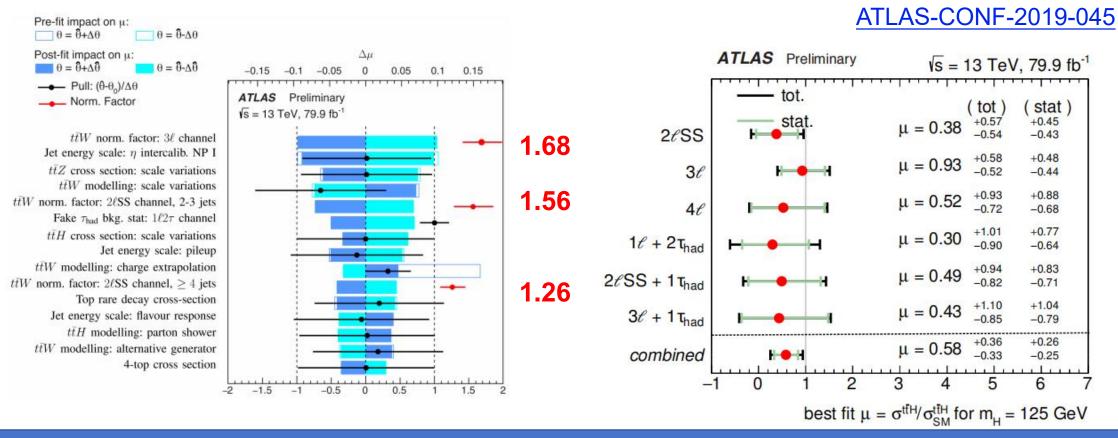
$t \bar{t} H$ measurement in multilepton final states in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

贾琛

马连良教授 Shandong University

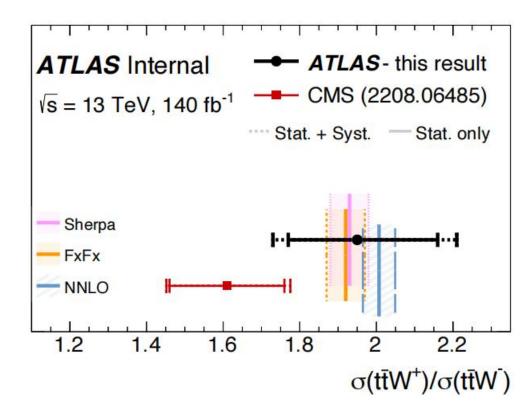

Outline

- Overview of $t\bar{t}H$ multilepton ($t\bar{t}HML$) results @80 fb⁻¹
- Overview of $t\bar{t}WML$ inclusive measurement @139 fb⁻¹
- Analysis of $t\bar{t}HML$ legacy paper
 - ✓ MC samples
 - √ Objects selection
 - ✓ Main backgrouds estimation in 0tau channel
 - ✓ SRs/CRs definition in 2LSS0tau channel
 - ✓ Combined fit

ttHML@80 fb⁻¹

Previous Run2 result

- ✓ NF(ttW) very high ----- Predict $\sigma(ttW)$ =600.8 fb
- \checkmark µ(ttH) quite low (0.58)
- ✓ Observed significance: 1.8σ (expected 3.1σ)

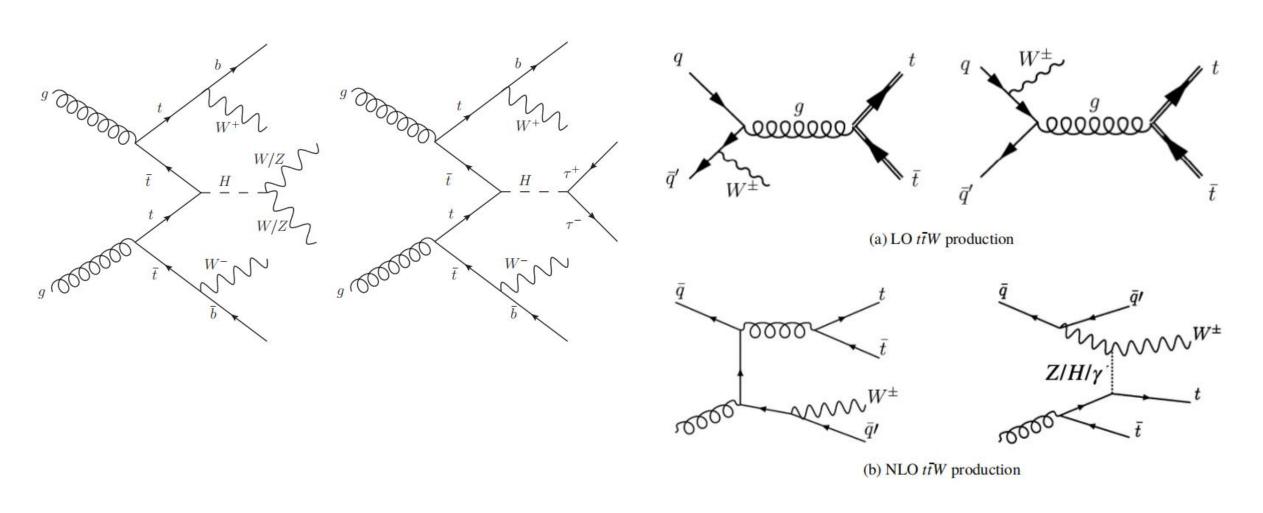


ttW inclusive (XS and charge ratio)

- $\sigma(ttW) = 890 \pm 50$ (stat) ± 70 (syst) fb (9% relative uncertainty)
 - \checkmark Predict $\sigma(ttW)$ =615.78 fb, $\mu_{t\bar{t}W}=1.44^{+0.14}_{-0.13}$ (tot.)
- $\sigma(ttW+)/\sigma(ttW-) = 1.95 \pm 0.21$ (stat) ± 0.16 (syst) \rightarrow consistent with SM

Process	Generator	Parton Shower	PDF	Tune
2	(alternative)	(alternative)		
tīW	Sherpa-2.2.10	SHERPA-2.2.10	NNPDF 3.0	NNLO SHERPA default
	(MADGRAPH5_AMC@)	NLO) (Pythia-8)		
tīH	POWHEG-BOX	Рутніа 8	NNPDF 3.0	NLO / A14
			NNPDF 2.3	LO

