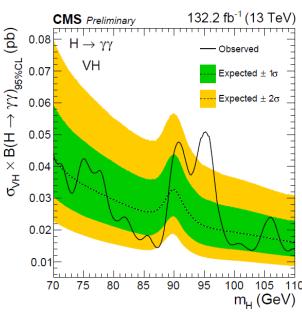
Upper limits by production process the limits of High English Chinese decolumns.



 \triangleright Observed and expected 95% CL limits on σ X B by **production process** (integrated over all event classes)


• 100% production via gluon-induced processes (ggH, ttbarH in SM proportions)

17-83 fb observed

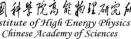


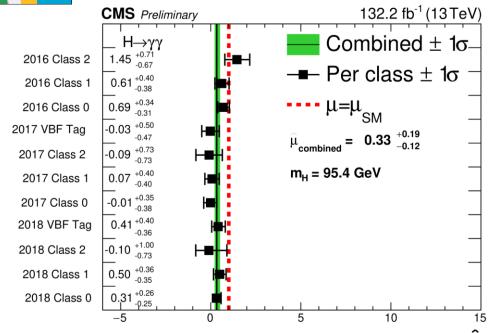
100% production via fermion-induced processes (VBF, VH in SM proportions)

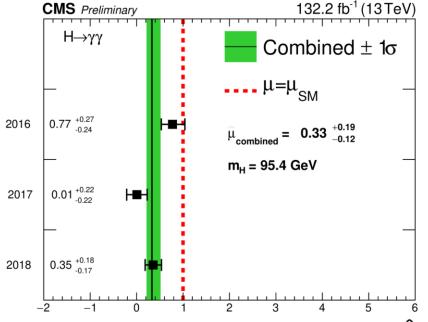
7-29 fb observed

 100% production via VBF 5-17 fb observed

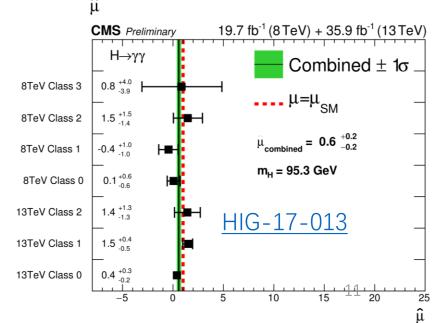
100% production via VH 13-51 fb observed


More interpretation results have been included in the <u>Paper supplementary</u> material: approved by Higgs conveners and will be public in near future together with the paper


CMS-PAS-HIG-20-002



'Signal' strengths μ : fixing $m_H = 95.4$ GeV

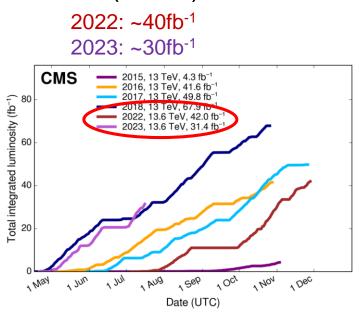


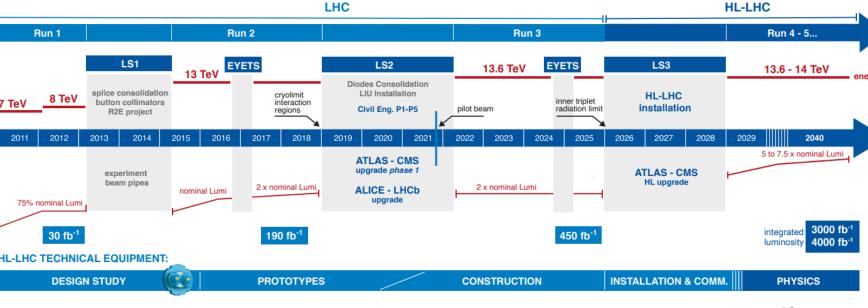
Combined obs. μ is compatible with previous obs. μ in 2012+2016

