

Open heavy-flavour measurements at forward rapidity via semi-muonic decays with ALICE at the LHC

Maolin Zhang (maolin.zhang@cern.ch)

Central China Normal University, Wuhan, China Laborataire de Physique de Clermont, Clermont-Fd, France

Nov. 17, 2023 Shanghai The 9th China LHC Physics Workshop Heavy (charm and beauty) quarks: sensitive probes of the Quark-Gluon Plasma (QGP) Open heavy-flavours in nucleus-nucleus (AA) collisions

- > In-medium parton energy loss: induced gluon radiations vs. elastic collisions
- > Heavy-quark participation in the collective expansion, thermal degree of freedom

Observables

- > Nuclear modification factor, R_{AA}
 - > No nuclear effects: $R_{AA} = 1$

$$R_{AA}(p_{T}, y) = \frac{1}{\langle T_{AA} \rangle} \times \frac{d^{2}N_{AA}/dp_{T}dy}{d^{2}\sigma_{pp}/dp_{T}dy} = \frac{\text{QCD Medium}}{\text{QCD Vacuum}}$$

- Elliptic flow
 - Second-order coefficient of the Fourier expansion of the azimuthal (φ) distribution w.r.t. to the reaction plane (Ψ_{RP})

$$v_2 = <\cos[2(\varphi - \Psi_{RP})] >$$

- □ Small collision systems (pp and p-Pb collisions)
 - Baseline for heavy-ion collisions
 - Cold nuclear matter effects (p-Pb)
 - > Reveal the origin of flow-like phenomena at high multiplicity in small collision systems

Open heavy-flavour muon measurement with ALICE detector

□ Heavy-flavour muons: c, b → μ^{\pm} (2.5 < y <4)

Muons analysis methodology

Muon track selection

- Acceptance & geometrical cuts
 - $-4.0 < \eta < -2.5$: acceptance of the ALICE muon spectrometer
 - $170^{\circ} < \theta_{abs} < 178^{\circ}$: geometry of the spectrometer
- > Muon tracking tracks matched with muon trigger tracks
 - Reject hadrons crossing the front absorber
- > $p \times DCA$ (Dist. Of Closest Approach) in 6σ
 - Reject beam-gas interactions and particles produced in the absorber
- \succ Low $p_{\rm T}$ cut
 - Reject μ from secondary $\pi,\,K$

$p_{\rm T}(y)$ -differential production cross section in pp collisions

- \square Measurement over a wide $p_{\rm T}$ range: 2-20 GeV/c in pp collisions at 5.02 TeV
 - > In 2-7 GeV/c, muons from charm hadron decays dominate
 - ➢ In 7-20 GeV/c, muons from beauty hadron decays take over

R_{AA} of muons \leftarrow c, b in Pb-Pb collisions

- □ Similar strong suppression observed at 5.02 TeV and at 2.76 TeV for most 10% central collisions
 - Improved precision at 5.02 TeV
 - Harder spectra and denser medium counterbalance
 - ✓ Flattening of the $p_{\rm T}$ spectra of initial charm and beauty quarks with increasing collision energy: decrease the heavy-quark suppression (increase $R_{\rm AA}$) by about 5% (if medium temperature remains unchanged)
 - ✓ Medium temperature estimated to be higher by about 7% at 5.02 TeV than 2.76 TeV: increase the suppression 10% (5%) for charm (beauty)[1]

R_{AA} of muons \leftarrow c, b in Pb-Pb collisions

ALICE

□ MC@sHQ+EPOS2 calculations:

- Different in-medium energy loss expected for charm and beauty
- > Predictions with different energy loss scenarios in fair agreement with the measured R_{AA} of muons from both charm- and beauty-hadron decays

- Elastic collisional energy loss processes dominate at low and intermediate p_T region
- Radiative energy loss processes are more pronounced at high p_T region

R_{AA} of muons \leftarrow c, b: Xe-Xe vs Pb-Pb collisions

□ Smaller suppression in Xe-Xe than Pb-Pb collisions for same centrality classes

Similar R_{AA} observed in 0-10% Xe-Xe and 10-20% Pb-Pb collisions with similar charged-particle multiplicity

Possible interplay of geometry and path-length dependence of energy loss

 \square MC@sHQ+EPOS2: in agreement with the measured R_{AA} for both collision systems

 \Box PHSD: overestimated R_{AA} for both collisions (only collisional energy loss processes implemented)

Additional constraints to model calculations

8

Results from small systems: R_{pPb} measurement

 \Box Forward rapidity: compatible with unity over whole $p_{\rm T}$ range ($R_{\rm pPb}$ ~1)

□ Data measured at forward rapidity can be well described by the models within uncertainties

- Cold Nuclear Matter effects are small
- \succ The suppression of R_{AA} observed in A-A collisions should result from final-state effects

 $2.03 < y_{\rm cms} < 3.53$

- □ Collective flow usually considered as the evidence of QGP
 - Not expected in small collision systems

□ In p-Pb collisions at 8.16 TeV

- > Significant positive v_2 (2 < p_T < 6 GeV/*c*) observed: collectivity in small systems
- > Smaller v_2 at high p_T (6 < p_T < 10 GeV/*c*): beauty-dominated region
- \succ v_2 in AMPT: flow explained by the anisotropic parton escape mechanism
- \succ v_2 in CGC: qualitative agreement with data suggest possible contributions from initial-state effects

□ Significant azimuthal anisotropy for heavy-flavour decay muons, while the R_{pPb} is unity □ More studies on models which combine initial- and final-state effects needed