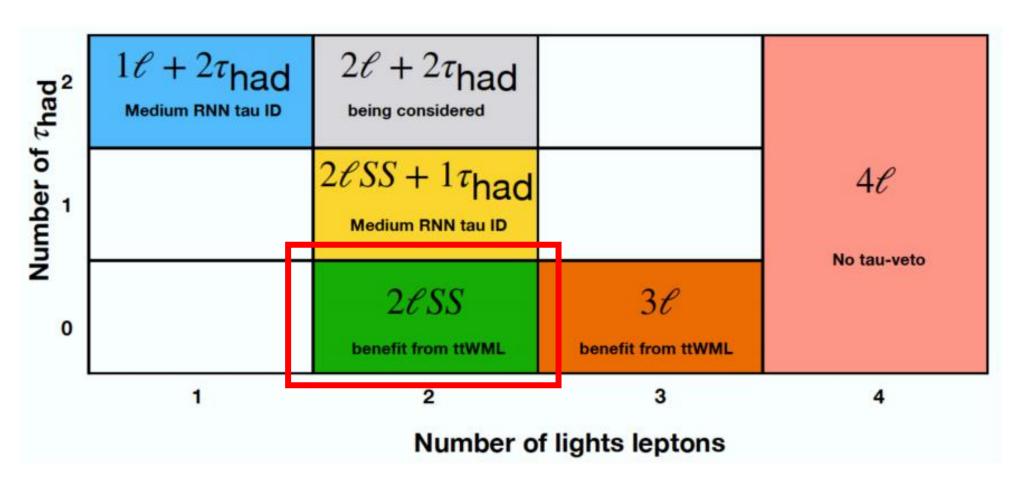
[ATLAS-CONF-2023-019]



0

Legacy Run 2 ttHML Analysis strategy

- Full Run 2!
- Build on ttW measurement for 0tau channels
 - ✓ Make use of improved understanding of fakes and ttW modelling
 - √ Fake estimate similar but improved
- Similar approach as 80 fb⁻¹ analysis for tau channels
 - ✓ Dedicated fake estimates
- Combined inclusive fit result
- New interpretations
 - ✓ Higgs reconstruction with GNN
 - ✓ Differential STXS measurement
 - √ Higgs CP measurement
 - Significant sensitivity coming from measuring tH
 - ✓ EFT and self-coupling sensitivity has been studied but would be left for combination rather than dedicated interpretation in this paper.


Feyman diagrams

 $t\bar{t}H$ process

 $t\overline{t}W$ process

Legacy Run 2 ttHML

- 2LOS+1 τ_{had} also shows good sensitivity (~1.5 σ)
 - ✓ More tests are still ongoing to determine whether adding this channel

MC sample

- Latest samples used:
 - ✓ Powheg+Py8 for ttH signal
 - ✓ Sherpa for ttW
 - ✓ aMC+Py8 for ttZ

 Standard alternative samples used for systematics

Process	Generator	ME order	Parton shower	PDF	Tune
tīH	POWHEG-BOX	NLO	Рутніа 8	NNPDF3.0nlo	A14
	(POWHEG-BOX)	(NLO)	(HERWIG7.0.4)	(NNPDF3.0NLo)	(H7-UE-MMHT)
	(MG5_aMC)	(NLO)	(Рүтніа 8)	(NNPDF3.0NLo)	(A14)
tīW	SHERPA 2.2.10	MePs@NLo	SHERPA	NNPDF3.0nnlo	SHERPA default
	(MG5_aMC)	(FxFx NLO)	(PYTHIA 8)	(NNPDF3.0NLo)	(A14)
	(Powheg)	(NLO)	(PYTHIA 8)	(NNPDF3.0NLo)	(A14)
	(Powheg)	(NLO)	(Herwig 7)	(NNPDF3.0NLo)	(H7-UE-MMHT)
tīW (EW)	SHERPA 2.2.10	LO	SHERPA	NNPDF3.0nnlo	SHERPA default
	(MG5_aMC)	(LO)	(Pythia 8)	(NNPDF3.0NLo)	(A14)
$t\bar{t}\ell\ell$	MG5_aMC	NLO	Рутніа 8	NNPDF3.0NLO	A14
	(MG5_aMC)	(NLO)	(Herwig 7)	(NNPDF3.0NLo)	(H7-UE-MMHT)
	(MG5_aMC)	(NLO)	(Pythia 8)	(NNPDF3.0NLo)	(A14 VAR3c)
$t\bar{t} \rightarrow W^+bW^-\bar{b}\ell^+\ell^-$	MG5_aMC	LO	Рутніа 8	NNPDF3.0LO	A14
tītī	MG5_aMC	NLO	Рутніа 8	NNPDF3.1NLO	A14
$t\bar{t}$	POWHEG-BOX	NLO	Рутніа 8	NNPDF3.0NLO	A14
	(POWHEG-BOX)	NLO	(HERWIG7.1.3)	(NNPDF3.0NLo)	(H7-UE-MMHT)
tīt	MG5_aMC	LO	Рутніа 8	NNPDF2.3LO	A14
Single top	Powheg-Box	NLO	Рутніа 8	NNPDF3.0NLO	A14
(t-, Wt-, s-channel)					
VV, qqVV, VVV	SHERPA 2.2.2(1)	MePs@NLo	SHERPA	NNPDF3.0nnlo	SHERPA default
$Z \rightarrow \ell^+\ell^-$	SHERPA 2.2.1	MePs@NLo	SHERPA	NNPDF3.0nnlo	SHERPA default
$Z \rightarrow \ell^+\ell^-(\gamma \rightarrow e^+e^-)$	POWHEG-BOX	NLO	Рутніа 8	CTEQ6L1NLO	A14
$Z \rightarrow \ell^+\ell^-(\gamma * \rightarrow e^+e^-)$	POWHEG-BOX	NLO	Рутніа 8	CTEQ6L1NLO	A14