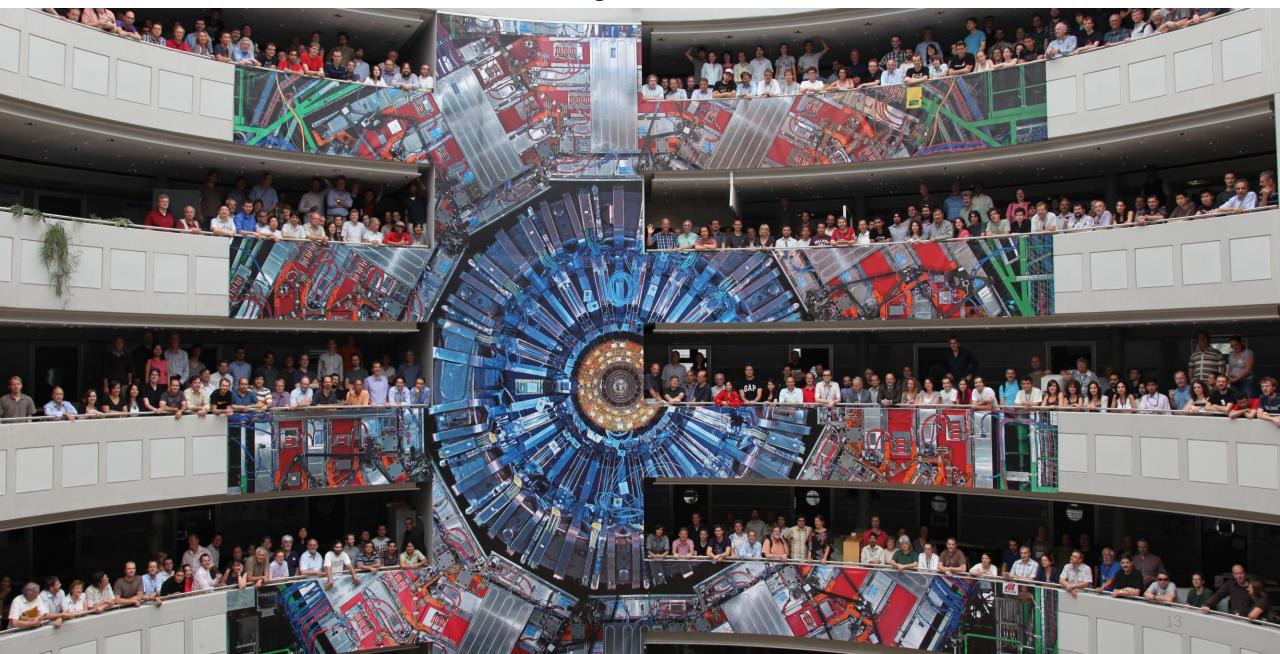
• for the 11 event classes: χ^2 compatibility probability: 68%

 for the 3 years χ^2 compatibility probability: 6%

CMS-PAS-HIG-20-002 supplementary

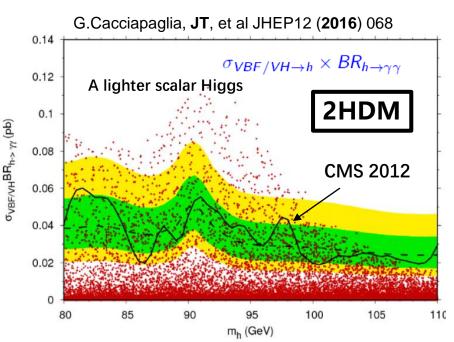


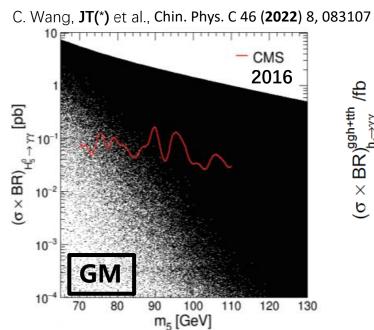

Conclusions and Perspectives


- Presented the updated results of CMS search for additional low-mass SM-like H→γγ (70 GeV < m_H < 110 GeV) using full LHC Run 2 data (approved for Moriond2023)</p>
- > First search for new diphoton resonances in this mass range with full LHC Run 2 data!
- ➤ No evidence for the existence of extra Higgs bosons found so far
- \rightarrow Modest excess at m_{yy}=95.4 GeV with 2.9 σ local (1.3 σ global) significance
- > More (Run 3) data is needed to conclude on the nature of this excess....and it's on it's way!

