

$\label{eq:H} \begin{array}{l} \rightarrow Z\gamma \; ATLAS+CMS \\ Combination \end{array}$

Ying An, Mingshui Chen, Andrew Gilbert, Andrea Carlo Marini, Yajun Mao, <u>Mingtao Zhang</u>, Chen Zhou

THE 9TH CHINA LHC PHYSICS WORKSHOP

17th Nov 2023

Arxiv: 2309.03501

Introduction

- In 2012, the discovery of Higgs boson marked a significant milestone in particle physics.
- Many researches are carried out to investigate the propeties of Higgs boson.

Decays of a 125 GeV Standard-Model Higgs boson

SM Branch ratio:

B(H \rightarrow Z γ) = (1.54 ± 0.09) × 10⁻³ for 125.09GeV B(H \rightarrow Z γ) = (1.57 ± 0.09) × 10⁻³ for 125.38GeV

Introduction

- BSM couplings could be expected in the quantum loops, which result in the deviation of branching fractions from the SM.
- BSM particles could be present in the quantum loops. (Such as a composite Higgs boson^[1], a pseudo Nambu-Goldstone boson^[2], a neutral scalar from a different source^[3-4], etc.)
- Difference between $H \rightarrow Z\gamma$ decay and $H \rightarrow \gamma\gamma/ZZ$ decay sensitive to new physics.
- Main bkg: SM Z γ , Z+jets (Z \rightarrow *ll*, BR \sim 6.6%)

Phys. Rev. D 88 (2013) 075019 [2] Phys. Lett. B 789 (2019) 233
Phys. Rev. D 84 (2011) 035027 [4] Phys. Rev. D 86 (2012) 093012

Introduction -- Run2 analysis

• Run2 analysis:

CMS and ATLAS have searched for the H \rightarrow Z γ decay using Run 2 data (138fb⁻¹ for CMS and 139fb⁻¹ for ATLAS), using the ll γ final state, with $m_{ll} > 50$ GeV

• Similar strategies:

Categorise events to exploit production mode kinematics and fit to m_{lly} distribution in each category

• The observed $H \rightarrow Z\gamma$ significance in full Run 2 result is $2.2\sigma/2.7\sigma$ (expected 1.2σ) for ATLAS/CMS

	CMS	ATLAS
No. categories	8	6
Prod modes	ggF, VBF, VH+ttH (lep)	ggF, VBF
Background uncertainty	Discrete profiling	Spurious signal
m _H	125.38 GeV	125.09 GeV
Signal strength	$2.4\pm0.9~(stat)\pm0.3~(syst)$	$2.0\pm0.9~(stat)\pm0.4~(syst)$
Significance Obs (Exp)	2.7 (1.2)	2.2 (1.2)

Introduction -- Combine procedure

- Similar to previous CMS-ATLAS Run 1 combination^[1]
- ATLAS and CMS agreed to have a $H \rightarrow Z\gamma$ combined result in Run 2
- Workspaces exchanged between the collaborations, followed by technical checks that results are reproducible
- CMS result reported only for $m_H = 125.38 \text{ GeV}^{[2]}$, ATLAS for only 125.09 GeV^[3]
- Both collaborations provided workspaces for 125.09 GeV and 125.38 GeV
- Compromise solution: report results for both m_H values
- We will show the results for the combination of these workspaces

Correlation of uncertainties

- The experimental uncertainties from ATLAS and CMS analyses are considered uncorrelated
- Reviewed all systematic uncertainties for consistency and a small number of modifications are made to facilitate the combination.

• Outcome:

- Correlated: Main theory production cross section and $H \rightarrow Z\gamma$ branching fraction uncertainties
- Not correlated: The other Higgs boson production modes, the choice of PDF, strong-force coupling constant, the modeling of the underlying event and parton shower
- The uncertainty of luminosity were investigated using approximate correlation strategies; they are found to have a negligible impact
- ATLAS include a Higgs mass uncertainty, but effect is very small (0.2%)

Category	ATLAS	CMS	Correlate
QCD scale ggF	TheorySig_QCDscale_ggF	THU_ggH_Mu	+
	TheorySig_QCDscale_ggF_pTt		
	TheorySig_QCDscale_ggF_relpT		
	TheorySig_QCDscale_ggF_vbf[2,3]j		
	TheorySig_QCDscale_ggF_VBFModel		
		THU_ggH_Res	
QCD scale others	TheorySig_QCDscale_ttH	THU_ttH_Yield	
	TheorySig_QCDscale_VBFH	THU_VBF_Yield	
	TheorySig_QCDscale_WH	QCDscale_WH	
	TheorySig_QCDscale_ZH	QCDscale_ZH	
PDF	TheorySig_PDF_[ttH,VBFH,WH,ZH]		
	TheorySig_PDF4LHC_NLO_30_EV[1-30]		
		pdf_Higgs_ttH	
		pdf_Higgs_qqbar	
		pdf_Higgs_gg	
QCD alphaS	TheorySig_QCDalphaS		
	TheorySig_QCDalphaS_[ttH,VBFH,WH,ZH]		
BR	TheorySig_BR_Zy	BR_hzg	+
UEPS	TheorySig_UEPS_ggH		
		UnderlyingEvent_norm	
		PartonShower_norm	
Higgs <mark>M</mark> ass	ATLAS_LHCmass		
1021071			