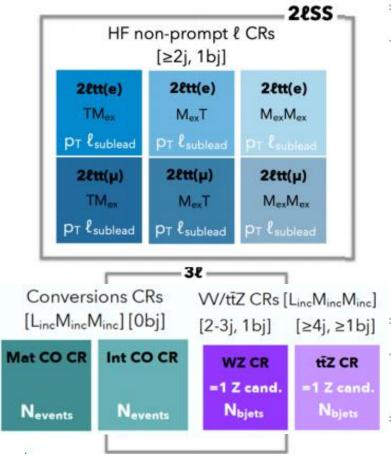
Objects selection

•	Tr	ia	a	e	rs	•
		ιу	м		J	

Channel	2ℓSS	3ℓ	4ℓ	2ℓ SS+ $1\tau_{had}$	1ℓ + $2\tau_{\rm had}$	2ℓ + $2\tau_{\rm had}$
Triggers	SL DL	SL DL	DL only	DL only	SL only	DL only

- Loose light leptons: used for channels association
 - ✓ Loose (-LH) ID and FCLoose isolation for $\mu(e)$
- Jets: PFlow collection w/ anti-kt R=0.4
- Flavour-tagging: DL1r b-tagger
- Overlap removal procedure used
- Tighter light leptons required within channels (except 4L)
 - ✓ Tighter ID and PLIV-based isolation
- Additional cuts on electrons to reject those from conversion/QMisID
- Changes wrt ttW analysis
 - ✓ Use a looser b-tagging WP from [==1b @60% || >=2b @77%] to [>=1b @85%]
 - ✓ Relaxing pT cut of the 2LSS leptons in 3L regions: from 20 GeV to 15 GeV

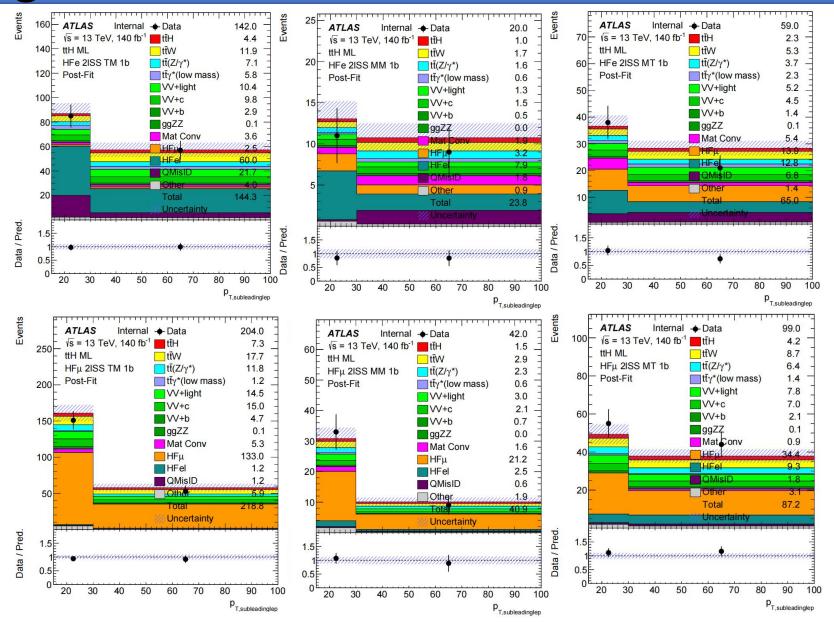
Leptons selection


Pseudo-continuous Prompt Lepton Improved Veto (PLIV) WPs definition:

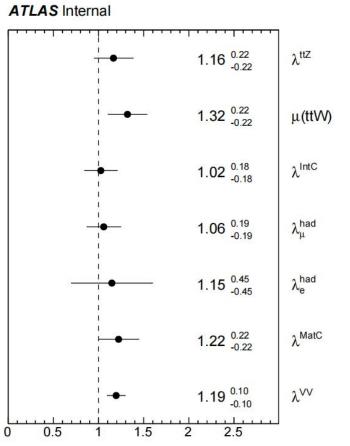
	e			μ				
	L	M	M_{ex}	T	L	M	M_{ex}	T
LooseVar_Rad isolation			Yes				Yes	
Non-prompt lepton BDT	No	Tight	Tight-not-	VeryTight	No	Tight	Tight-not-	VeryTight
(PLIV)			VeryTight				VeryTight	
Identification	Loose	oose Tight		Loose	Medium			
Charge mis-assignment veto	No	Yes		N/A				
(ECIDS)								
Conversion rejection	No Yes		N/A					
Transverse impact parameter	< 5		< 3					
significance $ d_0 /\sigma_{d_0}$								
Longitudinal impact parameter	< 0.5 mm			5 mm				
$ z_0 \sin \theta $								

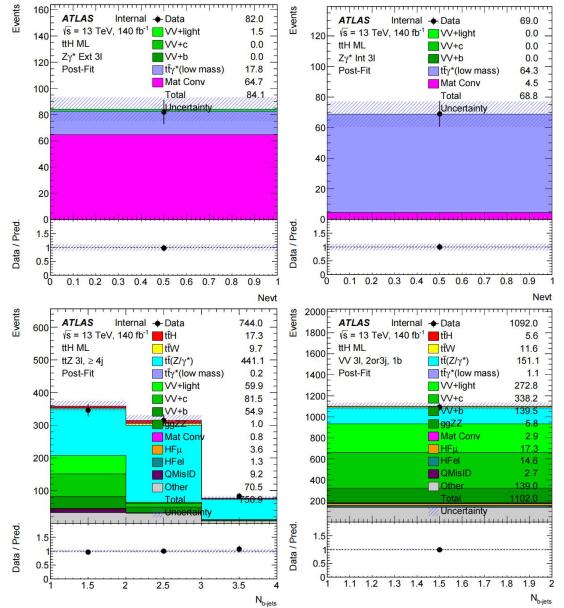
Table 5: Loose (L), Medium (M), Medium exclusive (Mex), and Tight (T) light lepton definitions.