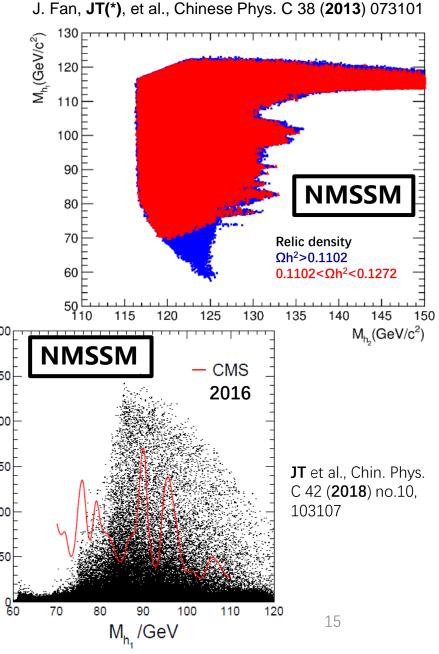
https://hilumilhc.web.cern.ch/content/hl-lhc-project

Thanks for your attention!



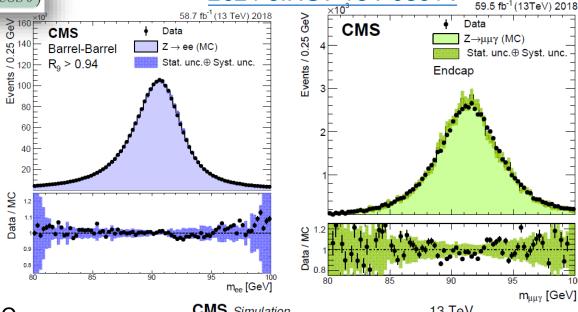

Backup slides

Low-mass diphoton searches

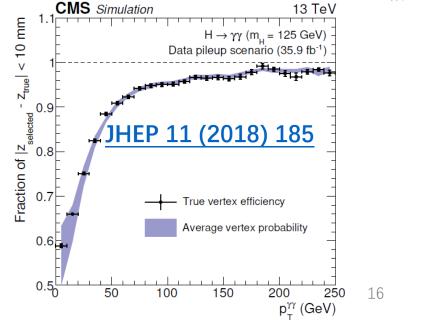

- > Many **BSM models** (e.g. NMSSM, 2HDM, Georgi-Machacek model) provide a Higgs boson that is compatible with the LHC observed 125 GeV boson, and additional Higgs bosons with some of which could have masses below 125 GeV
 - Next-to-minimal supersymmetric model (NMSSM): 3 CP-even (h_i), 2 CP-odd (a_i), 2 charged (h±)
 - Two Higgs Doublet Models (2HDM): 2 CP-even (h, H), 1 CP-odd (a), 2 charged (H[±])
 - Georgi-Machacek(GM) model: 2 singlet(h, H), 3 triplet(H_3^0 , H_3^{\pm}) and 5 fiveplet(H_5^0 , H_5^{\pm} , $H_5^{\pm\pm}$) mass eigenstates