Combination results (ATLAS+CMS)

Combine results (m_H = 125.38 GeV)

Combining ATLAS125.38+CMS125.38

Expected Significance: 1.7σ (post-fit) Observed Significance: 3.4σ

Signal Strength: 2.2 ± 0.7

The combined significance is close to the sum of square of two individual results.

Combine results (m_H = 125.09 GeV)

Combining ATLAS125.09+CMS125.09

Expected Significance: 1.6σ (post-fit) Observed Significance: 3.4σ

Signal Strength: 2.2 ± 0.7

The effect of the Higgs mass is negligible.

Breakdown of uncertainties

• The total uncertainty is divided into two parts: systematic uncertainty and statistical uncertainty. The systematic uncertainty is obtained from the subtraction in quadrature of red one from black one

Branch ratio

• the signal strengths used to calculate the branching ratio of $H \rightarrow Z\gamma$ are obtained with freezing the uncertainties of branch ratio to zero.

 $\mu_{BR} = 2.2 \pm 0.7$ for both mass

This is corresponding to

 $B(H \rightarrow Z\gamma) = (3.4 \pm 1.1) \times 10^{-3}$ for both mass

Compatibility with SM (r=1)

Likelihood scans for inclusive signal strength under different Higgs mass assumptions

	Compatibility		
Higgs mass	125.09 GeV	125.38 GeV	
Standard Model $(r = 1)$	1.82σ	1.83σ	

Compatibility with Standard Model is about 1.8σ

Spectrum of m_{IIy}

- Visualisation of excess in m_{llγ}
- Sum of events over a common mass window of 115-145 GeV, with each category weighted by ln(1+S/B)
- S and B are signal and background events in the 120-130 GeV range

Summary

Summary

- First CMS-ATLAS Higgs combination in Run 2. Useful to exercise combination machinery in anticipation of full CMS+ATLAS Run 2 combination.
- First evidence of the H \rightarrow Z γ decay: Observed significance is about 3.4 σ , and signal strength is about 2.2 ± 0.7.
- This study is a powerful test of the Standard Model. The $H \rightarrow Z\gamma$ decay could provide indirect evidence of the existence of particles beyond those predicted by the Standard Model of particle physics.
- With the ongoing Run3 of the LHC and the future HL-LHC, we will be able to improve the precision of this test and probe ever rarer Higgs decays.

Combine results

- Signal strength: 2.2 ± 0.7 , significance: 3.4σ
- To the relevant level of precision, results are independent of chosen $m_{\rm H}$
- Compatible with SM expectation ($\mu = 1$) at: 1.8 σ

Experiment	Dataset	Higgs Mass [GeV]	Signal strength	Significance
ATLAS	observed	125.09	$2.01^{+0.97}_{-0.91}$	2.24σ
		125.38	$1.95^{+0.96}_{-0.90}$	2.19σ
ATLAS	expected	125.09	$1.00^{+0.90}_{-0.86}$	1.17σ
		125.38	$1.00^{+0.89}_{-0.85}$	1.18σ
CMS	observed	125.09	$2.48^{+1.06}_{-0.94}$	2.56σ
		125.38	$2.41^{+1.03}_{-0.92}$	2.57σ
CMS	expected	125.09	$1.01\substack{+0.90\\-0.87}$	1.14σ
		125.38	$1.01^{+0.88}_{-0.85}$	1.17σ
Combined	observed	125.09	$2.22^{+0.70}_{-0.67}$	3.40σ
		125.38	$2.20^{+0.70}_{-0.65}$	3.36σ
Combined	expected	125.09	$1.00^{+0.63}_{-0.61}$	1.64σ
		125.38	$1.00^{+0.62}_{-0.60}$	1.68σ

Back up

CMS only results

Comparison of full and pruned set of background functions

The results meet with the Run2 paper, which signal strength is 2.4 ± 0.9 (10.1007/JHEP05(2023)233)

Discrete nuisances on the comb

The effect of the discrete nuisances in the combination is reduced a lot.

ATLAS125.09 GeV + CMS125.38 GeV

Identical at 1σ intervals.

Compatibility of the results

Goodness of Fit

Compatibility with SM (r=1)

Likelihood scans for signal strengths of 3 different production modes

-2∆InL	mu_XS_VH	mu_XS_ggF	mu_XS_VBF
0	18.78	2.44	-1.48
8.20	1	1	1

Compatibility with Standard Model is about 1.730