Run 3: c, b separation at forward rapidity

- Vertexing capabilities at forward rapidity complemented with the new Muon Forward Tracker (MFT) in the Run 3
- □ New upgraded Inner Tracking System
- New readout system for all detectors
- Increased luminosity
 - Possible to distinguish charm and beauty contributions in the single muon channel in a wide kinematics region, down to lower and higher p_T, for the first time
- Extend the precision measurements of the QGP properties towards the forward rapidity region

Run 3: c, b separation at forward rapidity

- Separation based on the different decay length of charm- and beautyhadrons
- Key observable: DCA_{xy} (DCA in the transverse plane)

$$DCA_{xy} = \sqrt{(x_v - x_{extrap})^2 + (y_v - y_{extrap})^2}$$

- □ Templates: DCA_{xy} of μ ← c, μ ← b (direct b and b chain) and μ ← π, K from MC
- Fit with the variable-width Gaussian function:

$$f(x) = Ae^{-(x-\mu)^2/2\sigma(x)^2}$$

$$\sigma(x) = \sigma_0^L + \sigma_1^L(\mu - x) + \dots + \sigma_3^L(\mu - x)^3 \text{ for } x \le \mu$$

$$\sigma(x) = \sigma_0^R + \sigma_1^R(x-\mu) + \dots + \sigma_6^R(x-\mu)^6 \text{ for } x > \mu$$

Current status:

- Three template fit method tested and validated with realistic MC simulations in pp collisions
- Charm and beauty components at forward y can be measured separately, down to p_T ~ 0.5 GeV/c for charm and down to p_T ~1-2 GeV/c for the beauty component in pp collisions

Fit parameter distortion (%)

Conclusion and outlooks

- \square R_{AA} of open heavy-flavour decay muons in heavy-ion collisions
 - Strong suppression, a factor ~3 in most-central collisions observed
 - > The measured suppression is due to hot nuclear matter effects ($R_{pPb} \sim 1$)
 - Results compatible within uncertainties with those obtained at Pb-Pb (Xe-Xe) collisions with the similar charged-particle multiplicity
 - \succ R_{AA} measurements have the potential to constrain energy loss models

 \Box Positive v_2 of open heavy-flavour decay muons observed at high multiplicity in p-Pb collisions at 8.16 TeV

- > New constraints to understand the origin of collectivity in small collision systems
- □ The Run 3 analysis ongoing
 - > Fit method for c, b separation validated with MC and will be applied on pp and Pb-Pb data
- More study on high-precision multi-differential measurements of both muons from charm and beauty decays at forward rapidity will be performed in Run 3 for the first time

Stay tuned, more to come soon

Thank you for your listening!

Backup

Physics motivation

□ Azimuthal anisotropy in the QGP

□ Participation of heavy quarks in the collective motions and the possible thermalization

- Study path-length dependence of in-medium parton energy loss
- Sensitivity to initial-state event-by-event fluctuations
- Probe strong initial electromagnetic fields in the QGP

$$\frac{d^2 N}{dp_{\rm T} d\varphi} = \frac{1}{2\pi} \frac{dN}{dp_{\rm T}} \left(1 + 2\sum_{n=1}^{\infty} \nu_n(p_{\rm T}) \cos[n(\varphi - \Psi_n)]\right) \qquad \qquad \nu_n$$

$$v_n = <\cos[n(\varphi - \Psi_{RP})] >$$

R_{AA} of muons \leftarrow c, b in Pb-Pb collisions

ALICE

□ MC@sHQ+EPOS2 calculations:

- Different in-medium energy loss expected for charm and beauty
- > Predictions with different energy loss scenarios in fair agreement with the measured R_{AA} of muons from both charm- and beauty-hadron decays
- Radiative energy loss neglects finite path-length effects due to the gluon formation outside the QGP and is overestimated at high p_T
 - More pronounced for charm quarks than beauty quarks

Results from small systems: R_{pPb}

- \Box Forward rapidity: compatible with unity over the whole $p_{\rm T}$ range
- \Box Backward rapidity: larger than unity with a maximum significance of 2.2 σ for the interval 2.5 < $p_{\rm T}$ < 3.5 GeV/c; Compatible with unity at higher $p_{\rm T}$
 - Cold Nuclear Matter effects are small
 - \succ The suppression of R_{AA} observed Pb–Pb collisions should result from final-state effects

Next-to-Leading Order (NLO) pQCD calculations with Vitev's model: including energy loss in cold nuclear

Kang's model: including both initial state-and final-state

17

Results from small systems: Inclusive muon v_2 in p-Pb collisions

- □ Positive v_2 with a significance of up to ~12 σ (2 < p_T < 6 GeV/c): collectivity in small systems
- □ Smaller v_2 at high p_T (6 < p_T < 10 GeV/*c*): beauty-dominated region
- \Box v_2 in AMPT: flow explained by the anisotropic parton escape mechanism
- \Box v_2 in CGC: qualitative agreement with data suggest possible contributions from initial-state effects

- □ Significant azimuthal anisotropy for heavy-flavour decay muons, while the R_{pPb} is unity
- More studies on models which combine initial and final state effects needed

The muon v₂ measured is compatible with published inclusive muons v₂ at forward rapidity and HF-e v₂ at mid rapidity in p-Pb collisions 5.02 TeV

Results from small systems: Inclusive muon v_2 in p-Pb collisions

- ALICE
- The two methods(2-particle correlation and 2-particle cumulants) give compatible results after respective nonflow subtraction
- A tendency for a slight increase of v₂ in the highest p_T region is visible at backward rapidity with the twoparticle cumulant method

Phys. Lett. B 846 (2023) 137782