Related phenomenology studies

 $\sigma \times BR$) ggh+tth

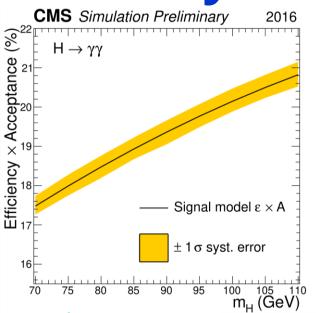


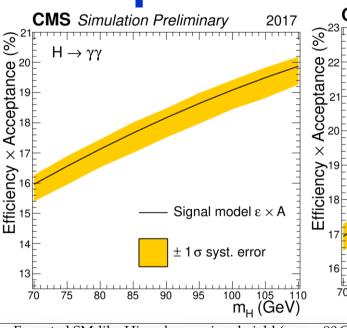
Analysis strategy

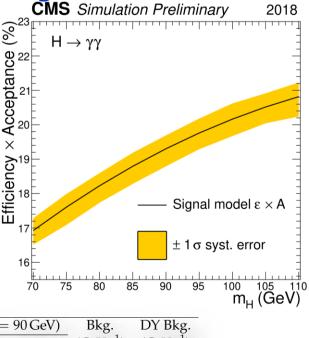

> To achieve good mass resolution

 $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$

- ✓ select/reconstruct two photons with precise photon energy MVA regression after calibrations
 - -- Validated with both Z→ee and Z→μμγ
- ✓ A MVA BDT was trained to select the primary vertex of the Higgs decay (details in backup)
- -- Validated on Z \rightarrow µµ after removing muon tracks and γ +j (>=1 converted γ)
- ✓ Inherited from SM $H \rightarrow \gamma \gamma$ analysis
- Fake photon suppression: photon identification BDT inputs of diphoton BDT after looser cut (>-0.9)
 - ✓ Trained with both prompt and fake photons selected in γ +j MC
 - ✓ Validated with diphoton data/MC, $Z\rightarrow ee$ and $Z\rightarrow \mu\mu\gamma$
 - √ 2017/2018: retrained γ-ID MVA in low-mass phase space
- ightharpoonup A Kinematic **diphoton BDT** (pt/m_{γγ}, η, cos(φ_{γ1}-φ_{γ2}), both Photon ID MVA scores, mass resolutions wrt correct and incorrect vertices, vertex probability) for sig and bkg discrimination **retrained and reoptimized** for events categorization, for low-mass case
 - ✓ Trained with signal and bkg MC
 - ✓ Validated with Z→ee, diphoton data/MC

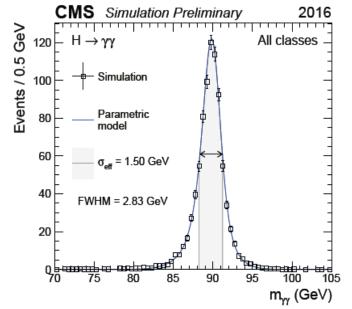


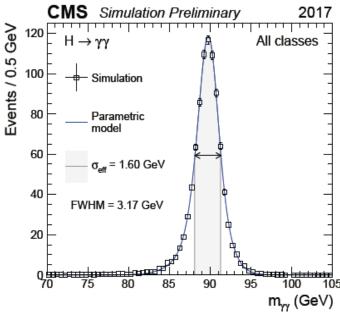

2021 JINST 16 P05014



Signal efficiency and expected yields

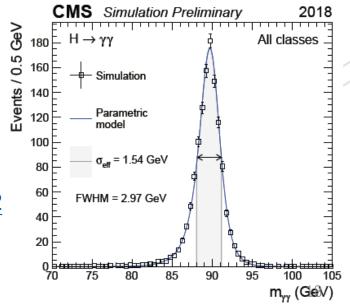
- Signal efficiency x acceptance as a function of mass hypothesis
 - Different selections for 3 years i.e. trigger, offline selections etc
 - ✓ 1σ systematic error band is also shown


CMS-PAS-HIG-20-002 supplementary


- Expected number of SM-like Higgs boson signal events (m_H=90 GeV) per event class and the corresponding percentage breakdown per production process
 - Also number of background events ("Bkg.") and Drell--Yan process ("DY Bkg.") per GeV estimated from the background-only fit to the data, in a σ_{eff} window centered on $m_H = 90$ GeV