Main backgrounds estimation in Otau


Background estimate through "Template fit"

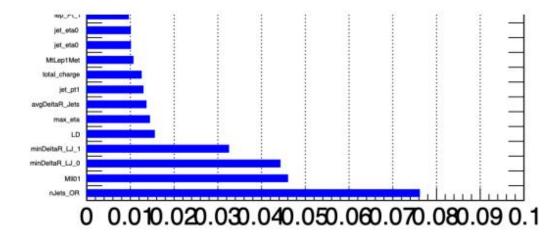
Control regions for:	Diboson	tīZ	Conversions	HF non-prompt		
N _{jets}	2 or 3	≥ 4	≥ 0	≥ 2		
$N_{b-\mathrm{jets}}$	1 b@85 ≥ 1 b@85		0 b@85	1 b@85		
Lepton requirement	3ℓ		µµе*	2ℓSS		
Lepton definition		(L, M, M)	$(T, M_{\rm ex}) \parallel (M_{\rm ex}, T) \parallel (M_{\rm ex}, M_{\rm ex})$			
Lepton $p_{\rm T}$ [GeV]		(10, 20, 20)		(20, 20)		
$m_{\ell^+\ell^-}^{\rm SF}$ [GeV]		> 12	> 12	2 — 2		
$ m_{\ell^+\ell^-}^{\rm SF} - m_Z $ [GeV]	< 10		> 10	-		
$ m_{\ell\ell\ell} - m_Z $ [GeV]			< 10			
$m_T(\ell_0, E_{\mathrm{T}}^{\mathrm{miss}})$ [GeV]		-		< 250 for $TM_{\rm ex}$ and $M_{\rm ex}T$ pairs		
Region split	_		internal / material	subleading $e/\mu \times (TM_{\rm ex}, M_{\rm ex}T, M_{\rm ex}M_{\rm ex})$		
Region naming	3ℓVV	3ℓttZ	3ℓIntC	$2\ell tt(e)_{TM_{ex}}, 2\ell tt(e)_{M_{ex}T}, 2\ell tt(e)_{M_{ex}M_{ex}}$		
			3ℓMatC	$2\ell \operatorname{tt}(\mu)_{T M_{\operatorname{ex}}}, 2\ell \operatorname{tt}(\mu)_{M_{\operatorname{ex}}T}, 2\ell \operatorname{tt}(\mu)_{M_{\operatorname{ex}}M_{\operatorname{ex}}}$		


Main backgrounds estimation in Otau

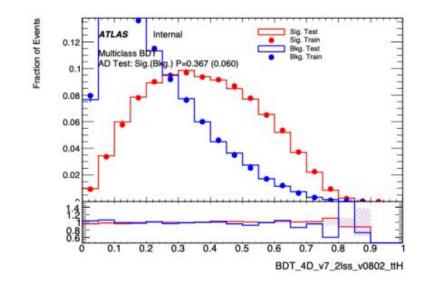

- Fake lepton regions
- Good modelling using pseudo-continuos PLIV WPs

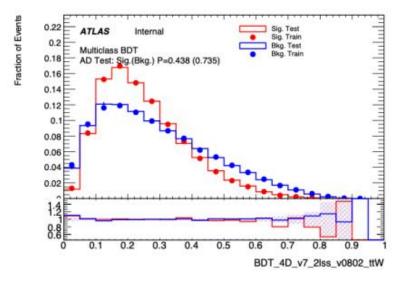
Main backgrounds estimation in Otau

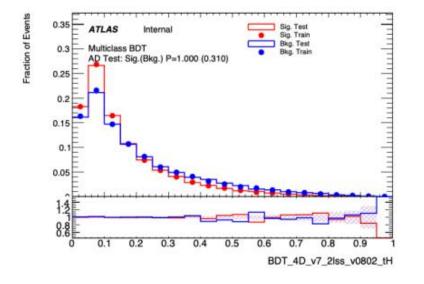
- Good modelling in conversions, diboson and ttZ CRs
- CR-only results are shown


Signal region strategy

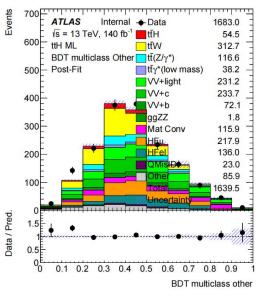
- Define individual channel inclusive SRs
 - ✓ Determine sensitivity and understand CRs and fit
 - ✓ Compare to results in 80 fb⁻¹ analysis

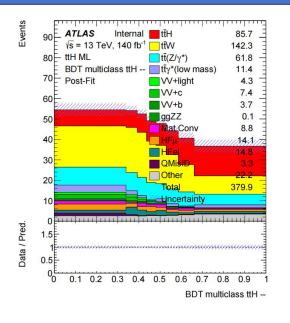

- > 2LSS0tau pre-selection for MVA
 - √ ==2 SS VeryTight PLIV leptons with pT>15 GeV
 - ✓ No T(had) candidates in the event
 - ✓ ≥ 3 jets, of which ≥ 1 must be b-tagged with 85% WP

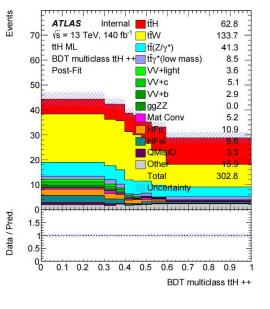

2LSS0tau MVA

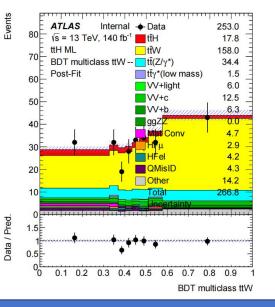

- 4D multiclass BDT is employed
 - ✓ Trained using <u>mva-trainer</u>
 - ✓ 20 input variables
 - ✓ 4 output nodes: ttH, tH, ttW and Other
- NJets, m(II), and dR(I, jet) among most important inputs

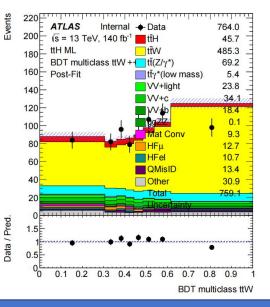
(AUC_{nom.}-AUC)/AUC_{nom.}



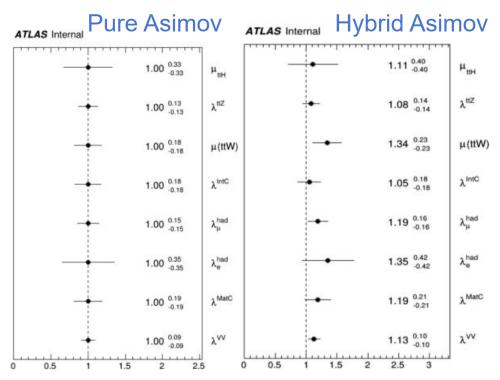


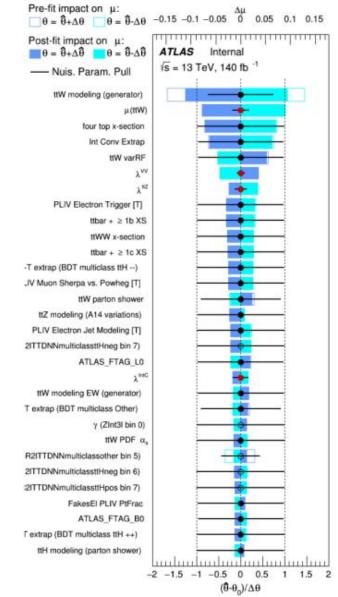

2LSS0tau SR/CR


- Standalone channel results
- Each event goes into which region depends on its largest BDT score
 - ✓ tH node score is ignored
 - ✓ ttH SR: ttH>ttW && ttH>other
- ttH and ttW regions split by charge
- Generally good modelling seen in CRs
- SRs blinded