								П	` '			
			Expected SM-like Higgs boson signal yield ($m_{\rm H} = 90 \text{GeV}$)							Bkg.	DY Bkg.	
	Event classes		Total	ggH	VBF	WH	ZH	tŧH	$\sigma_{ m eff}$	$\sigma_{ m HM}$	(GeV^{-1})	(GeV^{-1})
				(%)	(%)	(%)	(%)	(%)	(GeV)	(GeV)		
	2016	0	130	71.9	15.6	6.2	3.6	2.6	1.12	1.00	271	12
	$36.3{\rm fb}^{-1}$	1	304	87.4	6.6	3.6	2.1	0.3	1.25	1.07	3093	33
		2	407	94.7	2.5	1.7	1.0	0.1	1.87	1.51	9190	193
		Total	842	88.5	6.0	3.1	1.8	0.6	1.50	1.20	12 554	239
	2017	0	104	73.4	11.6	7.5	4.3	3.2	1.27	1.13	248	7
	$41.5{\rm fb}^{-1}$	1	347	88.5	5.6	3.5	2.1	0.3	1.40	1.24	3625	83
		2	413	94.4	2.6	1.9	1.1	0.1	1.91	1.64	8169	244
		VBF	26	45.6	51.8	1.0	0.5	1.0	1.33	1.15	29	1
b		Total	890	88.2	6.2	3.1	1.8	0.6	1.60	1.35	12071	338
	2018	0	162	75.1	10.2	7.3	4.3	3.0	1.21	1.05	430	3
	$54.4{\rm fb}^{-1}$	1	585	90.1	4.8	3.1	1.8	0.2	1.34	1.17	6445	378
		2	473	94.4	2.5	1.9	1.2	0.1	2.01	1.73	10982	720
		VBF	38	45.4	51.9	1.1	0.6	1.0	1.21	1.03	46	1 1
		Total	1258	88.4	6.1	3.1	1.8	0.6	1.54	1.27	17 902	1104

Signal parametrization


- ➤ A parametric model is used to describe the shape of the signal in each event class
- ightharpoonup Same as the standard H $ightharpoonup \gamma \gamma$ analysis method: Simultaneous Signal Fitting
- ➤ All production modes (ggH, VBF, WH, ZH, ttH) from 70 GeV to 110 GeV with a 5 GeV granularity are used
- ➤ The final parametrized signal shape for the combination of all production modes for all event classes, is weighted by their SM-like BSM cross sections
- ➤ Full parameterized signal shape, integrated over all event classes, in simulated signal events with m_H = 90 GeV

All classes combined

CMS-PAS-HIG-20-002

Systematic uncertainties

➤ Uncertainties evaluated at the per-event level:

- ✓ Total integrated luminosity
- ✓ 2016 and 2017 pre-firing
- ✓ Underlying event and parton shower
- ✓ 2018 HEM issue
- ✓ 2017 and 2018, VBF additional jet radiation issue
- ✓ Linear cut SF

➤ Uncertainties evaluated at the per-photon level:

- ✓ Shape of the photon identification BDT distribution
- ✓ Photon energy scale and resolution
- ✓ Trigger efficiencies SF
- ✓ Preselection SF
- ✓ Electron veto SF and N_{MatchedEle}=0 SF
- ✓ Minimum photon identification BDT
- ✓ Non-uniformity of light collection (FNUF)
- ✓ Photon energy scale non-linearity
- ✓ Vertex selection uncertainty

➤ Dedicated systematics have been added for VBF class:

- ✓ jet energy correction and resolution,
- ✓ PUJID
- ✓ Tight Jet ID

> Theoretical uncertainties:

- ✓ PDF uncertainty
- ✓ QCD scale and strong coupling strength (α_s) uncertainty
- ✓ Cross-section uncertainties (for normalized limit and p-value)

 Major systematic uncertainties: per-photon energy resolution <20%, renormalization and factorization scales<14%, UE modeling <27%, PS<16%, JES corrections (VBF class) <16%.

Other related plots

Observed and expected 95% CL UL on σ X B relative to SM-like expectation (production processes assumed in SM proportions)

Observed

 $\mathcal{H} \sigma_{SM} \times BR$

Expected \pm 1 σ

Expected $\pm 2\sigma^{-}$

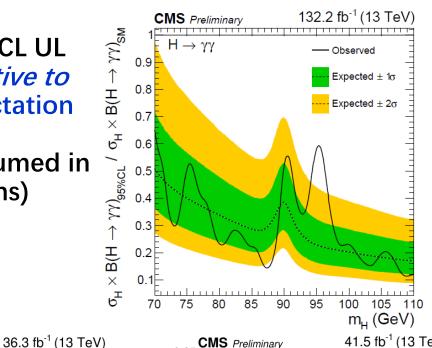
105 110

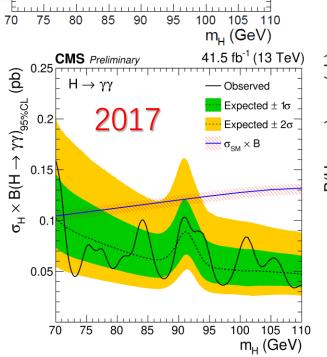
m_□ (GeV)