CLHCP





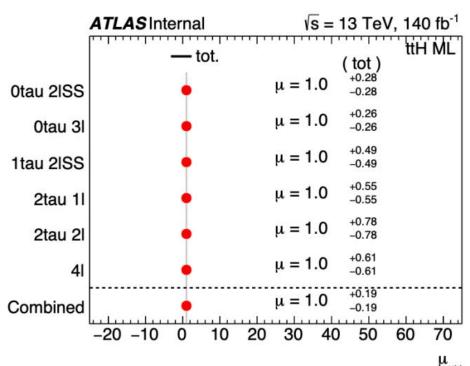
2LSS0tau Fit results

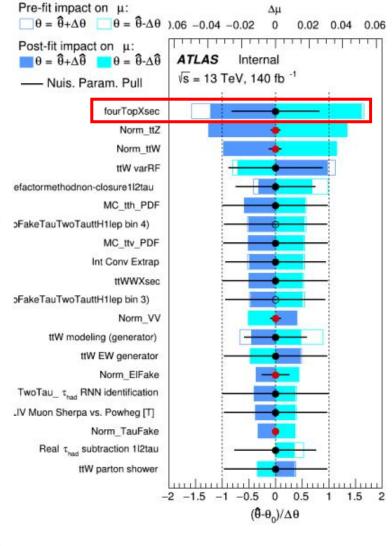
- Standalone channel results
- $\Delta\mu(ttH)=0.33$, 3.12 σ significance
 - \checkmark 80 fb⁻¹ = 2.3 σ expected
- NFs compatible with unity except NF(ttW) similar to previous measurements
- Highest ranked uncertainties
 - ✓ ttW modelling
 - ✓ NF(ttW)
 - ✓ 4-tops XS (50%)

Hybrid Asimov: Real data in CRs and Asimov data in SRs

Combined fit

Combined fit correlations:


- μ_{ttH} : correlated through all channels
- μ_{ttZ} : correlated in 0τ , 1τ and 4l channels
- μ_{VV} : correlated in 0τ , 1τ and 4l channels
- μ_{ttW} : correlated in 0τ , 1τ
- Fake norm factors not correlated, as different fake estimation techniques and different fake lepton working points are used


Systematics

- ✓ All included where they exist for a given channel
- ✓ Correlated when identical, otherwise uncorrelated

Combined fit

- $\Delta\mu(ttH) = \pm 0.19$ (significance is 5.7 σ)
 - \checkmark 80 fb⁻¹ = 3.1σ (expected)
- Both statistics and systematics have a large impact on the uncertainty
 - ✓ 12% statistics
 - √ 15% systematics
- 2LSS0tau and 3L0tau are most sensitive channels
 - √ 1Tau channel helps reduce correlation with µ(ttW)
- Preliminary ranking shows the largest uncertainties coming from σ(tttt), NF(ttZ) and NF(ttW)

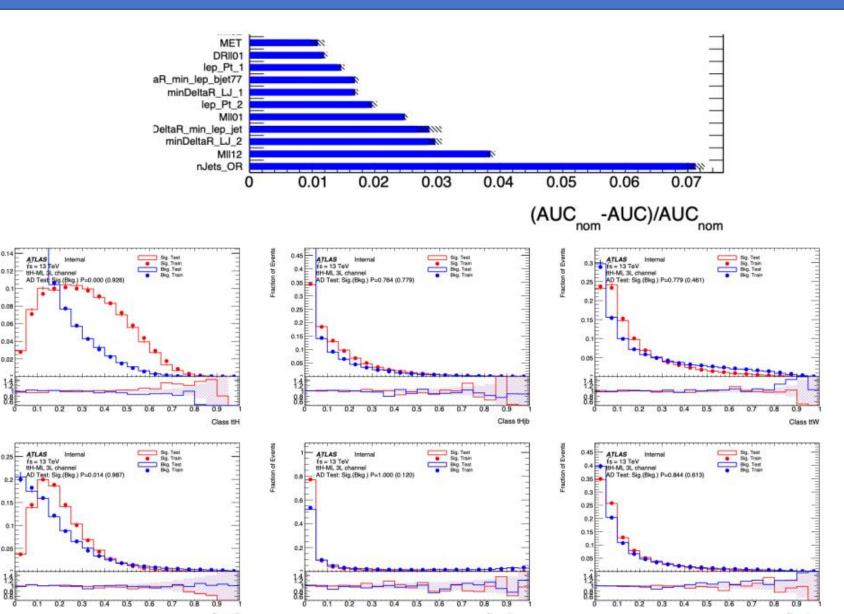
Summary

- Significant sensitivity improvements since previous result
- Analysis strategy is frozen
- Some items still to be completed but these are well defined
 - ✓ STXS measurement
 - ✓ Systematics correlation among all channels in the fit
 - ✓ CP measurement
 - ✓ ttH combination

Thanks!

Back up

3L0tau MVA


- 6D multiclass BDT is employed
 - ✓ Trained using mva-trainer
 - √ 16 input variables
 - ✓ 6 output nodes: ttH, tH, ttW, ttZ, VV & ttbar

0.04

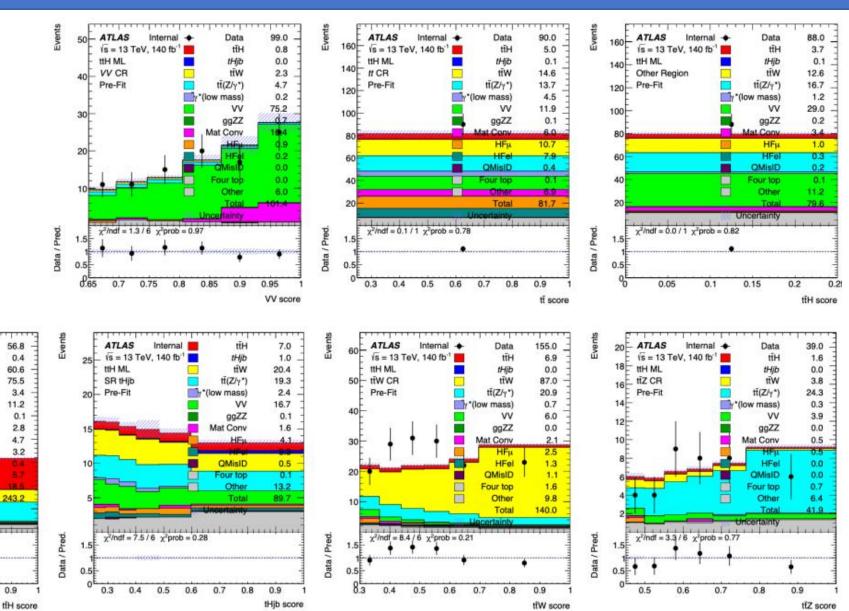
0.05

ATLAS Inter

 NJets, M(II), dR(I, jet) among the most important variables

3L0tau SR/CR

- **Pre-fit modelling generally** good in CRs
- **Uncertainty band does not** yet systematics


ttH ML

SR ttH

Pre-Fit

 $\chi^2/ndf = 0.0 / 0 \chi^2 prob = 0.00$

0.5

24

56.8

0.4

60.6

75.5

3.4

11.2

0.1

2.8

4.7

3.2

tHib

tf(Z/y*)

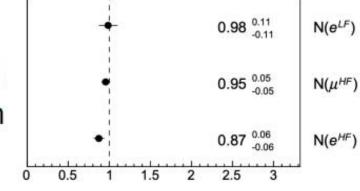
ggZZ

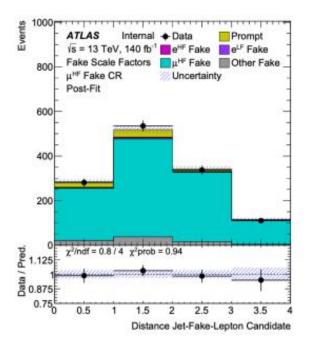
HFel

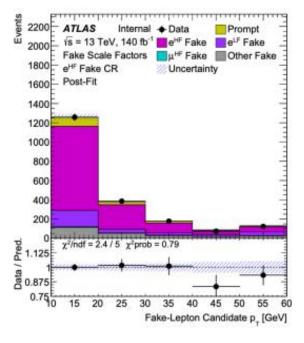
Total

Uncertainty

0.7

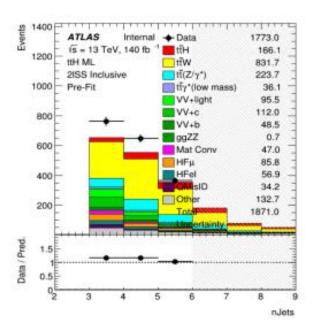

Mat Conv

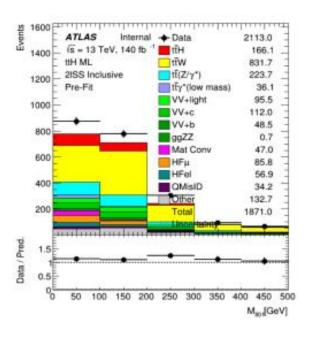

(low mass)

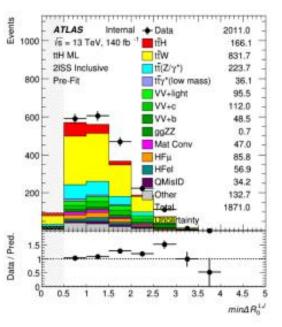


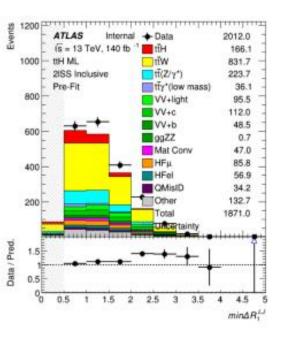
Extended template fit - 4L

- Identical philosophy to standard template fit
- But modified to looser lepton definitions and adding dedicated light flavour electron region
 - Classification by highest pT lepton in event

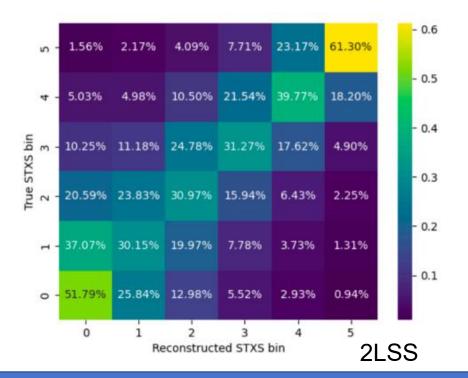


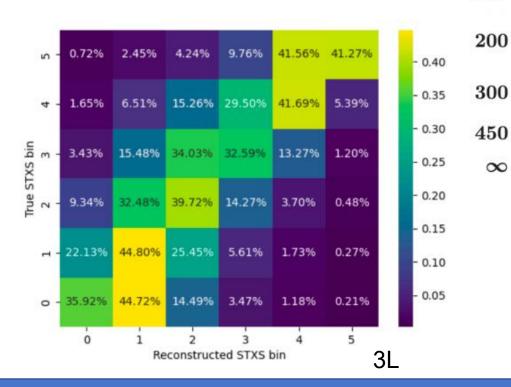





2LSS0tau

- Modelling of input variables is checked
 - ✓ Pre-fit normalisation off-set, this is expected to be fixed with ttW NF post-fit
- Otherwise modelling is generally very good