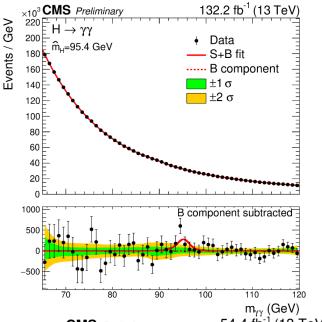
CMS Preliminary

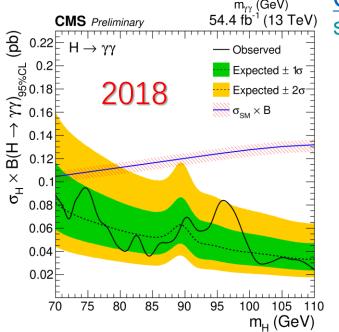
2016

0.2 0.18 0.16 0.16

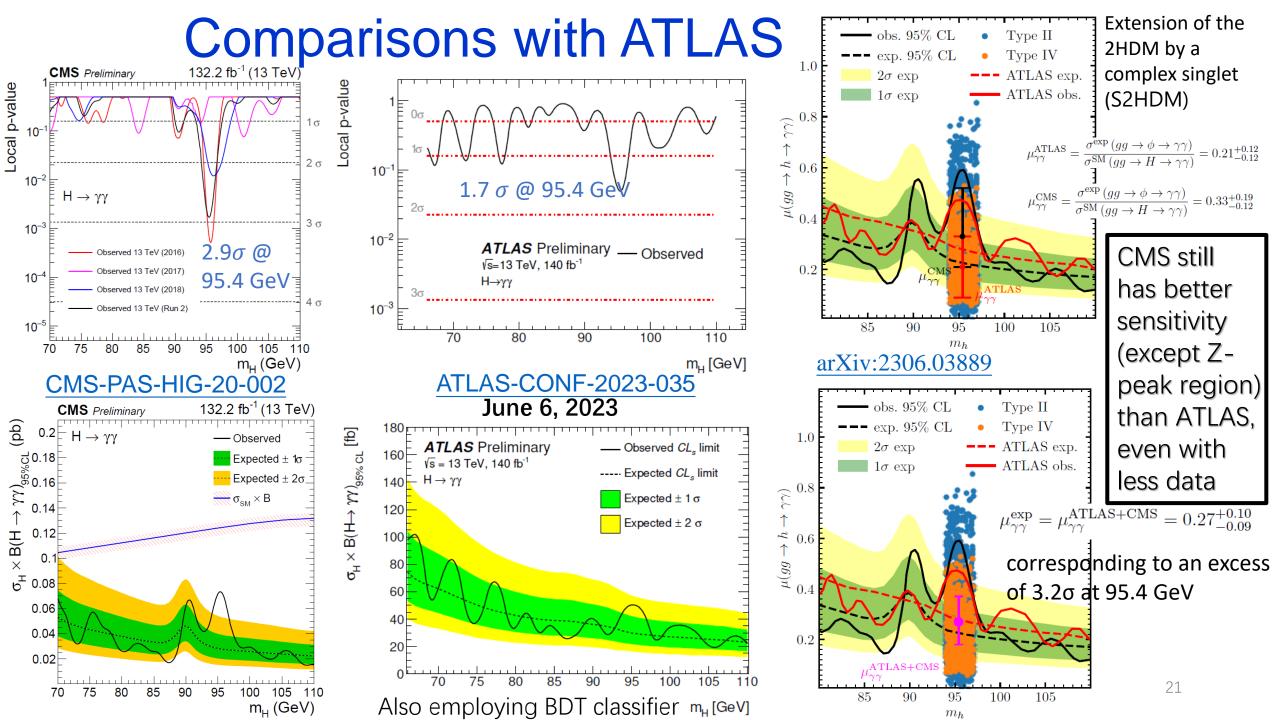

0.14


0.12


0.06


0.04

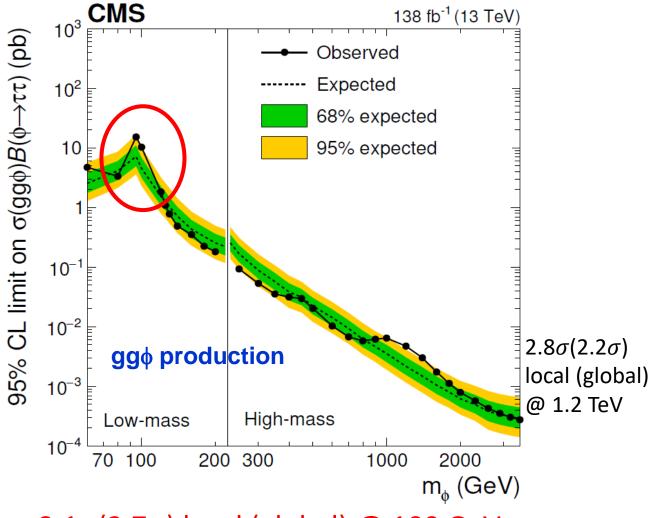
0.02



➤ Events in all classes of the combined 13 TeV data set, S+B fit for m_H =95.4 GeV

CMS-PAS-HIG-20-002 supplementary

Limits on σX B in each year


φ→ττ : results

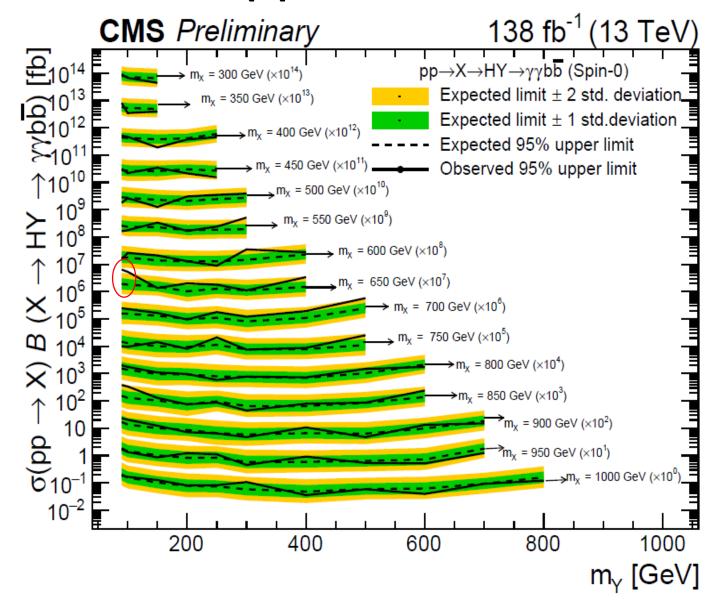
JHEP07 (2023) 073

ightharpoonup "Low-mass" (60–250 GeV): fitting on $m_{\tau\tau}$ to extract signal

3.1 σ (2.7 σ) local (global) @ 100 GeV $\mu(gg \to h \to \tau\tau) = 1.2 \pm 0.5$

 $2.6\sigma(2.3\sigma)$ local (global) @ 95 GeV

$X \rightarrow YH \rightarrow bb\gamma\gamma$



CMS-PAS-HIG-21-011

- BDT (NN) scores to separate signals and non-resonant (resonant) backgrounds
- ➤ Six BDT training accounts for different signal m_x-m_y mass ranges
 - 3 event classes based on BDT output
- A parametric fit in the $(m_{\gamma\gamma}, m_{jj})$ plane is performed for signal extraction for each category

3.8 σ local for m_X = 650 GeV and m_Y = 90 GeV

3.5 σ local for $m_X = 650$ GeV and $m_Y = 100$ GeV