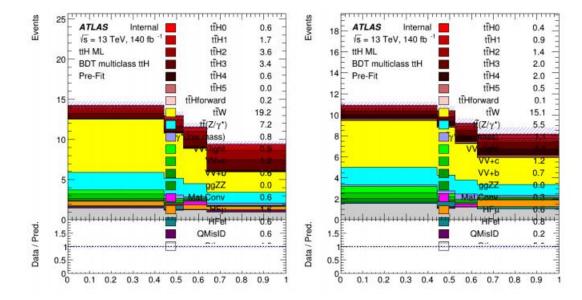
- STXS interpretation is new for this round
 - ✓ Used in 2LSS0tau and 3L0tau
- Full Higgs reconstruction not possible in ML final state
- Using GNN for pT(H) reconstruction
 - ✓ Trained for true STXS bin as a global attribute

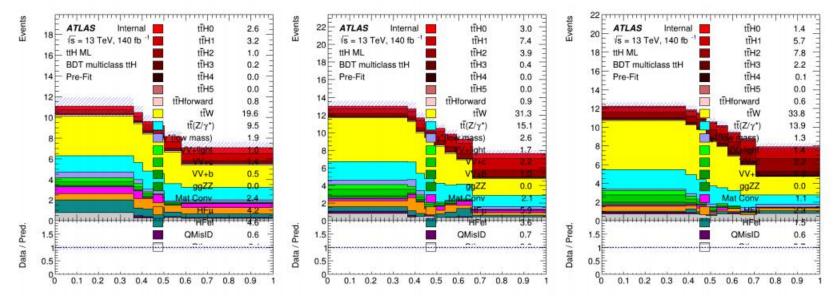
 $t\bar{t}H$

60

120

 ∞

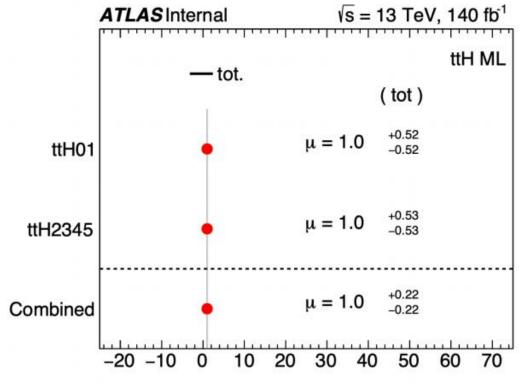

STXS | 2LSS0tau negtive SR


Several optimisations tried

- ✓ Conservative vs agressive binning
- ✓ Different combinations of STXS bins

Decided to go with

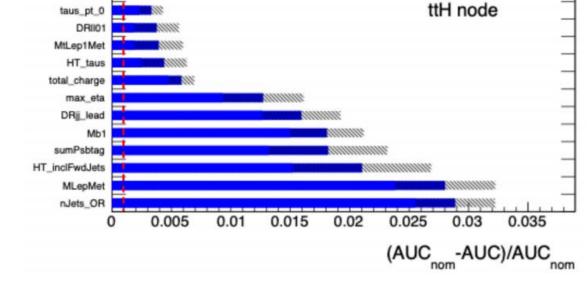
- ✓ 5 reco bins (merging two highest bins)
- ✓ More aggressive BDT binning
- ✓ Fitting two STXS bins for ttHML alone
 - > All 6 STXS bins in ttH combination

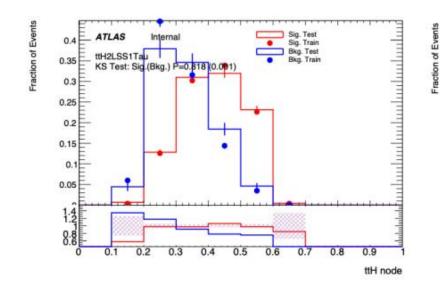


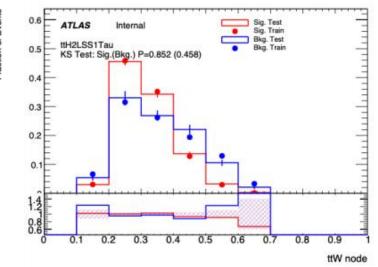
STXS | Results

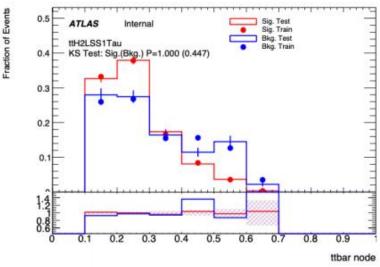
- Results in ~50% uncertainty on combined bins
- ~50% correlation between signal strengths
- Combined fit is compatible with previously shown inclusive fit
 - ✓ Will use STXS binning for inclusive fit from now on.

- Planning to also include 2tau channels in STXS fit
 - √ Studies ongoing

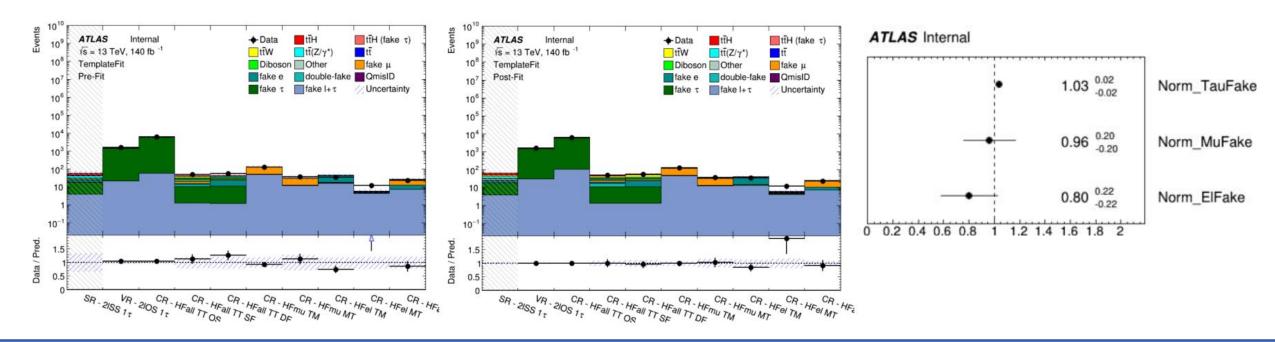

μ


2LSS1tau MVA

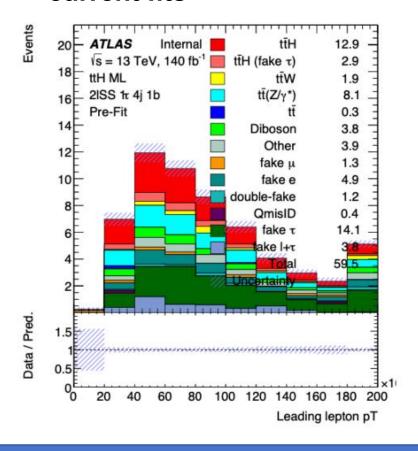

minDeltaR LJ

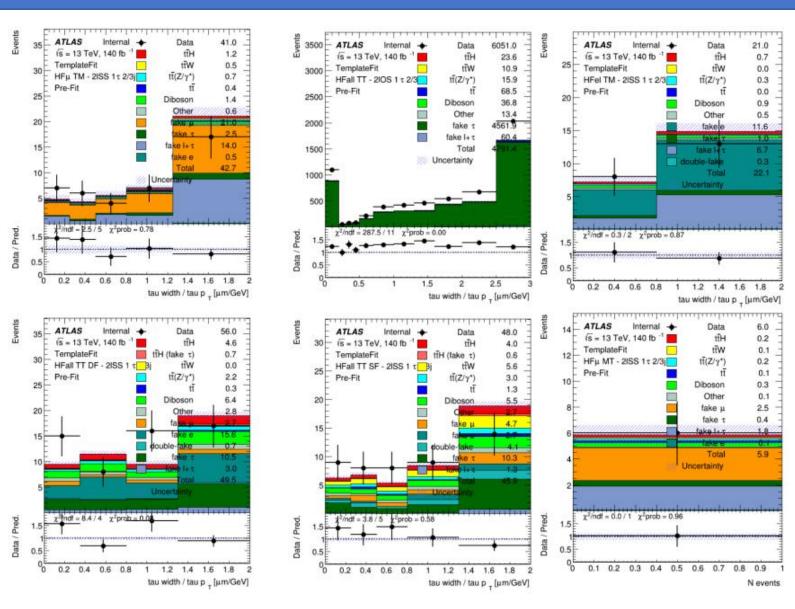

3D multiclass BDT is employed

- √ Trained using <u>mva-trainer</u>
- √ 17 input variables
- ✓ 3 output nodes: ttH, ttW and tt
- nJets, MLepMet, HT

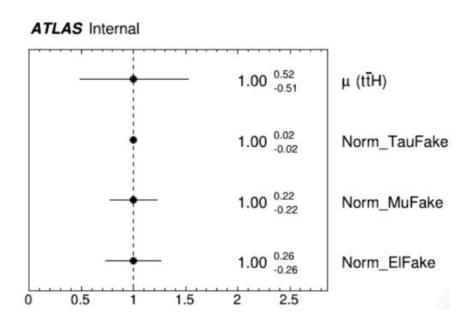


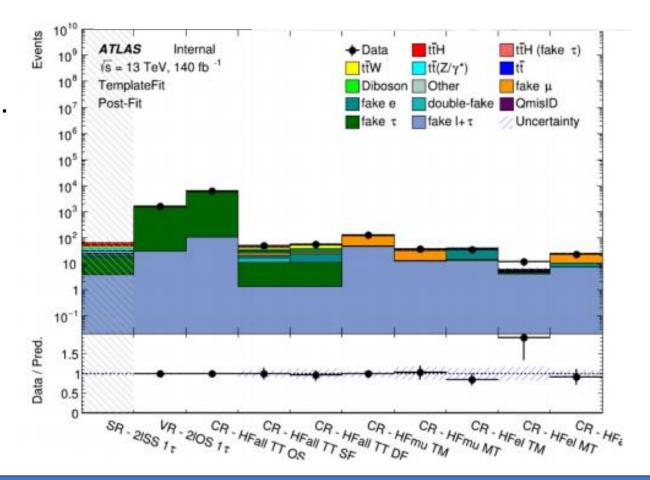
Extended template fit - 2LSS1tau


• Template Fit method extended to include the fake-T(had) scale factor


- ✓ 8 control regions with mixed e/µ definitions (TT, TM, MT, MM)
- ✓ 8 templates with single and double fake leptons ($e/\mu/\tau$)
 - fake component selected using truth class information
 - no distinction between HF/LF/γ-conv
- ✓ 3 scale factors: Ne, Nµ and NT
 - double-fake templates use multiple scale factors (e.g., fake e+τ is scaled by Ne*Nτ)

2LSS1tau SR/CR


- BDT still needs to be implemented in fit.
- Cut-based SR used for current fits



2LSS1tau Fit results

- Standalone channel results
 - ✓ total unc on µ(ttH) is 0.51
 - ✓ 80ifb = ~0.95 expected
- Several systematics still missing
 - ✓ JES/JER/FTag/ttH&ttbar modelling/...

Preselection regions

• 2LSS0tau

- √ ==2 SS VeryTight leptons with pT>15 GeV
- ✓ No T(had) candidates in the event
- ✓ ≥ 2 jets, of which ≥ 1 must be b-tagged with 85% WP

• 3L0tau

- \checkmark ==3 leptons with total charge equal to ±1
 - Opposite charge to others is loose with pT>10 GeV
 - SS di-lep pair is tight with pT>15 GeV
 - > OS mll 10 GeV Z veto and mll>12 GeV
- ✓ ≥ 2 jets, of which ≥ 1 must be b-tagged with 85% WP

• 4L

- √ ==4 loose light leptons
- √ sum of lepton charges is zero
- ✓ ≥2j ≥1 must be b-tagged with 85% WP
- ✓ Mass cuts
 - > Each OS mll>12 GeV, Higgs (->4l) 5 GeV veto

1L2tau

- ✓ ==1 light lepton pT>27
- ✓ ==2 OS RNN Medium had. taus pT>20 GeV
- ✓ ≥ 3 jets + 1 b-tag (77% WP)

2SSL1tau (cut-based SR)

- √ ==1 RNN Medium hadronic tau
- ✓ ==2 SS PLIV tight light leptons pT>15 GeV
- ✓ SF leptons m(II) 10 GeV Z veto
- ✓ ≥ 3 jets + 1 b-tag

2LOS2tau

- √ ==2 OS light lepton pT>10
 - > OS mll 10 GeV Z veto and mll>12 GeV
- ✓ ==2 OS RNN Medium had. taus pT>20 GeV
- ✓ Nbjet > 0

2023-11-16 35